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Abstract: The COVID-19 pandemic is characterized by a recurring sequence of peaks and troughs.
This article proposes a regime-switching unobserved components (UC) approach to model the trend of
COVID-19 infections as a function of this ebb and flow pattern. Estimated regime probabilities indicate
the prevalence of either an infection up- or down-turning regime for every day of the observational
period. This method provides an intuitive real-time analysis of the state of the pandemic as well as a
tool for identifying structural changes ex post. We find that when applied to U.S. data, the model
closely tracks regime changes caused by viral mutations, policy interventions, and public behavior.
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1. Introduction

Since its onset in late 2019, the COVID-19 pandemic has permeated next to all facets
of public life. Even in the transition of the COVID-19 pandemic to an endemic state,
the by now well-known routine of alternating infection peaks and troughs will demand
close observation for the foreseeable future (Telenti et al. 2021). However, analyzing and
monitoring the state and development of the pandemic is complicated by the nature of
the data on COVID-19 case numbers: a glimpse at Figure 1 reveals key characteristics
include the strong persistence and nonstationarity of case numbers (Dolton 2021), as well
as alternating regimes of increasing and decreasing infections caused by policy interven-
tions, medical innovations, seasonal climate conditions, and the evolution of the virus
itself (Doornik et al. 2022; Fiscon et al. 2021). In addition, infection dynamics are over-
lapped by a seasonal pattern of increasing volatility, generated by a varying number of
tests over the days of the week (Bergman et al. 2020), as well as by measurement errors
(Hortaçsu et al. 2021).

While a variety of econometric tools have been utilized to study the dynamics of
COVID-19 case numbers, in particular, unobserved components (UC) models have been
found successful in capturing the aforementioned characteristics of COVID-19-related
data.1 In the early stages of the pandemic, UC models were used to fit linear deterministic
trends to COVID-19 case numbers and to identify structural breaks (Hartl et al. 2020; Lee
et al. 2021; Liu et al. 2021). With an increasing number of observations available, UC models
with stochastic trends have been considered by Moosa (2020) and Doornik et al. (2022),
while (stationary) seasonal components were added by Navas Thorakkattle et al. (2022)
and Xie (2022), among others. However, appropriately accounting for the alternating peaks
and troughs in the trend of COVID-19 case numbers remains an open challenge.
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Figure 1. Daily U.S. COVID-19 infections it (orange, right scale) and logarithm of daily infections
log(it) (gray, left scale). The vertical line (gray, dashed) indicates the 1st of April 2020, the start of the
observational period.

We contribute to the UC literature by explicitly modeling the peak and trough pattern
of infection numbers, which has emerged as one of the defining features of the COVID-19
pandemic. For this purpose, we introduce a regime-switching UC model that decomposes
log daily COVID-19 infections into trend, seasonal, and cyclical components. While the
trend is formulated as a random walk (RW) with drift to capture the long-run dynamics of
log new infections, the novelty of our model is that the drift term is made regime-dependent
to account for alternating periods of increasing and decreasing infections, as well as for the
strong persistence of the respective regime. A seasonal component is added to model the
weekly recurring pattern of case numbers, while an autoregressive (AR) term accounts for
short-term dependencies in the data.

Regime-switching and mixture models have been studied extensively in the past. We
refer to Frühwirth-Schnatter (2006); Kim and Nelson (2017) for an overview. As proposed in
Kim (1994); Kim and Nelson (2017, ch. 5), we estimate the trend, seasonal, and cyclical com-
ponents via the Kim filter, which is an extension of the Kalman filter to regime-switching
models: between the prediction and updating step of the Kalman filter, it executes the
recursions of Hamilton (1989) to estimate the regime probabilities and thus allows for
regime switching in a state-space framework. Parameter estimation is carried out by
numerical optimization of the likelihood function, where we make use of an extensive
grid search to be robust against local optima. As an alternative, one could also utilize
the Expectation–Maximization (EM) algorithm, which has recently been derived for the
Kim filter by Degras et al. (2022). As an alternative estimation strategy, we also consider
a Bayesian–Gibbs sampling approach. Markov chain Monte Carlo (MCMC) techniques
have been widely employed for state-space and especially regime-switching models (see
Frühwirth-Schnatter 2006). In contrast to the Kim filter, inference is based on the joint
distribution of the state vector, regime probabilities, and additional parameters, rather than
on conditional distributions (Frühwirth-Schnatter 2006, ch. 13).

The model is applied to daily U.S. infection data provided by the Johns Hopkins
University Center for Systems Science and Engineering (JH/CSSE) (Dong et al. 2020). We
found that the estimated regime probabilities closely track the pattern of infection waves
throughout the whole chronology of the pandemic. This allows for easy ex post evalua-
tion of the effectiveness of public health interventions or the severity of viral mutations:
whereas significant changes tip the system into the opposite regime, harmless mutations or
insignificant interventions do not trigger a switch. Moreover, we introduce a nowcasting
application that provides an easy-to-understand and concise monitoring tool for the current
state of the pandemic.
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The plan of this paper is as follows. Section 2 describes the data and methodology.
Section 3 presents empirical findings and examines the nowcasting application. Section 4
discusses alternative model specifications, contrasts the Kim filter with a Bayesian–Gibbs
sampling approach, and presents a Monte Carlo study to evaluate the reliability of parame-
ter estimates for the preferred specification. Section 5 concludes. All R code to replicate this
paper is available at the Github repository https://github.com/Paul-Haimerl/Regime-SW-
UC-COVID-19 Repository accessed on 2 April 2023.

2. Data and Methodology

To analyze the state and dynamics of the COVID-19 pandemic, we consider data from
the JH/CSSE, which can be downloaded from https://github.com/CSSEGISandData/
COVID-19 (accessed on 14 March 2023). Figure 1 sketches the data on reported daily
COVID-19 infections from the 22nd of January 2020 to the 25th of December 2022 for the
U.S. in both levels and logarithms.

As can be seen, data on daily infections in the early phase of the pandemic are
downward-biased due to limited test capacities. As test availability increases, one sees a
rapid increase in case numbers in March 2020.2

Accounting for this bias, we select the 1st of April 2020 as the start date for our
study. Tracking the pandemic until the end of 2022 provides a total of T = 1005 daily
observations.3

To set up our model, let it denote new daily U.S. COVID-19 infections and define
yt = log(it). The measurement equation of the unobserved components model is then
given by

yt = µt + γt + ct, t = 1, . . . , T, (1)

where µt denotes the trend, γt models the seasonal component, and ct is a stationary cyclical
component. As Figure 1 suggests, the model is formulated in terms of logarithmic case
numbers to reflect the exponential growth of COVID-19. Furthermore, taking logs allows
for proportional seasonal effects and measurement errors rather than additive effects (see
e.g., Doornik et al. 2021; Lee et al. 2021; Liu et al. 2021).

As typical in the literature, the seasonal component γt is modeled as a mean-zero
deterministic process (Durbin and Koopman 2012; Navas Thorakkattle et al. 2022, ch. 3.2.2)

γt = −
6

∑
j=1

γt−j. (2)

The cyclical component ct is to capture short-run dynamics in the data. Therefore, we
define ct as a stationary AR(2) process

(1− Lφ1 − L2φ2)ct = ηt ηt ∼ i.i.d.N(0, σ2
η). (3)

L denotes the lag operator Lxt = xt−1. The motivation behind (3) is to allow for
some additional short-term dependencies and thus for autocorrelated measurement errors
instead of a purely unsystematic additive component with no temporal correlation. Such
short-term fluctuations can arise, e.g., due to testing bottlenecks, large-scale public events,
the gradual introduction of new policies, or time lags in the reporting of new cases.

Turning to the trend, we specify µt as a random walk with drift to capture the perma-
nent, smooth low-frequency dynamics, as displayed in Figure 1.

µt = µt−1 + νt + ξt ξt ∼ i.i.d.N(0, σ2
ξ ),

νt = ν0 + Stν1.
(4)

The drift term νt depends on the current regime indicator St ∈ {0, 1}. In order to
uniquely identify the system, we impose ν1 < 0, which declares St = 1 as the infection
down-turning regime and St = 0 as the infection up-turning regime. Consequently, (4)

https://github.com/Paul-Haimerl/Regime-SW-UC-COVID-19
https://github.com/Paul-Haimerl/Regime-SW-UC-COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
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allows for alternating regimes of increasing and decreasing infections, as well as for different
rates of growth and decay. Specification (4) can be justified by visual inspection of Figure 1,
which shows that log infections are driven by persistent but alternating phases of increasing
and decreasing case numbers. Regime switches may be triggered by major epidemic
events that have a persistent impact, such as virus mutations, policy changes, or medical
innovations, among others.

The switching behavior between the two states is modeled by a first-order stationary
Markov process (Hamilton 1989, ch. 2), with the transition probabilities

Pr(St = 1|St−1 = 1) = p, Pr(St = 0|St−1 = 1) = 1− p,

Pr(St = 0|St−1 = 0) = q, Pr(St = 1|St−1 = 0) = 1− q.
(5)

The transition probabilities are constrained to satisfy p, q > 90%, which resembles the
path-dependent behavior of infection-increasing and infection-decreasing regimes.4

In the following, we refer to the specification in (1) to (5) as the D.Seas.C. model. To
estimate the parameters θ = (σξ , ση , ν1, ν0, φ1, φ2, p, q)′ we proceed similarly to the UC
literature: First, the model is cast in state-space form. Based on the Kim filter, we obtain
a conditional likelihood function that combines the prediction and updating steps of the
Kalman filter with the regime-switching recursions of Hamilton (1989) (see Kim 1994, ch. 2
for details). Maximizing the conditional likelihood yields the desired parameter estimates
and is analogous to the usual prediction error decomposition in the UC literature, which
involves the Kalman filter instead of the Kim filter (see Harvey 1989, ch. 4).5 While the
estimation results for the D.Seas.C model are presented in the next section, we also discuss
generalizations, including a stochastic specification of the seasonal term and the inclusion
of a third state in Section 4.

3. Empirical Results

To initiate the Kim filter, we initialize µ0 with the number of reported COVID-19
cases on the 31st of May 2020, one day prior to the start of the observational period. The
remaining entries to the state vector and the diagonal of the state covariance matrix are
initialized diffusely, as is common in the UC literature (see Durbin and Koopman 2012,
ch. 5).

To ensure stable estimates of all parameters in θ and to avoid convergence to local
optima, we employ an extensive three-step grid search that covers the relevant parameter
space while remaining computationally feasible: In a first global grid search, 30,000 pa-
rameter combinations are randomly drawn from uniform distributions with sufficiently
wide support to encompass the entire parameter space. To narrow down the locations of
local and global optima, we pick the 50 θ-vectors corresponding to the greatest likelihood
values. For each parameter, we store the minimum and maximum value of these 50 combi-
nations, which gives us the range of the relevant parameter space. In the second step, these
minimum and maximum values are employed as bounds to construct a finer parameter
grid. After computing the likelihood of each grid point, we use the 50 grid points yielding
the greatest likelihood as starting values for numerical optimization via the Nelder–Mead
algorithm. The optimized parameters corresponding to the greatest log likelihood are then
chosen as the final parameter estimate θ̂. Figure 2 outlines the parameter distributions as
generated by these 50 optimization results.
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Figure 2. Parameter-specific kernel densities of the final-step grid search results. The respective best
estimate is marked in red. Note that p and q are floored at 90% (see Section 2).

As all parameters of our model (1) to (5) feature a narrow distribution around their
best estimate, they appear accurately identified.

Table 1 presents the estimation results and corresponding standard errors.

Table 1. Maximum likelihood estimation result for the D.Seas.C specification.

Parameter Estimate Standard Error

σξ 0.073 0.008
ση 0.409 0.010
ν0 0.033 0.004
ν1 −0.048 0.010
φ1 0.440 0.033
φ2 −0.270 0.032
q 0.969 0.017
p 0.988 0.010

Log L: −677.783 AIC: 1.379 BIC: 1.452 HQ: 1.407
Notes: The maximum likelihood estimates are based on the grid search, as described in Section 3. Standard errors
are obtained from the inverted numerical Hessian matrix. Information criteria are adjusted to reflect the diffuse
initialization of the state vector (Durbin and Koopman 2012, ch. 7.4).

Based on the transition probabilities p̂ and q̂, it is straightforward to calculate the
regime durations. The model estimates an expected duration of (1 − p̂)−1 ≈ 83 days
for the down-turning St = 1 regime and (1− q̂)−1 ≈ 32 days for the up-turning St = 0
state. The drift estimates ν̂1 and ν̂0 are interpreted as the average day-to-day change in
the trend in log COVID-19 cases. Transforming back into levels gives an average daily
decrease of 1− expν̂0+ν̂1 ≈ 1.49% for the down-turning regime on the one hand, and a daily
increase of expν̂0 −1 ≈ 3.36% in periods of the up-turning regime on the other. Whereas
the COVID-19 infections double roughly every ν̂−1

0 log(2) ≈ 21 days in an up-turning state,
approximately (ν̂0 + ν̂1)

−1 log( 1
2 ) ≈ 46 days are required to halve these case numbers again

in a subsequent down-turning regime.
Executing the Kim filter and smoothing recursions yields estimates for the state vector.

Figure 3 displays the smoothed trend µ̂t and regime probabilities P̂r(St = 0|yT , ..., y1),
together with the noisy measurement of log COVID-19 infections.
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Figure 3. Smoothed trend estimates µ̂t (orange, left scale), smoothed regime probabilities P̂r(St =

0|yT , . . . , y1) (blue, right scale), and log COVID-19 cases log(it) (gray, left scale). The smoothed
trend is a probability-weighted average of the two regime-specific trend estimates. Infection waves
(up-turning regime) as identified by P̂r(St = 0|yT , . . . , y1) > 40% are shaded.

As Figure 3 shows, the model allows for the identification of episodes of up- and
down-turning regimes. In particular, it assigns a strong path dependence to the infection
regimes, such that long episodes of containment are followed by new infection waves. The
increasing proportion of seasonal distortions is attributed to the seasonal and short-run
component, and thus does not deteriorate the smoothed trend nor the smoothed regime
probabilities. It is only towards the end of the observational horizon that lateral dynamics,
strong seasonal fluctuations, and the limited number of future observations complicate
the separation of trend, seasonal, and cyclical dynamics. As a consequence, the smoothed
trend and regime probabilities appear more erratic.

To illustrate the benefits from our UC model for identifying structural changes ex post,
we select a simple threshold of the smoothed regime probability P̂r(St = 0|yT , ..., y1) > 40%
in order to indicate up-turning states. While we leave the choice of a policy rule up to the
experts in the field, our arbitrarily chosen threshold is rather cautious (i.e., the probability
threshold is set below 1/2) and allows to identify several infectious waves that are shaded
in Figure 3. A chosen list of policy measures and events, as reported by the U.S. Centers
for Disease Control and Prevention in proximity of the six identified infection waves, is
presented below.6

1. 3 June 2020–10 July 2020 10.04.: The U.S. is the country with the most reported
COVID-19 cases and deaths worldwide. 13.04.: Most states in the U.S. report
widespread cases of COVID-19. 13.06.: CDC releases consolidated COVID-19 testing
guidelines. 22.06.: The U.S. President extends the temporary suspension on new
immigrant visas through the end of the year. 30.06.: Dr. Anthony Fauci warns of new
infections overwhelming the healthcare system. 01.07.: The U.S. has more than 50 K
new daily COVID-19 cases. 14.07.: The CDC again calls on all people to wear cloth
face masks when leaving their homes.

2. 6 October 2020–20 November 2020 04.11.: New U.S. COVID-19 cases surpass 100 K
in a day. 10.11.: Total cases of COVID-19 in the U.S. surge past 10 M. 13.11.: COVID-19
case numbers spike across the U.S. after Halloween celebrations. 20.11.: The CDC rec-
ommends to stay home for Thanksgiving and to avoid contact as case numbers surge.

3. 26 June 2021–23 August 2021 27.07.: Amid a Delta variant surge, the CDC releases
updated guidance recommending that everyone in areas with high transmission
wears a mask. 30.07.: The CDC releases data suggesting that vaccinated people
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infected with Delta can transmit the virus to others. 23.08.: The FDA fully approves
the Pfizer–BioNTech COVID-19 vaccine for all people ages 18 years and older.

4. 22 November 2021–14 January 2022 26.11.: The WHO designates the COVID-19
Omicron variant as a “variant of concern”. 20.12.: The CDC releases data estimating
that the Omicron variant is around 1.6 times more transmissible than the Delta variant.
27.12.: The CDC shortens the recommended isolation period for people with COVID-
19 to six days.

5. 4 April 2022–25 May 2022 13.04.: The Omicron subvariant BA.2 makes up more than
85% of all new COVID-19 infections in the U.S. 18.04.: The CDC’s mask mandate for
indoor public transportation is struck down in court. 21.04.: The DHS extends the
COVID-19 vaccine requirement for all noncitizens entering the U.S.

6. 28 November 2022–8 December 2022 08.12.: The FDA authorizes bivalent COVID-
19 vaccines for children as young as 6 months of age. 15.12.: The Biden administration
announces the COVID-19 Winter Preparedness plan.

In addition to an ex post analysis, we also propose the use of the prediction step
of the Kim filter as an easy real-time monitoring device for the pandemic. In case the
one-step-ahead prediction of entering the up-turning regime exceeds the aforementioned
threshold of 40%, policies may be triggered to quickly shorten the duration of the incoming
up-turning regime.

In the following, we evaluate the appropriateness of this monitoring application based
on its past propensity for type I (false-positive) and type II (false-negative) errors, as well
as on the time lag of filtered predictions relative to the smoothed estimates. To mimic the
situation of a decision maker in real time, we start with 150 observations and estimate the
parameters θ, as described at the beginning of this section. We then obtain one-step-ahead
predictions for the conditional probability for the up-turning state from the Kim filter. Next,
an additional observation is added to the sample, and the procedure repeats. To speed
up the procedure, we update the parameter estimates only every two iterations and use
the estimates from the previous iteration as starting values for the numerical optimization.
Every 500 iterations, an additional grid search, as described at the beginning of this section,
is performed to robustify the procedure.

Figure 4 compares the smoothed estimates and the filtered one-step-ahead regime
probabilities. Time periods where the one-step-ahead prediction exceeds the 40% threshold
are shaded.
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Figure 4. Smoothed regime probabilities P̂r(St = 0|yT , . . . , y1) (blue) and filtered regime probabilities
P̂r(St = 0|yt−1, . . . , y1) (orange) for the up-turning regime. Days on which the filtered predictions
P̂r(St = 0|yt−1, . . . , y1) exceed a threshold of 40% are shaded. Horizontal black bars denote infection
waves based on the smoothed estimates from Figure 3.
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As expected, the filtered regime probabilities are significantly more jagged and slightly
lag the smoothed estimates due to their smaller information set. Nonetheless, all of the
previously established up-turning periods that fall within the scope of the nowcasting
exercise are identified by the monitoring device. A feature that underpins the rather
conservative nature of the monitoring device is that it detects the onset of an up-turning
regime almost in real time. However, this comes at the cost of a higher type I error, i.e., the
detection of an up-turning regime that contradicts the smoothed estimates, e.g., at the end
of 2021. During the summer of 2022, the monitoring device detected several additional
up-turning regimes that are classified as down-turning ones based on the smoothed regime
probabilities. However, as Figure 3 indicates, the smoothed trend is actually increasing
during that period; however, the magnitude of the increase is small compared with other
up-turning periods.

Table 2 contrasts the infection waves, as identified by the smoothed regime proba-
bilities (shaded periods in Figure 3), with those derived from the filtered one-step-ahead
predictions (shaded periods in Figure 4).

Table 2. Periods of the up-turning St = 0 regime as identified by smoothed estimates and correspond-
ing nowcasting one-step-ahead predictions.

Smoothed Estimates Filtered One-Step-Ahead Predictions

Infection Wave Beginning End Beginning End

1 3 June 2020 10 July 2020 - -

2 6 Oct 2020 20 Nov 2020

9 Oct 2020 10 Oct 2020
12 Oct 2020 13 Oct 2020
15 Oct 2020 17 Oct 2020
19 Oct 2020 22 Nov 2020
24 Nov 2020 25 Nov 2020

3 26 June 2021 23 Aug 2021
26 June 2021 27 June 2021
3 July 2021 4 July 2021
7 July 2021 9 Aug 2021

4 22 Nov 2021 14 Jan 2022

17 Nov 2021 24 Nov 2021
27 Nov 2021 29 Nov 2021
9 Dec 2021 28 Dec 2022

31 Dec 2021 1 Jan 2022
06 Jan 2021 15 Jan 2022

5 04 Apr 2022 25 May 2022

9 Apr 2022 10 Apr 2022
9 Apr 2022 10 Apr 2022

14 Apr 2022 15 Apr 2022
21 Apr 2022 8 May 2022
10 May 2022 22 May 2022
24 May 2022 28 May 2022

6 28 Noc 2022 8 Dec 2022 1 Dec 2022 3 Dec 2022
6 Dec 2022 10 Dec 2022

Notes: False-positive periods of the up-turning regime are omitted (see Figure 4). The first infection wave is not
covered due to an initialization period of 150 days for the nowcasting application.

Across the whole covered period, the nowcasting tool lags only slightly behind the
smoothed estimates. These findings suggest the suitability of the model in Equations (1)–(5)
for a real-time monitoring tool to provide an intuitive and concise state of the pandemic.

4. Robustness and Discussion

The daily observations of COVID-19 case numbers in Figure 1 display an increas-
ing seasonal variation over time. The deterministic seasonality of the D.Seas.C. model in
Equation (2) is not equipped to handle such dynamic behavior. As a result, some of the in-
creasing seasonality may be captured by the estimated cyclical and trend component, which
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subsequently distorts the regime-switching behavior of the system. A straightforward
extension of the model would therefore be to substitute (2) with a stochastic specification
capable of assuming seasonal behavior with a progressively increasing variance. One
process with such properties is a seasonal unit root (see Bauer and Wagner 2012 for details).
It can be added to the state-space model by specifying the new seasonal component

γUR
t = −

6

∑
j=1

γUR
t−j + xt, (1− L7)xt = ωt, ωt ∼ i.i.d.N(0, σ2

ω). (6)

Similar to the traditional UC literature, γUR
t is set to be a stochastic process with

expected average equal to zero (see e.g., Durbin and Koopman 2012, ch. 3.2.2). However,
contrary to the deterministic seasonality in (2), the stochastic specification (6) introduces
nonstationary dynamics at lag seven. By plugging in xt and rearranging, (6) can be
expressed as ∑6

j=0 γUR
t−j = ∑13

j=7 γUR
t−j + ωt, and thus (1− L7)∑6

j=0 γUR
t−j = ωt. Therefore,

the unit root at lag seven links the current seasonal dynamics to those of the previous
week, which generates a repeating seasonal pattern. In each period, a shock is added
to ∑6

j=0 γUR
t−j, which yields an ever-increasing volatility over time. Figure 5 sketches 100

simulations of γUR
t and illustrates the oscillating property and nonstationary nature of

this seasonal component. Note that (6) differs from unit root seasonal components in the
spirit of Harrison and Stevens (1976), which are rather to allow for time-variant seasonal
dummies instead of generating an oscillating, diverging behavior.

−150

−100

−50

0

50

100

150

0 25 50 75 100

γ tU
R

Figure 5. One hundred simulated paths of the seasonal component γUR
t , as given in (6) (gray). The

orange sample path depicts a single exemplary trajectory.

Table 3 presents the estimation results for substituting the deterministic seasonal
term (2) with the unit root specification (6), where the parameter estimates are obtained
as before. Furthermore, we provide estimates for specifications that exclude the cyclical
component (3) in favor of an unsystematic error term εt for both the deterministic and
stochastic seasonality, respectively.

Another point of concern is the lateral behavior of infection numbers towards the end
of the observational horizon. Ambiguous time periods that cannot be fully attributed to
either the up-turning or the down-turning regime may lead to incoherent regime probabili-
ties and thus bias the regime estimates at an earlier stage of the pandemic. As a potential
remedy, we introduce a specification involving a third state St = 2, during which the drift
term νt of the trend component in (4) is set to zero. Thus, the third state is intended to
reflect periods that feature neither a strong upward nor downward trend in the reported
case numbers. Table 3 provides estimates of the proposed extensions together with the
preferred D.Seas.C. specification displayed in Section 3.
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Table 3. Maximum likelihood parameter estimates for different model specifications.

D.Seas.C. D.Seas. UR.Seas.C. UR.Seas. D.Seas. 3 St.

σξ
0.073 0.081 0.075 0.075 0.042

(0.008) (0.010) (0.006) (0.006) (0.012)

σω - - 0.005 0.005 -(0.001) (0.001)

σε - 0.445 - 0.188 -(0.011) (0.006)

ση
0.409 - 0.188 - 0.322

(0.010) (0.006) (0.008)

ν0
0.033 0.034 0.004 0.042 0.035

(0.004) (0.004) (0.003) (0.004) (0.006)

ν1
−0.048 −0.047 −0.055 −0.055 −0.257
(0.010) (0.012) (0.013) (0.013) (0.027)

φ1
0.440 - 0.007 - 0.272

(0.033) (0.767) (0.038)

φ2
−0.270 - 0 - −0.185
(0.032) (0.009) (0.033)

q, P00
0.969 0.971 0.972 0.973 0.900

(0.017) (0.017) (0.014) (0.013) (0.001)

P01 - - - - 0.092
(0.019)

P10 - - - - 0
(0.001)

p, P11
0.988 0.990 0.976 0.991 0.947

(0.010) (0.008) (0.007) (0.007) (0.019)

P20 - - - - 0.018
(0.010)

P21 - - - - 0.007
(0.003)

Log L −677.783 −768.670 −157.759 −161.242 −662.714
AIC 1.379 1.552 0.348 0.347 1.376
BIC 1.452 1.605 0.431 0.410 1.518
HQ 1.407 1.572 0.379 0.371 1.430

Notes: The maximum likelihood estimates are derived via the grid search proposed in Section 3. Standard errors
are reported in parenthesis. The columns refer to model specifications with deterministic seasonality including
(D.Seas.C.), as well as excluding (D.Seas.), the AR(2) cyclical component (3), a model accounting for a seasonal unit
root process with (UR.Seas.C.) and without (UR.Seas.), the cyclical component, and a specification with a third
state reflecting time periods of neither falling nor rising infection numbers (D.Seas. 3 St.).

All information criteria clearly favor the more general specifications that include
a seasonal unit root process over the D.Seas.C. model presented in Section 3. This is
due to the seasonal unit root component, which better grasps the oscillating seasonal
pattern along with its increasing volatility over time, as compared with the deterministic
seasonal specification. The latter attributes the strong short-run fluctuations to the cyclical
component. Since ct cannot adequately capture the strong seasonal patterns due to its
stationary nature, the smoothed cyclical shocks appear to be autocorrelated, which reduces
the likelihood and thus increases the information criteria.7 However, even though the
observed series can be fitted more accurately overall when the seasonal component is
generalized to include a seasonal unit root, it is striking that the trend and regime-switching
characteristics vary little across specifications: as illustrated by Figure 6, the smoothed
regime probabilities of the different models almost coincide, and only minimal differences
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between the smoothed trends can be spotted. Therefore, smoothed trend and regime
probabilities appear robust to the specification of seasonal and short-run components.

The introduction of a third state, reflecting episodes of stable case numbers, is able to
improve upon the fit of the two-state D.Seas.C. model, but this refinement is not sufficient
enough as to be favored by the BIC and HQ information criteria. In addition, the constraint
q > 90% is binding, indicating that the model is not suitable to depict the regime path
persistence that is inherent to the pandemic.8 Consequently, we choose the simpler D.Seas.C.
model for the remainder of our analysis.

Additional consideration is given to the general estimation strategy. Numerical op-
timization of a likelihood function, as employed by the Kim filter, has been traditionally
regarded as the standard technique for state-space models (Durbin and Koopman 2012,
ch. 7). However, Bayesian approaches, especially MCMC techniques, are also a well-
developed field in the literature (Frühwirth-Schnatter 2006; Kim and Kang 2019; Luginbuhl
and de Vos 1999). In the Bayesian estimation of UC models, the state vector and addi-
tional parameters are drawn from a joint distribution, rather than treating the unknown
parameters as fixed when maximizing the likelihood numerically. As a consequence, the
Bayesian approach bears the advantage that the posteriors incorporate any underlying
uncertainty regarding the additional parameters (Luginbuhl and de Vos 1999). Moreover,
in order for the Kim filter to account for all possible regime permutations, M2 individual
predictions need to be produced in a single time period for a model with M states. Since the
path dependencies grow at a rate of O(M2T), the Kim filter exploits regime probabilities
to collapse M2 state vector posteriors into M posteriors at the end of each time period
in order to remain computationally feasible (Kim and Nelson 2017, ch. 5.2). Although
previous studies have shown that this approximation entails only a small effect on the
final estimates, some bias may be introduced by using weighted averages to collapse the
posteriors (Kim and Kang 2019). The Bayesian approach, on the other hand, relies on
draws from the joint distribution of the state vector, regime probabilities, and additional
parameters. The need for a similar approximation step in an effort to track all conditional
distributions is eliminated. Inference only requires the convergence of the Markov chain
(Frühwirth-Schnatter 2006, ch. 13).

To robustify our findings, we therefore also estimate the preferred D.Seas.C. model
using a Gibbs sampling approach. Table 4 portrays the results. Furthermore, Figure 6
includes the averaged trend and regime probability posterior draws.

Table 4. Gibbs sampling posterior draws for the preferred D.Seas.C. model specification.

Mean Std.Dev Median 2.5% 97.5%

σξ 0.033 0.009 0.031 0.023 0.060

ση 0.424 0.010 0.424 0.404 0.445

ν0 0.065 0.037 0.054 0.025 0.174

ν1 −0.089 0.030 −0.080 −0.178 −0.058

φ1 0.433 0.035 0.433 0.364 0.500

φ2 −0.254 0.034 −0.254 −0.319 −0.186

q 0.902 0.002 0.902 0.900 0.908

p 0.911 0.015 0.904 0.900 0.955
Notes: The estimation result refers to the preferred model in Equations (1)–(5). The inference is based on
30,000 draws after an initial burn-in period of 5000 iterations. For robustness, we only store and evaluate every
third draw. As in the frequentist estimation technique, the transition probabilities are constrained to be >90%,
and ν1 is bounded to be negative. Apart from the transition probabilities and the trend estimate, all priors are
set diffusely. The trend is initialized with the number of COVID-19 infections one day prior to the start of the
analysis. The initial transition probabilities are set to 0.95. Splitting the final chain of stored parameter draws in
the middle yields a Gelman–Rubin criterion of 1.014, indicating convergence.
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Figure 6. Smoothed trend µ̂ (dashed, left scale) and regime probability P̂r(St = 0|yT , ..., y1) (right
scale) estimates for the preferred D.Seas.C. specification (orange, see Table 1), as well as for the
seasonal unit root UR.Seas. model (grey, see Table 3) using the Kim filter. Averaged posterior draws
of the trend and regime probabilities for the D.Seas.C. model as derived by the Gibbs sampler are
shown in blue (see Table 4).

Comparing the Kim filter estimates in Table 1 with the Bayesian inference in Table 4, the
cyclical dynamics almost perfectly match. However, when analyzing the trend component,
the Gibbs sampler provides a lower estimate of the innovation variance σξ while, in parallel,
specifying the regimes as less persistent and more dissimilar. Therefore, more variance of
the data-generating process is attributed to the regime-switching behavior, driving more
frequent regime switches and a greater regime-dependent effect. Nevertheless, even with
more volatile regime probability estimates, inference based on the Gibbs sampler exhibits
only marginal differences, as Figure 6 reveals.

Regime-switching models are notoriously difficult to estimate. In particular, inference
regarding the regime transitions is often based on only a small number of observed switches;
thus, it presents a substantial challenge to the practitioner. Therefore, it is a sensible
exercise to evaluate and test the performance of the specification at hand via a Monte Carlo
simulation study. We simulate a sample path over 1000 time periods for 1000 iterations,
where the parameter values as well as the length of the data-generating process are chosen
to mimic the reported number of COVID-19 infections. The results of the Monte Carlo
study are shown in Table 5.

Table 5. Result from 1000 Monte Carlo simulations.

T = 1000 Mean Std.Dev Median 95% CI

σξ = 0.050 0.046 0.025 0.044 [0.045; 0.048]

ση = 0.500 0.499 0.013 0.499 [0.499; 0.500]

ν0 = 0.040 0.037 0.035 0.040 [0.036; 0.039]

ν1 = −0.060 −0.357 8.903 −0.060 [−0.819; 0.104]

φ1 = 0.500 0.497 0.036 0.497 [0.495; 0.499]

φ2 = −0.200 −0.194 0.036 −0.194 [−0.196; −0.192]

q = 0.970 0.973 0.018 0.976 [0.972; 0.974]

p = 0.990 0.986 0.015 0.990 [0.986; 0.987]
Notes: For each of the 1000 iterations, we simulate a sample path of 1000 time periods that corresponds to the
D.Seas.C. model specification. Confidence intervals are asymptotic. Parameter values are chosen so as to resemble
the data-generating process of the COVID-19 pandemic. Estimates are derived via the Kim filter.
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Considering the confounding factors that complicate the estimation of regime-switching
state-space models, the D.Seas.C. specification in (1) to (5) seems to accurately identify the
data-generating process. Only the mean of the estimates of the additional drift parameter
ν1 deviates from its true value, together with a very high standard deviation. The drift
parameter ν1 materializes only during episodes where the down-turning regime St = 1 is
turned on (see Equation (4)). As a consequence, in iterations where the randomly generated
sample path contains only very few and brief periods of the down-turning regime, any
parameter estimate will be imprecise and subject to a high variance. This is also evident
from the median of point estimates in Table 5, which is robust against such outlier cases.

Regarding the robustness of the D.Seas.C. model, it can be inferred that a sufficient
data history, as well as a sufficient exposure to both regimes, are required in order to
accurately estimate a regime-switching model. Examining Figure 1, these conditions
appear to be satisfied.

5. Conclusions

In this article, we employ a regime-switching UC model to decompose log daily
COVID-19 infections and estimate the probabilities of alternating regimes of up- and down-
turning case numbers over an extensive period, spanning from the 1st of April 2020 to the
25th of December 2022.

Our findings indicate that a regime-switching UC model is capable of capturing many
characteristics of the COVID-19 pandemic that more inflexible approaches cannot absorb:
a regime-dependent drift assumes persistent long-run dynamics; the weekly patterns of
reported COVID-19 infections are modeled by a seasonal component; and a stationary
autoregressive component captures short-run dynamics and measurement errors.

The results show that: (i) our approach is well-suited to asses ex post the severity
and or efficacy of structural changes, such as viral mutations, regulatory loosening and
tightening, behavioral changes, and novel therapeutic approaches ex post; (ii) the model
can be applied as a policy tool to monitor the state of the pandemic by nowcasting the
current propensity of either the up- or down-turning regime being switched on.

Remaining issues arising from highly inconsistent and erratic seasonality could be
overcome by extending the model to allow for fractionally integrated components. In
particular, this would allow for gradual adjustments of the trend to structural changes
(see e.g., Hartl and Jucknewitz 2022). Another possible extension could be the use of
time-inhomogeneous transition probabilities, as proposed in Kaufmann (2015). There, an
exogenous variable drives the transition matrix over time, allowing for changes in the
frequency of regime switches over the course of the pandemic. However, identifying a
candidate exogenous variable is difficult and remains an open question for future research.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Autoregressive
EM Expectation-Maximization
JH/CSSE Johns Hopkins University Center for Systems Science and Engineering
RW Random Walk
UC Unobserved Components

Notes
1 Harvey (1989) refers to these models as structural time series models. To avoid confusion, the term UC model is used for any

state-space model that specifies one or multiple time series as a function of latent components and assigns an interpretation to
these components by imposing assumptions on their spectra.

2 Carvalho et al. (2021) and the U.S. Centers for Disease Control and Prevention (https://www.cdc.gov/museum/timeline/covid1
9.html, accessed on 14 March 2023), provide an exhaustive timeline regarding the development of the COVID-19 pandemic.
Additional data on the number of performed tests, as well as on a wide range of other indicators, can be found at https:
//ourworldindata.org/coronavirus (accessed on 14 March 2023) (Ritchie et al. 2020).

3 It is reasonable to assume that the number of reported COVID-19 cases in the last week of the year is again biased downward due
to the holiday period. We therefore omit the last week of 2022 and end the observational horizon of our analysis on the 25th
of December.

4 Constraining the parameter space to p, q > 90% implies a maximum expected value of three regime switches per 30 days.
This is a reasonable constraint given the realized dynamics of the COVID-19 pandemic and, furthermore, speeds up the
parameter optimization.

5 Note that we estimate ν0 as part of the state vector. However, the state-space representation of the model in (1) to (5) is not
uniquely defined. Different, albeit observationally identical approaches, such as, e.g., the estimation of ν0 via ML or constraining
ν1 to be >0 and flipping labels with ν0, are possible.

6 A more detailed and extensive overview can be seen at https://www.cdc.gov/museum/timeline/covid19.html (accessed
on 14 March 2023) as well as https://www.defense.gov/Spotlights/Coronavirus-DOD-Response/Timeline/ (accessed on 14
March 2023).

7 Another way to get rid of the strong seasonal pattern would be to take seven-day averages of the log case numbers before
estimating the model, which would yield a smooth series and eliminate the seasonal variation.

8 Since the focus of the analysis lies on identifying coherent periods of up- or down-turning infection regimes, we do not constrain
P22 to be >90%.

References
Bauer, Dietmar, and Martin Wagner. 2012. A state space canonical form for unit root processes. Econometric Theory 28: 1313–49.

[CrossRef]
Bergman, Aviv, Yehonatan Sella, Peter Agre, and Arturo Casadevall. 2020. Oscillations in U.S. COVID-19 incidence and mortality data

reflect diagnostic and reporting factors. mSystems 5: e00544–20. [CrossRef]
Carvalho, Thiago, Florian Krammer, and Akiko Iwasaki. 2021. The first 12 months of COVID-19: A timeline of immunological insights.

Nature Reviews Immunology 21: 245–56. [CrossRef] [PubMed]
Degras, David, Chee-Ming Ting, and Hernando Ombao. 2022. Markov-switching state-space models with applications to neuroimaging.

Computational Statistics & Data Analysis 174: 107525. [CrossRef]
Dolton, Peter. 2021. The statistical challenges of modelling COVID-19. National Institute Economic Review 257: 46–82. [CrossRef]
Dong, Ensheng, Hongru Du, and Lauren Gardner. 2020. An interactive web-based dashboard to track COVID-19 in real time. The

Lancet Infectious Diseases 20: 533–34. [CrossRef] [PubMed]
Doornik, Jurgen A., Jennifer L. Castle, and David F. Hendry. 2021. Modeling and forecasting the COVID-19 pandemic time-series data.

Social Science Quarterly 102: 2070–87. [CrossRef]
Doornik, Jurgen A., Jennifer L. Castle, and David F. Hendry. 2022. Short-term forecasting of the Coronavirus pandemic. International

Journal of Forecasting 38: 453–66. [CrossRef]
Durbin, James, and Siem Jan Koopman. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford: Oxford University

Press. [CrossRef]
Fiscon, Giulia, Francesco Salvadore, Valerio Guarrasi, Anna Rosa Garbuglia, and Paola Paci. 2021. Assessing the impact of data-driven

limitations on tracing and forecasting the outbreak dynamics of COVID-19. Computers in Biology and Medicine 135: 104657.
[CrossRef]

Frühwirth-Schnatter, Sylvia. 2006. Finite Mixture and Markov Switching Models. New York: Springer. [CrossRef]

https://www.cdc.gov/museum/timeline/covid19.html
https://www.cdc.gov/museum/timeline/covid19.html
https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
https://www.cdc.gov/museum/timeline/covid19.html
https://www.defense.gov/Spotlights/Coronavirus-DOD-Response/Timeline/
http://doi.org/10.1017/S026646661200014X
http://dx.doi.org/10.1128/mSystems.00544-20
http://dx.doi.org/10.1038/s41577-021-00522-1
http://www.ncbi.nlm.nih.gov/pubmed/33723416
http://dx.doi.org/doi:10.1016/j.csda.2022.107525
http://dx.doi.org/10.1017/nie.2021.22
http://dx.doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
http://dx.doi.org/10.1111/ssqu.13008
http://dx.doi.org/10.1016/j.ijforecast.2020.09.003
http://dx.doi.org/10.1093/acprof:oso/9780199641178.001.0001
http://dx.doi.org/10.1016/j.compbiomed.2021.104657
http://dx.doi.org/10.1007/978-0-387-35768-3


Econometrics 2023, 11, 10 15 of 15

Hamilton, James D. 1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57:
357–84. [CrossRef]

Harrison, Peter J., and C. F. Stevens. 1976. Bayesian forecasting. Journal of the Royal Statistical Society: Series B 38: 205–28. [CrossRef]
Hartl, Tobias, and Roland Jucknewitz. 2022. Approximate state space modelling of unobserved fractional components. Econometric

Reviews 41: 75–98. [CrossRef]
Hartl, Tobias, Klaus Wälde, and Enzo Weber. 2020. Measuring the impact of the German public shutdown on the spread of COVID-19.

Covid Economics: Vetted and Real-Time Papers 1: 25–32.
Harvey, Andrew C. 1989. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge: Cambridge University Press.
Hortaçsu, Ali, Jiarui Liu, and Timothy Schwieg. 2021. Estimating the fraction of unreported infections in epidemics with a known

epicenter: An application to COVID-19. Journal of Econometrics 220: 106–29. [CrossRef] [PubMed]
Kaufmann, Sylvia. 2015. K-state switching models with time-varying transition distributions—Does loan growth signal stronger

effects of variables on inflation? Journal of Econometrics 187: 82–94. [CrossRef]
Kim, Chang-Jin. 1994. Dynamic linear models with Markov-switching. Journal of Econometrics 60: 1–22. [CrossRef]
Kim, Chang-Jin, and Charles R. Nelson. 2017. State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with

Applications. Cambridge: MIT Press. [CrossRef]
Kim, Young Min, and Kyu Ho Kang. 2019. Likelihood inference for dynamic linear models with Markov switching parameters: On the

efficiency of the Kim filter. Econometric Reviews 38: 1109–30. [CrossRef]
Lee, Sokbae, Yuan Liao, Myung Hwan Seo, and Youngki Shin. 2021. Sparse HP filter: Finding kinks in the COVID-19 contact rate.

Journal of Econometrics 220: 158–80. [CrossRef] [PubMed]
Liu, Laura, Hyungsik Roger Moon, and Frank Schorfheide. 2021. Panel forecasts of country-level COVID-19 infections. Journal of

Econometrics 220: 2–22. [CrossRef] [PubMed]
Luginbuhl, Rob, and Aart de Vos. 1999. Bayesian analysis of an unobserved-component time series model of GDP with Markov-

switching and time-varying growths. Journal of Business & Economic Statistics 17: 456–65. [CrossRef]
Moosa, Imad A. 2020. The effectiveness of social distancing in containing COVID-19. Applied Economics 52: 6292–05. [CrossRef]
Navas Thorakkattle, Muhammed, Shazia Farhin, and Athar Ali Khan. 2022. Forecasting the trends of COVID-19 and causal impact of

vaccines using Bayesian structural time series and ARIMA. Annals of Data Science 9: 1025–47. [CrossRef]
Ritchie, Hannah, Edouard Mathieu, Lucas Rodés-Guirao, Cameron Appel, Charlie Giattino, Esteban Ortiz-Ospina, Joe Hasell, Bobbie

Macdonald, Diana Beltekian, and Max Roser. 2020. Coronavirus pandemic (COVID-19). Our World in Data. Available online:
https://ourworldindata.org/coronavirus (accessed on 14 March 2023).

Telenti, Amalio, Ann Arvin, Lawrence Corey, Davide Corti, Michael S. Diamond, Adolfo García-Sastre, Robert F. Garry, Edward C.
Holmes, Phillip S. Pang, and Herbert W. Virgin. 2021. After the pandemic: Perspectives on the future trajectory of COVID-19.
Nature 596: 495–504. [CrossRef]

Xie, Liming. 2022. The analysis and forecasting COVID-19 cases in the United States using Bayesian structural time series models.
Biostatistics & Epidemiology 6: 1–15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2307/1912559
http://dx.doi.org/10.1111/j.2517-6161.1976.tb01586.x
http://dx.doi.org/10.1080/07474938.2020.1841444
http://dx.doi.org/10.1016/j.jeconom.2020.07.047
http://www.ncbi.nlm.nih.gov/pubmed/32921876
http://dx.doi.org/10.1016/j.jeconom.2015.02.001
http://dx.doi.org/10.1016/0304-4076(94)90036-1
http://dx.doi.org/10.7551/mitpress/6444.001.0001
http://dx.doi.org/10.1080/07474938.2018.1514027
http://dx.doi.org/10.1016/j.jeconom.2020.08.008
http://www.ncbi.nlm.nih.gov/pubmed/33012953
http://dx.doi.org/10.1016/j.jeconom.2020.08.010
http://www.ncbi.nlm.nih.gov/pubmed/33100475
http://dx.doi.org/10.1080/07350015.1999.10524833
http://dx.doi.org/10.1080/00036846.2020.1789061
http://dx.doi.org/10.1007/s40745-022-00418-4
https://ourworldindata.org/coronavirus
http://dx.doi.org/10.1038/s41586-021-03792-w
http://dx.doi.org/10.1080/24709360.2021.1948380

	Introduction
	Data and Methodology
	Empirical Results
	Robustness and Discussion
	Conclusions
	References

