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Abstract: This paper proposes strategies to detect time reversibility in stationary stochastic processes
by using the properties of mixed causal and noncausal models. It shows that they can also be used
for non-stationary processes when the trend component is computed with the Hodrick–Prescott
filter rendering a time-reversible closed-form solution. This paper also links the concept of an
environmental tipping point to the statistical property of time irreversibility and assesses fourteen
climate indicators. We find evidence of time irreversibility in greenhouse gas emissions, global
temperature, global sea levels, sea ice area, and some natural oscillation indices. While not conclusive,
our findings urge the implementation of correction policies to avoid the worst consequences of climate
change and not miss the opportunity window, which might still be available, despite closing quickly.

Keywords: mixed causal and noncausal models; time reversibility; Hodrick–Prescott filter; climate
change; global warming; environmental tipping points

1. Introduction

According to the most recent International Panel on Climate Change report, humanity
is unlikely to prevent global warming by 1.5◦ above pre-industrial levels. Still, aggressive
curbing of greenhouse-gas emissions and carbon extraction from the atmosphere could
limit its rise and even bring it back down (IPCC 2022). However, this window is rapidly
closing, and, above the 1.5◦ threshold, the chances of tipping points, extreme weather, and
ecosystem collapse will become even more sizeable.

A tipping point signals an environmental change that is large, abrupt, and irreversible
and generates cascading effects. Recent IPCC assessments suggest that tipping points
might arise between 1◦ and 2◦ warming, and likely to manifest at current emissions levels
if they have not already occurred. Well-known tipping points concern the Greenland and
the West Antarctic ice sheets, the Atlantic Meridional Overturning Circulation (AMOC),
thawing permafrost, ENSO, and the Amazon rainforest. Recent evidence suggests that
melting ice sheets is accelerating because of warming air and ocean temperatures and less
snowfall. Some studies indicate that the irreversible disintegration of the Greenland ice
sheet could occur at 0.8◦ and 3.2◦ warming (Wunderling et al. 2021). An unstoppable ice
sheet melting in Antarctica would manifest at 2◦ warming (DeConto et al. 2021). Ice sheets
melting adds fresh water to the North Atlantic, weakening the AMOC, one of the main
global ocean currents, which is already in its weakest state in 1000 years (Caesar et al. 2021).
Its shutdown would cause significant cooling along the US east coast and Western Europe,
alter rainfall and cause more drying. At the current global warming pace, a 50% weak-
ening of AMOC is expected by 2100, and a tipping point between 3◦ and 5.5◦ warming.
Moreover, the Arctic is warming twice as fast as the planet on average, and it has already
warmed 2◦, causing permafrost thawing, which releases CO2 and methane into the at-
mosphere. Available estimates point to 1400 billion tons of carbon frozen in the Arctic’s
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permafrost, twice as much carbon already in the atmosphere, and a 2◦ warming could even
cause the thawing of 40% of the world’s permafrost. The El Niño-Southern Oscillation or
ENSO cycle is an oscillating warming and cooling pattern affecting rainfall intensity and
temperatures in tropical regions. It can strongly influence weather in many parts of the
globe. El Niño and La Niña are the warm and cool phases of the ENSO cycle, respectively.
Oceans warming can trigger a tipping point in the ENSO cycle, increasing its variability
and intensity and shifting its teleconnection eastward (Cai et al. 2021). Extreme rainfalls
and droughts will no longer occur in tropical regions but throughout the earth due to the
destabilization of these natural oscillations. The Amazon rainforest has already lost about
17% of its tree cover. At the current rate of deforestation, the loss could reach 27% by 2030.
Lovejoy and Nobre (2018) estimate the dieback of the Amazon Forest at 20%–25%; beyond
this deforestation threshold, the rainforest would transform into a savannah, potentially
releasing up to 90 gigatons of CO2. Some climate models already indicate that the Amazon
will be a net generator of CO2 by 2035, setting the dieback threshold at 3◦ warming.

Further uncertainty on the compound effect of the above phenomena arises from their
potential interaction, allowing tipping points to occur even below 2◦ warming. Overall,
greenhouse gases generated by human activity over the last two centuries have driven the
global trend temperature up. This temperature warming has widely impacted the natural
environment and has raised the risk of irreversible changes of state with catastrophic
consequences (see also Schellnhuber 2008; Solomon et al. 2009).

In this paper, we link the concept of an environmental tipping point to the statistical
property of time irreversibility. A stationary process {Yt}T

t=1 is said to be time-reversible
if its statistical properties are independent of the direction of time. In other words, the
vectors (Y1, Y2, . . . , YT) have identical joint distributions as (Y−T , Y−(T−1), . . . , Y−1) for ev-
ery integer T. Hence, a time-reversible process (TR) exhibits a temporal symmetry in its
probabilistic structure. In the alternative circumstance, we have time irreversibility when
the stochastic process behaves differently according to the direction of time considered.
TR has been under investigation in various fields over the years, for instance, in the dif-
ferent branches of physics, where researchers have been investigating whether time has
some preferred direction in explaining physical phenomena (see Wald 1980; Levesque and
Verlet 1993; Holster 2003). This univocity along the time direction appears to be a tipping
point property, as once a tipping point is reached, the system undergoes an irreversible
state change.

This paper aims to investigate whether TR has the potential to offer insight into the
process of climate change and its implications for the natural environment. Studying TR
in the context of climate change is motivated by the possibility of answering the follow-
ing questions: are there divergences between the forward-time and backward-time joint
probability distributions for the process of climate change and global warming? Are these
processes symmetric over time? Is this property similarly present in natural oscillations
that temperature warming might have permanently impacted, inducing changes in their
frequencies and intensity of occurrence? Irreversibility in this context might carry insights
into the event of state changes.

This paper then introduces new strategies to detect whether a stochastic process is
time-reversible. There are already several tests for TR in the econometric literature. See,
for instance, Ramsey and Rothman (1996), Hinich and Rothman (1998), Chen et al. (2000),
Belaire-Franch and Contreras (2003), and Proietti (2021). The shortcoming of many of these
approaches is that they usually impose strong restrictions on the model or are not trivial
to apply. Our new strategies are grounded in mixed causal and noncausal models (see
Gouriéroux and Jasiak 2016). Unlike causal models, which only consider the relationship
between present and lagged values, mixed casual and noncausal models also compute
the relationship between present and future values. This framework leads to nonlinear
conditional expectations (e.g., Gouriéroux and Jasiak 2022). The connection between these
models and TR gives rise to our testing strategies.

Furthermore, similarly to Proietti (2021), we can test for TR on non-stationary time
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series using a novel approach. We extract the trend component using the Hodrick–Prescott
(HP) filter imparted in a time-reversible closed-form solution. Then, the cyclical component,
which records the process’s oscillations around its trend, is responsible for the potential
time-irreversibility feature of the stochastic process.

The rest of the paper is as follows: Section 2 summarizes the properties of time-
reversible processes and reviews the existing methods to detect TR. Section 3 introduces
our new TR strategies. Namely, we show how our new approaches exploit the properties of
mixed causal and noncausal models. We then evaluate their performance through Monte
Carlo experiments. Section 4 extends our framework to non-stationary time series, and
Section 5 presents the empirical assessment of some relevant climate variables. Finally,
Section 6 concludes.

2. Time Reversibility

Weiss (1975) shows that if a Gaussian error term characterizes an ARMA model, then
the process is time-reversible. Indeed, Gaussian processes are entirely defined by their
second-order moments, which have the property of being time symmetrical.

Hallin et al. (1988) consider two-sided linear models of the form:

Yt =
∞

∑
k=−∞

θkεt−k, (1)

where the stationary condition ∑∞
k=−∞ |θk| < ∞ is satisfied. They claim that if {Yt}T

t=1 is
time-reversible, then either εt is a Gaussian white noise, or there exists a k and s ∈ {0, 1}
such that θ2k+j = (−1)sθ2k−j. However, εt has to be a sequence of i.i.d. zero-mean random
variables with finite moments of all orders. It is an unrealistic assumption for non-Gaussian
processes and many time series.

Breidt and Davis (1992) extend Weiss’s results to non-Gaussian processes assuming
milder conditions than Hallin et al. (1988). They take the following ARMA(p, q) process
into account:

φ(L)Yt = θ(L)εt, (2)

where L indicates the backshift operator, φ(z) has r roots outside and s roots inside the
unit circle (r + s = p), and εt has a finite variance. For simplicity, we set the polynomial
θ(L) = 1, such that (2) can be rewritten as:

φ+(L)φ−(L)Yt = εt, (3)

where φ+(L) has r roots outside the unit circle while φ−(L) has s roots inside. It is well
known that (3) has a unique stationary solution given by a two-sided moving average
representation, as expressed in (1). Breidt and Davis (1992) claim that if φ(z) and φ(z−1)
have different roots, then Yt is reversible if and only if the error term is Gaussian. In the
other case, that is when the two polynomials φ(z) and φ(z−1) have the same roots, (1) (or
equivalently (3)) is time-reversible regardless of the distribution of εt. Indeed, if p > 0 and
φ(z) and φ(z−1) have the same roots, 1/φ(z) has the Laurent expansion

1
φ(z)

=
∞

∑
−∞

θjzj, (4)

with θ−p/2−j = θ−p/2+j, for j = 0, 1, . . . (see Breidt and Davis 1992). This implies that the
result of Hallin et al. (1988) is a consequence of the conclusion that the two polynomials
φ(z) and φ(z−1) have the same roots. Moreover, unlike Hallin et al. (1988), Breidt and
Davis (1992), only assume that the error term must have finite variance.

Ramsey and Rothman (1996) define the stationary stochastic process {Yt}T
t=1 is time-

reversible only if:
γi,j = E[Yi

t Y j
t−k]− E[Y j

t Yi
t−k] = 0 (5)
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for all i, j, k ∈ N+. This is a sufficient condition for TR, but not a necessary one since it
only considers a proper subset of moments from the joint distributions of {Yt}. Since it
is impractical to show that (5) holds for any i, j, and k, they adopt a restricted definition
of TR by imposing i + k ≤ m and k ≤ K. In particular, they restrict m = 3 so that the
symmetric-bicovariance function is given by:

γ2,1 = E[Y2
t Yt−k]− E[YtY2

t−k] = 0, (6)

for all integer values of k. Ramsey and Rothman (1996) claim that i + j = 3 is sufficient to
provide a valid indication of time irreversibility.

Ramsey and Rothman (1996) also introduced a new procedure to test TR that became
a standard approach to investigating business cycle properties such as asymmetry. It
amounts to a TR test statistic distributed as a standard normal distribution:

√
T
[γ̂2,1 − γ2,1]√

Var(γ̂2,1)

d−→ N(0, 1), (7)

with:
γ̂2,1 = B̂2,1(k)− B̂1,2(k),

and:

B̂2,1 = (T − k)−1
T

∑
t=K+1

Y2
t Yt−k ; B̂1,2 = (T − k)−1

T

∑
t=K+1

YtY2
t−k,

for various integer values of k. Under the null hypothesis, we have a time-reversible process.
The pre-requisite of the test is that the data must possess finite first sixth moment. If the
distribution lacks this property, the test size can be seriously distorted (see Belaire-Franch
and Contreras 2003).

Chen et al. (2000) propose a new class of TR tests, which, unlike Ramsey and Rothman
(1996), does not require any moment restrictions. This class of tests relies on the fact
that if {Yt}T

t=1 is a time-reversible process, then for every k = 1, 2, . . . , the distribution of
Xt,k = Yt − Yt−k is symmetric about the origin. The drawback of this approach is that it
allows for testing the symmetry of Xt,k for each value of k, but not jointly for a collection
of k values, which would require a portmanteau test.1 Moreover, its implementation is
not trivial.

Similar reasoning is followed by Proietti (2021) since also his test is based on the idea
that Xt,k has to be symmetric for every k > 0. However, Proietti (2021) uses a weaker
definition of TR as {Yt}T

t=1 can also be non-stationary.

3. New Strategies to Detect Time Reversibility on Stationary Time Series

This Section introduces new strategies to assess TR in stationary stochastic processes,
exploiting the properties of mixed causal and noncausal models. Breidt et al. (1991) intro-
duce mixed causal and noncausal models as expressed in Equation (3). They define the
polynomial φ−(z) as noncausal and the polynomial φ+(z) as causal. A required condition
for identifying the causal from the noncausal component is the non-Gaussianity of the
innovation term.

Lanne and Saikkonen (2011), rewriting the noncausal polynomial in (3) as a lead
polynomial, start with a mixed causal and noncausal model expressed as:

φ(L)ϕ(L−1)Yt = εt, (8)

where L−1 produces lead such that L−1Yt = Yt+1. A mixed causal and noncausal model
represented in this way is denoted as MAR(r,s), where ϕ(L−1) is the noncausal polynomial
of order s and φ(L) is the causal polynomial of order r. Exactly as representation (3),
r + s = p is true even in this case. Purely causal and purely noncausal models are obtained
setting, respectively, ϕ(L−1) = 1 and φ(L) = 1 (see Gouriéroux and Zakoian 2013; Hencic
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and Gouriéroux 2015; Hecq et al. 2016; Fries and Zakoian 2019; Hecq and Voisin 2021;
Giancaterini and Hecq 2022; Fries 2021). In (8), both causal and noncausal polynomials
have their roots outside the unit circle, such that:

φ(z) 6= 0 and ϕ(z) 6= 0 f or |z| ≤ 1. (9)

The tests for TR that we propose have the common feature of extending the results
obtained by Breidt and Davis (1992) to the MAR(r,s) representation (8). This is possible if
and only if Condition 1 is true.

Condition 1. A stochastic process that can be expressed as a MAR model is time-reversible if and
only if φ(z)ϕ(z−1) have the same roots as φ(z−1)ϕ(z). Namely, when:

r = s and φi = ϕi, f or i = 1, . . . , s.

This implies that MARs are time-reversible if and only if the causal polynomial has
the same order and the same coefficients as the noncausal polynomial and vice versa.
Remember that it is impossible to identify a MAR model under the Gaussianity of the
innovation term. Hence, in that case, we have a time-reversible process (see Weiss 1975).

3.1. Strategy 1: For Detecting Time Reversibility

The first strategy aims to evaluate whether a stochastic process meets Condition 1. In
particular, it uses a procedure similar to the one used to identify MAR models (see Lanne
and Saikkonen 2011; Hecq et al. 2016). The procedure is as follows:

1. We estimate a conventional autoregressive process (also called pseudo-causal model)
by OLS, and the lag order p is selected using information criteria (for instance, AIC
or BIC).

2. We test the normality in the residuals of the AR(p). If the null hypothesis of Gaussian-
ity is not rejected, we cannot identify a MAR(r,s) model, and for the reasons above,
we have a time-reversible process. Moreover, if the null hypothesis of normality is
rejected and the estimated p is an odd number, the condition r = s can never be
satisfied. According to Condition 1, this result would allow us to identify our process
as time-irreversible. However, the selection of p might not be univocal and depend
on the information criterion employed. As such, to have more robust results before
proceeding to the next step, we increase p by one unit so that r = s is still possible. In
the alternative case that p is an even number, we directly proceed to the next step.

3. We select a model among all MAR(r,s) specifications with r + s = p if p is an even
number; otherwise r + s = p + 1. This step is performed using a maximum likelihood
approach (see Giancaterini and Hecq 2022 and references therein). In the selection
procedure, we also include the model given by the restricted likelihood that imposes
commonalities in causal and noncausal parameters (the model with the same restric-
tions as in Condition 1). Note that when we compute the information criteria of the
model with restricted likelihood, instead of estimating p parameters (or p + 1 if p is
an odd number), we estimate p/2 of them (or (p + 1)/2), implying a smaller penalty
term. Finally, we choose the model with the smallest information criteria.

Consider a short example to illustrate how the strategy works. We suppose that we
estimate a conventional AR model by OLS, and we reject the Gaussian hypothesis of the
residuals, for instance, using the Jarque–Bera test. Furthermore, we assume we select the
number of lags p equal to 2. To analyze whether our process is time-reversible, we then
compute the log-likelihoods and then the information criteria of the following four models:
MAR(2,0), MAR(0,2), MAR(1,1) as well as the MAR(1,1) with the restriction φ = ϕ. If
the model with the smallest information criteria is the one with the restriction, we have a
time-reversible process. We have a time-irreversible process in the alternative case where
another model is selected. This approach allows knowing with a limited number of steps
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whether the process is time-reversible. Its shortcoming is that information criteria are very
sensitive to the sample size, and model selection might not be robust to sample update or
trimming. Moreover, model selection can depend on the information criterion employed,
i.e., AIC rather than BIC, HQ, or others. Finally, even for the same information criterion,
the value used for model selection can only slightly differ from values shown by either
lower or higher-order alternative models.

3.2. Strategy 2: For Detecting Time Reversibility

The second strategy we introduce is more robust concerning the sample and slight
differences in the value of information criteria when models are compared. However, more
steps are required to identify the TR of the process than for the previous approach. It
requires the following steps: steps 1 and 2 are identical to what we described in Section 3.1;

3. We select a model among all MAR(r,s) specifications with r + s = p if p is an even
number (otherwise r + s = p + 1). Then, we choose the one with the largest likelihood
(since we are considering models with the same number of parameters).

4. If the selected model is the one with r = s (in our previous example, it was the
MAR(1,1)), we compute a likelihood ratio test, taking into account the same restrictions
as in Condition 1). If we do not reject the test’s null hypothesis, we have TR. On the
other hand, if we reject the null hypothesis, we identify the process under investigation
as time-irreversible.

3.3. Simulation Study

We now analyze the performance of these two strategies using Monte Carlo experi-
ments. We take into account data-generating processes (dgp) defined by an error term with
a skewed Student’s-t distribution, generated by joining two scaled halves of the Student’s-t
distribution (see Fernández and Steel 1998):

f (ε) =
2

γ + 1
γ

{
g

(
ε

γ

)
I(ε) + g

(
γε
)
I(−ε)

}
, (10)

where I(ε) and I(−ε) stand for the indicator function:

I(ε) =
{

1, ε ≥ 0
0, ε < 0

,

g(ε) stands for the density function of a symmetric Student’s-t, and γ ∈ R+. In case γ = 1,
we have f (ε) = g(ε), hence (10) is a symmetric Student’s-t with ν degrees of freedom. The
assumption that the error term follows a Student’s-t is not a particularly strong hypothesis.
It is a distribution that offers a good summary of the features of other (non-Gaussian) fat-
tailed and symmetric distributions. Furthermore, our Monte Carlo experiments consider
N = 1000 replications, four different sample sizes, T = (100, 200, 500, 1000), and the
following combinations of causal and noncausal coefficients:

• MAR(1,1): φ0 = 0.8, ϕ0 = 0.8; time-reversible process;
• MAR(1,1): φ0 = 0.8, ϕ0 = 0.5; time-irreversible process;
• MAR(1,1): φ0 = 0.8, ϕ0 = 0.1; time-irreversible process;
• MAR(1,0): φ0 = 0.8; time-irreversible process.

In our Monte Carlo study, we also include results obtained by Ramsey and Rotham’s
test, setting k = 2.

Table 1 shows the frequencies with which the two new strategies and the test proposed
by Ramsey and Rotham detect the processes as time-irreversible when γ = 1, p is known,
and r and s are unknown. In particular, columns Strategy 1 and Strategy 2 indicate the
percentage of times the stochastic processes are identified as time-irreversible when the
strategies from Sections 3.1 and 3.2 are implemented. The last column, RR (1996), indicates
how often we reject the null hypothesis of TR when the methodology proposed by Ramsey
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and Rothman (1996) is used. The Bayesian Information Criteria (BIC) is used in Strategy 1.
The results exhibit that Strategy 1 detects TR with greater precision, but is “undersized” for
large T. This is because the penalty terms can differ from a tiny number in a large sample.
On the other hand, Strategy 2 looks consistent and performs better when the processes
under investigation are time-irreversible (frequencies are not size-adjusted, though, which
makes the results of Strategies 1 and 2 not easy to compare). Finally, the test proposed
by Ramsey and Rothman (1996) clearly shows size distortion problems. This is not an
unexpected result since, as previously stated, the test can show a seriously distorted size
if the distribution lacks a finite sixth moment. The Student’s-t distribution has a finite
sixth moment for ν > 6. As a consequence, the power of the test also performs poorly for
RR(1996).

Our simulation studies also consider cases where the error term is characterized by
γ 6= 1. In these scenarios, we simulate a process with a skewed error term and proceed as if
γ = 1: Strategies 1 and 2 are followed assuming a symmetric Student’s-t distributed error
term. The results obtained under these new circumstances are similar to those in Table 1.
This suggests that the test size and power are not sensitive to the eventual asymmetry of
the error term. The outcomes are available upon request.

Table 2 shows different results when p is assumed unknown. In this case, before
implementing our strategies, we estimate a pseudo-causal model in each replica of our
simulation study to capture the dynamics p. Since there is more uncertainty under these
new conditions, the results are less precise with small sample sizes (T = (100, 200)).
However, the table displays that the outcomes align with Table 1 for large values of T. The
percentages displayed in the column RR(1996) of Table 2 are unchanged from those shown
in Table 1 since the same method is applied.

Table 1. Frequencies with which time irreversibility is detected when the error term has a symmetric
Student’s-t distribution (γ = 1) and ν0 = 3. Finally, r and s are assumed as unknown and p as known.

MAR(1,1); φ0 = 0.8, ϕ0 = 0.8, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 7.1% 16.4% 8.1%
T = 200 3.1% 7.5% 11.5%
T = 500 1.4% 5.0% 11%
T = 1000 0.8% 4.5% 13.6 %

MAR(1,1); φ0 = 0.8, ϕ0 = 0.5, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 51.4% 63.7% 20.7%
T = 200 77.9% 84.8% 29.4%
T = 500 99.0% 99.5% 40.7%
T = 1000 100% 100% 51.8 %

MAR(1,1); φ0 = 0.8, ϕ0 = 0.1, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 87.4% 93.2% 33.2%
T = 200 99.6% 99.9% 43.2%
T = 500 100% 100% 57.5%
T = 1000 100% 100% 68.4%

MAR(1,0); φ0 = 0.8, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 91.5% 93.2% 34.2%
T = 200 99.6% 99.9% 43.8%
T = 500 100% 100% 58.9%
T = 1000 100% 100% 70.1%
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Table 2. Frequencies with which time irreversibility is detected when the error term has a symmetric
Student’s-t distribution (γ = 1) with ν0 = 3 and p, r, and s are assumed as unknown.

MAR(1,1); φ0 = 0.8, ϕ0 = 0.8, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 20.9% 21.6% 8.1%
T = 200 9.5% 12.6% 11.5%
T = 500 3.5% 7.1% 11%
T = 1000 4.3% 7.8% 13.6 %

MAR(1,1); φ0 = 0.8, ϕ0 = 0.5, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 61.6% 67.1% 20.7%
T = 200 79.0% 85.2% 29.4%
T = 500 99.0% 99.5% 40.7%
T = 1000 100% 100% 51.8 %

MAR(1,1); φ0 = 0.8, ϕ0 = 0.1, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 92.2% 93.8% 33.2%
T = 200 99.8% 99.9% 43.2%
T = 500 100% 100% 57.5%
T = 1000 100% 100% 68.4%

MAR(1,1); φ0 = 0.8, ν0 = 3, γ = 1

Strategy 1 Strategy 2 RR(1996)

T = 100 95% 95.7% 34.2%
T = 200 99.9% 99.9% 43.8%
T = 500 100% 100% 58.9%
T = 1000 100% 100% 70.1%

Finally, to analyze the result sensitivity to the persistence level, we implement new
Monte Carlo experiments considering as dgp a MAR(1,1) with the following combinations
of causal and noncausal coefficients:

• MAR(1,1): φ0 = 0.95, ϕ0 = 0.95; time-reversible process;
• MAR(1,1): φ0 = 0.95, ϕ0 = 0.5; time-irreversible process;
• MAR(1,1): φ0 = 0.95, ϕ0 = 0.1; time-irreversible process;
• MAR(1,0): φ0 = 0.95; time-irreversible process.

Even in this case, the outcomes are similar to those displayed in Tables 1 and 2 and
available upon request.

4. Testing for Time Reversibility on Non-Stationary Processes

The goal of this section is to detect TR in non-stationary processes {Yt}T
t=1 that can be

expressed as:
Yt = f Y

t + ccY
t , (11)

where f Y is a generic trend function, and ccY is a stationary process that captures the
cyclical fluctuations of Y around f Y. We show that whenever the trend component is
computed using the HP filter, then f Y can be expressed as a time-reversible process. As a
consequence, the potential time irreversibility of process Y would be captured by its cyclical
component ccY. In other words, whenever f Y is estimated by using the HP filter, model
(11) is time-irreversible (or reversible) if and only if its cyclical component is irreversible (or
reversible).

The HP filter estimates the trend component through the following minimization
problem (see Hecq and Voisin 2021):

min
{ f Y

t }T
t=1

(
∑T

t=1 y2
t + λ ∑T

t=1
[
( ft − ft−1)− ( ft−1 − ft−2)

]2). (12)
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According to De Jong and Sakarya (2016), the optimization problem (11) has the
following closed-form solution:

f Y
t =

(
λL−2 − 4λL−1 + (1 + 6λ)− 4λL + λ2

)−1
Yt, (13)

for t = 3, . . . , T − 2. The λ parameter penalizes the filtered trend’s variability; therefore,
the higher its value, the smoother the trend component:

λ =
(number o f observations per year

4

)i
× 1600,

with either i = 2 (see Backus and Kehoe 1992) or i = 4 (Ravn and Uhlig 2002). It can be
shown that (12) can be rewritten as:

f Y
t =

[(
1− ψ1(λ)L− ψ2(λ)L2

)(
1− ψ1(λ)L−1 − ψ2(λ)L−2

)
+

−
(

ψ2
1(λ) + ψ2

2(λ) + 6ψ2(λ)
)]−1

Yt,

(14)

where ψ1(λ) =
4λ

λ+1 , and ψ2(λ) = −λ. For instance, for annual data, we can adopt λ = 6.25,
implying

f Y
t =

[(
1− 100

29
L + 6.25L2

)(
1− 100

29
L−1 + 6.25L−2

)
− 13.456

]−1

Yt.

The results underline that the filter of the trend component is given by a time-reversible
MAR(2,2) polynomial minus a constant value. Since the latter does not affect the symmetry
over time of our process, and our goal is to investigate the time reversibility of f Y, we do
not consider the constant term in our investigation. As a consequence, we can approximate
f Y as follows:

f Y
t ≈

[(
1− 100

29
L + 6.25L2

)(
1− 100

29
L−1 + 6.25L−2

)]−1

Yt. (15)

Using the Laurent expansion as in (4), we have:

f Y
t ≈

+∞

∑
j=−∞

δjYt−j, (16)

where because of the identity of the lead and lag polynomials, δ is symmetric over time.
Hence, even if f Y is a non-stationary process, we can apply a weaker definition of TR and
define it as time-reversible. This result implies that the potential time irreversibility (or
reversibility) lies with the cyclical component of Y.

To illustrate how our new strategies perform under the new conditions, we implement
new Monte Carlo experiments where f Y is a random walk with drift:

Xt = Xt−1 + δ + ηt, (17)

with η ∼ N(0, 1), and ccY as a MAR(1,1):

(1 + φL)(1 + ϕL−1)Ỹt = εt. (18)
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Finally, the process {Y}T
t=1 is obtained by the sum of the two processes, that is:

Yt = Xt + Ỹt. (19)

Alternatively, we could have considered the following process as dgp:

Yt = Yt−1 + δ + Ỹt ⇒ ∆Yt = δ + Ỹt. (20)

However, the reason not to consider such a process is that, as expressed in (20), the
resulting dgp implies that the first difference process (∆Yt) is a MAR(1,1). This is not a
realistic assumption because MARs are typically used to capture explosive bubbles, and
the first difference operation eliminates most locally explosive behaviors (see Hecq and
Voisin 2021).

In each replica of our Monte Carlo experiment, we simulate the non-stationary process
{Yt}T

t=1, remove the trend component using the HP filter, and then apply our strategies on
ccY. The coefficients used for the cyclical component ccY are the same as in the previous
section. Table 3 displays the results.

Table 3. Frequencies with which time irreversibility is detected on non-stationary time series; r
and s are assumed as unknown and p as known. Data are considered to have quarterly frequency
(λ = 1600).

ccY : MAR(1,1); φ0 = 0.8, ϕ0 = 0.8; ν0 = 3, γ = 1

Strategy 1 Strategy 2

T = 100 15.1% 33.3%
T = 200 6.7% 8.1%
T = 500 1.4% 5.0%
T = 1000 0.8% 4.5%

ccY : MAR(1,1); φ0 = 0.8, ϕ0 = 0.5; ν0 = 3, γ = 1

Strategy 1 Strategy 2

T = 100 40.6% 59.5%
T = 200 58.0% 69.7%
T = 500 86.7% 94.8%
T = 1000 99.2% 100%

ccY : MAR(1,1); φ0 = 0.8, ϕ0 = 0.1; ν0 = 3, γ = 1

Strategy 1 Strategy 2

T = 100 71.9% 89.2%
T = 200 92.0% 97.3%
T = 500 99.6% 100%
T = 1000 100% 100%

ccY : MAR(1,0); φ0 = 0.8; ν0 = 3, γ = 1

Strategy 1 Strategy 2

T = 100 75.1% 91.1%
T = 200 93.4% 98.8%
T = 500 100% 100%
T = 1000 100% 100%

The results are similar to those displayed in Tables 1 and 2, with the difference that the
power of the strategies is less accurate under these new conditions, especially when the
sample size considered is small (T = (100, 200)).

5. Is Climate Change Time-Reversible?

In our empirical investigation, we analyze annual data for the global land and ocean
temperature anomaly (GLO), the global land temperature anomaly (GL), the global ocean
temperature anomaly (GO), solar activity (SA), emissions of greenhouses gas (GHG), emis-
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sions of nitrous oxide (N2O). When available, we also use monthly data to control for
potential small sample distortions in our statistics, as revealed by the simulation results.
In particular, we consider the following monthly series: the Southern Oscillation Index
(SOI), the North Atlantic Oscillation Index (NAO), the Pacific Decadal Oscillation Index
(PDO), the global mean sea level (GMSL), the Northern Hemisphere sea ice area (NH),
the Southern Hemisphere sea ice area (SH), the global component of climate at a glance
(GCAG), and, finally, the global surface temperature change (GISTEMP).

GLO, GL, GO, GCAG, and GISTEMP measure global warming. They provide the
difference between the current temperature from a standard benchmark value. Positive
anomalies show that the observed temperature is warmer than the benchmark value, and
negative temperatures show that the observed temperature is colder than the benchmark
value. In particular, GCAG provides global-scale temperature information using data from
NOAA’s Merged Land Ocean Global Surface Temperature Analysis (NOAAGlobalTemp),
which uses comprehensive data collections of increased global coverage over land (Global
Historical Climatology Network-Monthly) and ocean (Extended Reconstructed Sea Surface
Temperature) surfaces.

SOI is one of the most important atmospheric indices for determining the strength of El
Niño and La Niña events and their possible effects on weather conditions in the tropics and
various other geographical areas. El Niño events are characterized by sustained warming
of the central and eastern tropical Pacific, whereas La Niña events show sustained cooling
of the same areas. These changes in the Pacific Ocean and its overlying atmosphere occur
in a cycle known as the El Niñ o–Southern Oscillation (ENSO). High values of SOI indicate
La Niña events, whereas negative values indicate El Niño events. The NAO determines the
westerly winds’ speed and direction across the North Atlantic and the winter sea surface
temperature. When the NAO index is far above average, there is a greater likelihood that
seasonal temperatures in northern Europe, northern Asia, and South-East North America
will be warmer than usual. In contrast, seasonal temperatures in North Africa, North-East
Canada, and southern Greenland will be cooler than usual. The opposite is true when
NAO is far below average. PDO is a climatic cycle that describes anomalies in sea surface
temperature in the Northeast Pacific Ocean. The PDO has the power to influence weather
patterns all over North America. Finally, GMSL, NH, and SH are climate indicators provid-
ing information on how much of the ice land is melting, and their connection with global
warming is straightforward.

Figure 1 presents the data. GLO, GL, GO, SA, GHG, and N2O range from 1881 to 2014,
SOI and NAO from January 1951 to December 2021, PDO from January 1854 to December
2021, GCAG and GISTEMP from January 1880 to December 2016, GMSL from January 1880
to December 2015, and, finally, NH and SH from January 1979 to 2021.

As shown in Figure 1, time series (a)–(i) are characterized by a positive trend. Hence,
according to the strategy introduced in Section 4, their potential time-reversibility (or irre-
versibility) lies with their cyclical component. For this reason, we can remove their trend
and extract their cyclical fluctuations using the HP filter. Figure 2 displays the detrended
time series. The goal is to investigate the time-reversibility of the variables displayed in
Figure 2 and the latter five in Figure 1.

We estimate autoregressive models (see Sections 3.1 and 3.2) for each time series. We
use the BIC to identify the number of lags (p). Next, we test the normality of the residuals of
the nine AR(p) models. Since for ccGLO, ccGL, ccGO, ccSA, and SH we do not reject the null
hypothesis of normality (significance level 0.05) of the Shapiro–Wilk test (p-values equal to
0.83, 0.59, 0,24, 0.08, and 0.45, respectively) and the Jarque–Bera test (p-values equal to 0.64,
0.25, 0.15, 0.13, and 0.35 respectively), we identify them as time-reversible processes. On
the other hand, in ccGHG, ccN2O, ccGCAG, ccGISTEMP, ccGMSL, SOI, NAO, PDO, and NH, we
reject the null hypothesis of Gaussianity of both the Shapiro–Wilk test (p-values are close
to zero for ccGHG, ccN2O, ccGCAG, ccGISTEMP, ccGMSL, PDO, NH and 0.0362, 0.0020 for SOI
and NAO, respectively) and the Jarque–Bera test (p-value equal to 0.0307 for SOI and close
to zero for all the other variables) at a significance level of 0.05. We can then fit MAR models
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to our data, identifying ccGHG, ccGCAG, and ccGISTEMP as MAR(2,0), ccN2O as MAR(4,0),
ccGMSL as MAR(6,2), PDO as MAR(0,4), SOI as MAR(2,2), NAO as MAR(1,1), and NH as
MAR(12,2) (Table 4). Since the condition r = s is not met, GHG, N2O, GCAG, GISTEMP,
GMSL, and PDO are time-irreversible. However, TR is still a possible outcome for SOI
and NAO; hence, we implement the next steps of Strategies 1 and 2. Since the information
criteria of the restricted MAR(2,2) (BIC = 2705.795) is larger than the one provided by the
MAR(2,2) with no restrictions (BIC = 2659.974), Strategy 1 identifies SOI as time-irreversible.
The same result follows from Strategy 2: the null hypothesis of TR is rejected since the
estimated likelihood ratio test statistic equals 52.57. Contrastingly, NAO is identified as
time-reversible from both strategies: the information criteria of the restricted MAR(1,1) is
lower (BIC = 2450.267) than the one provided by the unrestricted MAR(1,1) (BIC = 2456.317),
and the estimated likelihood ratio test statistic is equal to 0.6985. Even if this last time series
rejects the null hypothesis of Gaussianity, it is very close to the Gaussian case since the
estimated degrees of freedom (ν̂) equals 96.2. However, identifying NAO as non-Gaussian
does not affect our conclusions as both strategies identify it as time-reversible.

In summary, our findings identify GLO, GL, GO, SA, NAO, and SH as time-reversible
and GHG, N2O, GCAG, GISTEMP, GMSL, SOI, PDO, and NH as time-irreversible. The
time irreversibility of ccGHG and ccN2O is a noticeable property of variables that account
for the warming trend in global temperatures (IPCC 2014; Morana and Sbrana 2019). We
expect time irreversibility also to be present in other variables affected by greenhouse gas
emissions, as, statistically, a linear combination of time-irreversible and time-reversible
variables is also time-irreversible. This result can explain why GCAG, GISTEMP, GMSL,
SOI, PDO, and NH are time-irreversible. In particular, these results underline how global
warming might have exerted feedback effects on natural oscillations, temperatures, and
the environment in general. Among others, Morana and Sbrana (2019) show that GHG
emissions are the key determinant of the warming trend in global temperatures. The irre-
versibility of GCAG and GISTEMP further corroborates these findings. Yet the evidence is
inconclusive as the cyclical components of GO, GL, and GLO are time-reversible. However,
whether this latter result might be an artefact due to their shorter sample is plausible.
Morana and Sbrana (2019) also document Atlantic hurricanes’ increasing natural disaster
risk and destabilizing impact on the ENSO cycle. Indeed, oceans warming can trigger a
tipping point in the ENSO cycle, increasing its variability and intensity and shifting its
teleconnection eastward (Cai et al. 2021; see also Cai et al. 2015, 2021). Global warming
can also profoundly affect PDO, shortening its lifespan and suppressing its amplitude
(Li et al. 2020). Moreover, the melting of land ice and warming ocean waters cause rising
sea levels affecting coastal shorelines. High-tide flooding is increasing in magnitude and
frequency: minor floods occur multiple times per year; major floods might occur even
yearly. Even if GHG emissions stopped, the sea level would continue to rise. Finally, the
Arctic is warming twice as faster as the planet on average, and finding irreversibility in NH
but not in SH, is interesting in this respect. Despite not being conclusive, the results might
indicate that some irreversible environmental changes are ongoing.
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Figure 1. Climate time series. (a) Annual data for global land and ocean temperature anomalies.
(b) Annual data for global land temperature anomalies. (c) Annual data for global ocean temperature
anomalies. (d) Annual data for solar activity. (e) Annual data for greenhouses gas. (f) Annual data
for nitrous oxide. (g) Monthly data for global component of climate at a glance. (h) Monthly data
for global surface temperature change. (i) Monthly data for global mean sea level. (j) Monthly data
for Southern Oscillation index. (k) Monthly data for North Atlantic Oscillation index. (l) Monthly
data for Pacific Decadal Oscillation index. (m) Monthly data for Northern Hemisphere sea ice area.
(n) Monthly data for Southern Hemisphere sea ice area.
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Figure 2. Cyclical components of the detrended time series. (a) Annual data for cyclical component
of global land and ocean temperature anomalies. (b) Annual data for cyclical component of global
land temperature anomalies. (c) Annual data for cyclical component of global ocean temperature
anomalies. (d) Annual data for cyclical component of solar activity. (e) Annual data for cyclical
component of greenhouses gas. (f) Annual data for cyclical component of nitrous oxide. (g) Monthly
data for cyclical component of global component of climate at a glance. (h) Monthly data for cyclical
component of global surface temperature change. (i) Monthly data for cyclical component of global
mean sea level.
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Table 4. Estimated coefficients of the time series identified as non-Gaussian. The figures in parenthe-
ses are the standard errors computed by using the Hessian matrix.

ccGHG ccN2O ccGCAG ccGISTEMP ccGMSL SOI NAO PDO NH

φ̂1 0.9620 0.9818 0.4417 0.4003 1.1233 −0.0933 −0.0966 / 0.1657
(0.0841) (0.0722) (0.0225) (0.0239) (0.0231) (0.0327) (0.00342) (0.0300)

φ̂2 −0.3230 −0.2413 0.1443 0.1245 −0.1169 −0.1315 / / −0.0071
(0.0822) (0.0980) (0.0225) (0.0239) (0.0347) (0.0326) (0.0306)

φ̂3 / −0.0016 / / −0.6729 / / / −0.0824
(0.1030) (0.0336) (0.0304)

φ̂4 / −0.2028 / / 0.3971 / / / 0.0025
(0.0753) (0.0335) (0.0303)

φ̂5 / / / / 0.0898 / / / −0.0025
(0.0346) (0.0303)

φ̂6 / / / / −0.1798 / / / −0.0390
(0.0229) (0.0303)

φ̂7 / / / / / / / / 0.0058
(0.0303)

φ̂8 / / / / / / / / −0.0136
(0.0303)

φ̂9 / / / / / / / / −0.0926
(0.0303)

φ̂10 / / / / / / / / 0.0496
(0.0304)

φ̂11 / / / / / / / / 0.1039
(0.0305)

φ̂12 / / / / / / / / 0.7015
(0.0300)

ϕ̂1 / / / / 0.0880 0.4951 0.2925 0.9183 0.7655
(0.0225) (0.0313) (0.0328) (0.0215) (0.0391)

ϕ̂2 / / / / 0.2709 0.3169 / −0.1365 −0.0512
(0.0225) (0.0313) (0.0291) (0.0391)

ϕ̂3 / / / / / / / 0.0063 /
(0.0291)

ϕ̂4 / / / / / / / 0.0664 /
(0.0214)

ν̂ 19.8 13.0 5.3 9.9 6.8 8.0 96.2 9.1 8.2

6. Conclusions

This paper links the concept of an environmental tipping point to the statistical concept
of time irreversibility. A tipping point signals an environmental change that is large, abrupt,
and irreversible and generates cascading effects. A tipping point is a point of no return,
which we associate with a temporal asymmetry in a phenomenon’s probabilistic structure,
whereby it behaves differently according to the direction of time considered. This univocity
along the time direction signals that the system has undergone an irreversible change.
Well-known tipping points concern the Greenland and the West Antarctic ice sheets, the
Atlantic Meridional Overturning Circulation (AMOC), thawing permafrost, ENSO, and the
Amazon rainforest. Recent IPCC assessments suggest that tipping points might occur even
between 1 ◦C and 2 ◦C warming relative to pre-industrial temperature averages. Therefore,
they are likely to arise at current emissions levels if they have not already occurred.

We then introduce two new strategies, grounded in mixed causal and noncausal
models, to detect whether a stochastic process is time-reversible (TR). Unlike existing
approaches, our methods do not impose strong restrictions on the model and are straight-
forward to implement. Moreover, similarly to Proietti (2021), they can also be applied to
non-stationary processes and, therefore, are useful to assess some key variables, such as
temperature anomalies and GHG emissions, which appear to exhibit this property. Our
simulation studies show that the strategies perform accurately and have a solid ability to
detect TR.

In the empirical analysis, we have considered fourteen climate time series, i.e., annual
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and monthly global temperature anomalies (GLO, GL, GO, GCAG, GISTEMP), solar activity
(SA), natural oscillations (NAO, SOI, PDO), the global mean sea level (GMSL), the Northern
(NH) and Southern (SH) Hemisphere sea ice areas, and greenhouse gas emissions (GHG,
N2O). We detect time irreversibility in GHG and N2O emissions, SOI and PDO, GMLS,
NH, and the monthly temperature anomaly series. Yet not in the annual temperature series,
SH, and NAO (and SA). The time irreversibility of GHG emissions is a noticeable property
of variables that are well-known causes of global warming. It may then explain the time
irreversibility of GMSL, NH, global temperature, and some natural oscillation indices such
as PDO and SOI, and therefore signal that some potentially irreversible environmental
changes are ongoing. This evidence might not be apparent from annual temperature data
due to the relatively smaller sample size available for annual than monthly data.

Recent studies suggest that global temperature has already warmed by 1.3 ◦C and
could cross the 1.5 ◦C threshold within a decade. While not conclusive, our findings
urge the implementation of correction policies to avoid the worst consequences of climate
change and not miss the opportunity window, which might still be available, despite
closing quickly.
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