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Abstract: Structural breaks have attracted considerable attention recently, especially in light of
the financial crisis, Great Recession, the COVID-19 pandemic, and war. While structural breaks
pose significant econometric challenges, machine learning provides an incisive tool for detecting
and quantifying breaks. The current paper presents a unified framework for analyzing breaks;
and it implements that framework to test for and quantify changes in precipitation in Mauritania
over 1919–1997. These tests detect a decline of one third in mean rainfall, starting around 1970.
Because water is a scarce resource in Mauritania, this decline—with adverse consequences on food
production—has potential economic and policy consequences.

Keywords: climate change; indicator saturation; machine learning; Mauritania; rainfall; structural
breaks

1. Introduction

Structural breaks have attracted considerable attention over the last two decades,
particularly in light of the financial crisis, the Great Recession, the COVID-19 pandemic,
supply-chain bottlenecks, and war in Ukraine. From an econometric perspective, the
empirical presence of structural breaks poses significant challenges to modeling, both in
empirical model selection and in statistical inference. That said, recent developments in
machine learning provide incisive tools for detecting and quantifying structural breaks.
Empirically, the extent and nature of climate change—qua structural breaks—is of consider-
able interest and contention, cf. McShane and Wyner (2011). Moreover, structural breaks
in climate can have economic, financial, political, and social ramifications, as highlighted
in the United Nations (1992) Framework Convention on Climate Change (UNFCCC), the
Paris Agreement at the 2015 UNFCCC Conference of the Parties (COP 21), and COP 27.

The current paper has two objectives. First, it presents a unified framework for the
econometric analysis of structural breaks, drawing on the literature on indicator saturation
techniques and automatic model selection with machine learning. Second, it applies those
techniques to detect and quantify breaks in the pattern of precipitation within Mauritania—
testing whether statistically and empirically significant changes have occurred and, if so,
quantifying those changes.

The econometric evidence shows declining precipitation in Mauritania, starting around
1970, with a possible increase two decades later. Economically, the changing pattern of
precipitation is likely to aggravate the persistent food deficit in Mauritania. One possible
policy response would be a long-term plan for adaptation to the declining rainfall, includ-
ing modification of farming practices. In such adaptation, Mauritania—as a developing
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country—could rely on the provisions of the UNFCCC and might expect to receive financial
assistance. In particular, the econometric evidence shows a structural break in Mauritanian
rainfall that could form a basis for establishing a time threshold determining compensation
for climate change.

This paper is organized as follows. Section 2 discusses various procedures for detect-
ing structural change, focusing on impulse indicator saturation and several of its extensions.
Section 3 reviews some background pertaining to Mauritania and the Sahel. Section 4 eval-
uates the Palmer Drought Severity Index (PDSI) for Mauritania, describes the underlying
rainfall data available for Mauritania, and derives the aggregated measure of rainfall to
be examined. Section 5 applies the procedures in Section 2 to the data on Mauritanian
rainfall. Section 6 comments on the methodologies employed and the results obtained and
considers directions for further research. Section 7 concludes.

2. Methodologies for Detecting Structural Breaks

This section discusses various common statistical techniques for detecting structural
breaks, which Section 5 then uses to test for and quantify breaks in the pattern of rainfall
in Mauritania. To provide a unifying framework, the current section’s exposition focuses
on impulse indicator saturation (IIS), integrating and building on expositions and devel-
opments in Ericsson (2011b, 2012, 2017a) and Ericsson and Reisman (2012). Sections 2.1
and 2.2, respectively, discuss IIS and extensions of IIS as procedures for model evaluation,
including as tests for parameter constancy.

2.1. Impulse Indicator Saturation

This subsection summarizes how impulse indicator saturation provides a general
procedure for analyzing a model’s constancy. Specifically, IIS is a generic test for an
unknown number of breaks, occurring at unknown times anywhere in the sample, with
unknown duration, magnitude, and functional form. IIS is a powerful empirical tool for
both evaluating and improving existing empirical models. Hendry (1999) proposes IIS as a
procedure for testing parameter constancy. For further discussion and recent developments,
see Hendry et al. (2008); Doornik (2008, 2009); Johansen and Nielsen (2009, 2013, 2016);
Hendry and Santos (2010); Ericsson (2011a, 2011b, 2012, 2016); Ericsson and Reisman (2012);
Hendry and Pretis (2013); Bergamelli and Urga (2014); Hendry and Doornik (2014); Castle
et al. (2015); Marczak and Proietti (2016); Pretis et al. (2016); Castle et al. (2020), and Nielsen
and Qian (2022).

Impulse indicator saturation uses the zero-one impulse indicator dummies to analyze
properties of a model. For a sample of T observations, there are T such dummies, one
for each observation in the sample. That is, for the i-th impulse indicator dummy Iit
(i = 1, . . . , T), Iit = 1 for t = i, and Iit = 0 for all t 6= i (t = 1, . . . , T). Unrestricted inclusion
of all T dummies in an estimated model (thereby “saturating” the sample) is infeasible.
However, blocks of dummies can be included, and that insight provides the basis for IIS. To
motivate how IIS is implemented in practice, this subsection employs a bare-bones version
of IIS in two simple Monte Carlo examples.

Example 1. This example illustrates the behavior of IIS when the model is correctly specified.
Suppose that the data generation process (DGP) for the variable wt is:

wt = µ0 + εt εt ∼ NID(0, σ2), t = 1, . . . , T, (1)

where wt is normally and independently distributed (NID) with mean µ0 and variance σ2. Fur-
thermore, suppose that the model estimated is a least-squares regression of wt on an intercept, i.e.,
the model is correctly specified. Figure 1a plots Monte Carlo data from a single replication of the
DGP in Equation (1) with µ0 = 20, σ2 = 1, and T = 100. Figure 1b plots the estimated model’s
residuals, scaled by that model’s residual standard error.

The bare-bones version of IIS is as follows.
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1. Estimate the model, including impulse indicator dummies for the first half of the sample, as
represented by Figure 2a. That estimation is equivalent to estimating the model over the second
half of the sample, ignoring the first half. Drop all statistically insignificant impulse indicator
dummies and retain the statistically significant dummies (Figure 2b).

2. Repeat this process, but start by including impulse indicator dummies for the second half of
the sample (Figure 2d), and retain the significant ones (Figure 2e).

3. Re-estimate the original model, including all dummies retained in the two block searches
from Steps #1 and #2 (Figure 2g), and select the statistically significant dummies from that
combined set (Figure 2h).
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Figure 1. Actual and fitted values and the corresponding scaled residuals for the estimated model
when the DGP does not have a break.
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Figure 2. A characterization of bare-bones impulse indicator saturation with a target size of 5% when
the DGP does not have a break.
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Hendry et al. (2008) and Johansen and Nielsen (2009) have shown that, under the null
hypothesis of correct specification, the expected number of impulse indicator dummies
retained is roughly αT, where α is the target size. In Figure 2h, five dummies are retained;
α = 5%; and αT = (5%·100) = 5, an exact match.

Example 2. This example illustrates the behavior of IIS when there is an unmodeled break, and
hence the model is incorrectly specified. Suppose that the DGP for the variable wt is:

wt = µ0 + µ1S64t + εt εt ∼ NID(0, σ2), t = 1, . . . , T, (2)

where S64t is a one-off step dummy that equals 0 (t = 1, . . . , 63) or 1 (t = 64, . . . , 100), and µ1 is
its coefficient in the DGP. The model estimated is a least-squares regression of wt on an intercept
alone, ignoring the break induced by the step dummy S64t. As in Example 1, wt is normally and
independently distributed with a nonzero mean. However, at t = 64, that mean alters from µ0 to
(µ0 + µ1). The model ignores that change in mean (aka a “location shift”) and hence is mis-specified.
Figure 3a plots Monte Carlo data from a single replication of the DGP in Equation (2) with µ0 = 20,
µ1 = −10, σ2 = 1, and T = 100. Figure 3b plots the estimated model’s residuals. Interestingly,
no residuals lie outside the estimated 95% confidence region, even though the break is −10σ. The
model has no “outliers”.

Figure 4 plots the corresponding graphs for the bare-bones implementation of IIS described
in Example 1, as applied to the Monte Carlo data in Example 2. The block searches for Steps #1
and #2 retain many dummies. However, in the search across the combined retained dummies from
those two searches, several irrelevant dummies are dropped. Furthermore, as the penultimate graph
(Figure 4h) shows, the procedure has high power to detect the break, even although the nature of the
break is not utilized in the procedure itself.

In practice, IIS as an algorithm may be more complicated than this bare-bones version,
which employs two equally sized blocks, selects dummies by t-tests, and is non-iterative.
Doornik and Hendry’s (2018) Autometrics econometrics software implements IIS in an
algorithm with machine learning with several enhancements: IIS utilizes many possibly
unequally sized blocks, rather than just two blocks; the search procedure iterates, and the
partitioning of the sample into blocks may vary over iterations; dummy selection includes
F-tests against a general model; and residual diagnostics help guide model selection. See
also Hendry and Krolzig (1999; 2001; 2005); Hoover and Perez (1999, 2004); and Krolzig and
Hendry (2001). Notably, the specific algorithm for IIS can make or break IIS’s usefulness;
cf. Doornik (2009); Castle et al. (2010); and Hendry and Doornik (2014). IIS is a statistically
valid procedure for integrated, cointegrated data; see Johansen and Nielsen (2009). IIS
can serve as a diagnostic statistic for many forms of mis-specification, and it can aid in
model development.

Many existing procedures can be interpreted as special cases of IIS in that they repre-
sent particular algorithmic implementations of IIS. As Table 1 summarizes, such special
cases include Fisher’s (1922) covariance statistic, recursive estimation, the Chow (1960)
predictive failure statistic (including the one-step, breakpoint, and forecast versions im-
plemented in OxMetrics), the unknown breakpoint test (proposed by Nyblom (1989);
Hansen (1992); and Andrews (1993)); and the Bai and Perron (1998) multiple breakpoint
test. IIS also includes rolling regression, the tests of extended constancy in Ericsson et al.
(1998, p. 305ff), tests of nonlinearity, intercept correction (in forecasting), and robust estima-
tion. IIS thus provides a general and generic procedure for analyzing a model’s constancy,
allowing for an unknown number of structural breaks occurring at unknown times with
unknown duration and magnitude anywhere in the sample.
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Figure 3. Actual and fitted values and the corresponding scaled residuals for the estimated model
when the DGP has a break and the model ignores that break.
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Figure 4. A characterization of bare-bones impulse indicator saturation with a target size of 5% when
the DGP has a break and the model ignores that break.

2.2. Extensions

Table 1 includes several extensions of IIS. For ease of discussion of these extensions,
consider IIS as a reference. Throughout, T is the sample size, t is the index for time, i and j
are the indexes for indicators, k is the index for economic variables (denoted xkt), and K is
the total number of potential regressors considered.
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Table 1. Selected developments in tests of structural breaks.

Focus of Test Statistic References

Covariance equality Fisher (1922)

Recursive estimates Plackett (1950)

Forecast errors Chow (1960)

Single unknown breakpoint
in regression coefficients

Nyblom (1989); Andrews (1993),
Hansen (1992)

Multiple unknown breakpoints
in the intercept

Bai and Perron (1998)

Arbitrary unknown impulse breaks
(impulse indicator saturation)

Hendry (1999),
Hendry et al. (2008),
Johansen and Nielsen (2009)

Arbitrary unknown step breaks
(step indicator saturation)

Castle et al. (2015)

Step, trend, and coefficient breaks
(super saturation, ultra
saturation, and multi-saturation)

Ericsson (2011b)

Impulse indicator saturation. This is the standard IIS procedure proposed by Hendry (1999),
with selection among the T zero-one impulse indicators {Iit}.

Super saturation. In super saturation, searches are across all possible one-off step func-
tions {Sit}, in addition to all impulse dummies {Iit}. Step functions are of economic interest
because they may capture permanent or long-lasting changes that are not otherwise incorpo-
rated into a specific empirical model. A step function is a partial sum of impulse indicators.
Equivalently, a step function is a parsimonious representation of a sequential subset of
impulse indicators that have equal coefficients. Castle et al. (2015) investigate the statistical
properties of a closely related saturation estimator—step indicator saturation (SIS)—which
searches among only the step indicator variables {Sit}. Nielsen and Qian (2022) derive
asymptotic properties of the gauge of SIS.

Ultra saturation. Ultra saturation (earlier, sometimes called “super duper” saturation)
searches across {Iit, Sit, Tit}, where the {Tit} are broken linear trends. Broken linear trends
may be of economic interest. Mathematically, the {Tit} are partial sums of the partial sums
of impulse indicators. Broken quadratic trends, broken cubic trends, and higher-order
broken trends are also feasible.

Other saturation-based approaches. Table 1 is by no means an exhaustive list of extensions
to IIS. Other extensions include sequential (j = 1) and non-sequential (j > 1) pairwise
impulse indicator saturation for an indicator Pit, defined as Iit + Ii+j,t; differenced IIS (or
zero-sum pairwise IIS) for an indicator Zit, defined as ∆Iit; many many variables for a
set of K potential regressors {xkt, k = 1, . . . , K} for K > T; factors; principal components;
and multiplicative indicator saturation for the set of Sitxkt; see Ericsson (2011b). In related
extensions, Pretis et al. (2016) propose and apply designer breaks to detect volcanic erup-
tions from temperature data; and Castle et al. (2020) develop path indicator saturation
(PathIS) for making medium-term forecasts of COVID-19 confirmed cases and deaths.
See Ericsson (2011b, 2012), Castle et al. (2013), and Section 6 for details, discussion, and
examples in the literature.

The chosen saturation procedure may itself be a combination of extensions; and that
choice may affect the power of the procedure to detect specific alternatives. For instance,
in Example 2 above, the 37 impulse indicators {Iit, i = 64, . . . , 100} are not a particularly
parsimonious way of expressing the step shift that occurs two thirds of the way through
the sample, whereas the single one-off step dummy S64t is. That is, a step dummy can be a
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convenient way of capturing a persistent shift in the mean. In the current context, super
saturation (searching across both impulses and steps) is thus of particular interest.

Implementation. Because of the computational and statistical aspects associated with
indicator saturation, software implementation is critical; and software packages with indi-
cator saturation techniques are readily available. Doornik and Hendry’s (2018) Autometrics
includes IIS, SIS, trend indicator saturation (TIS), differenced IIS (DIIS), and their combina-
tions, with multiplicative indicator saturation, PathIS, and designer breaks easily added by
the modeler. Pretis et al.’s (2018) R package “GETS” implements IIS, SIS, TIS, and designer
breaks. IHS Global ’s (2022) EViews version 12 also includes IIS. See Campos et al. (2005a,
2005b) and Hendry and Doornik (2014) for the intuition of and statistical underpinnings to
the general-to-specific (aka GETS) approach to modeling.

Algorithmically, IIS also solves the problem of having more potential regressors than
observations by testing and selecting over blocks of variables. That block approach permits
testing the aggregation assumption implied by the use of foreign aggregates in a GVAR; see
Ericsson (2011a) and Hendry and Doornik (2014) for discussion of the underlying theory
and for the implementation in Autometrics.

As a more general observation, different types of indicators are adept at character-
izing different sorts of breaks: impulse dummies {Iit} for date-specific anomalies, step
dummies {Sit} for level shifts, and broken trends {Tit} for evolving developments. Trans-
formations of the variable being analyzed also may affect the interpretation of the retained
indicators. For instance, an impulse dummy for a growth rate implies a level shift for the
(log) level of the variable.

Saturation-based tests can serve both as diagnostic tools to detect what is wrong with
the model, and as developmental tools to suggest how the model can be improved. Clearly,
“rejection of the null does not imply the alternative”. However, for time series data, the
date-specific nature of saturation procedures can aid in identifying important sources of
model mis-specification. Use of these tests in model development and design is consistent
with a progressive modeling approach; see White (1990); Hendry and Doornik (2014); and
Hendry and Johansen (2015). Hendry (2015) and Castle and Hendry (2019) show at an
intuitive level how these tools are accessible for empirical macro-econometric modeling of
economic time series.

3. Background

Mauritania is located in the arid Sahel region of West Africa, with the Atlantic Ocean as
part of its western border; see Figure 5. The population is concentrated along the southern
border next to Senegal, as most of the rest of the land in Mauritania is desert and unable to
sustain much life.

Mauritania is one of the world’s least economically developed countries. It has a
population of approximately three million, and United Nations Development Programme
(2015) ranks Mauritania as 156 (“Low Human Development”) out of 188 in the UN Hu-
man Development Index. Poverty affects 68 percent of rural inhabitants, who are highly
vulnerable to food insecurity. A food deficit is persistent: the means of production are
limited, agricultural capacity is under-exploited, and the existing farmland is under threat
from desertification. Years of low agricultural output (e.g., 30 percent of national cereal
needs) have led to a high dependence on imports and food aid. For more than a decade,
Mauritania has been dependent on food from the UN World Food Program due to droughts,
repeated food crises, political instability, and lawlessness, especially in the east and north
of the country. According to UNICEF, the level of malnutrition in the country remains high:
acute malnutrition is 12.6 percent nation-wide and exceeds 15 percent in some regions of
the country.

Like many other economically poor countries, Mauritania is largely dependent on
agriculture. Two main farming methods are practiced in Mauritania: dieri and oualo. Dieri
is completely dependent on rainfall; oualo is dependent on the annual flooding of the
Senegal River and Gorgol River, which again depends on rainfall. Farmers typically require
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400–500 mm annually for dieri cultivation; the main wet months are from June or July
through September or October.

Figure 5. The Sahel Region in Africa (Source for map: Felix Koenig and T.L. Miles, WikiMedia
Commons, commons.wikimedia.org/wiki/File:Sahel_Map-Africa_rough.png#, with added labels;
accessed on 8 November 2022).

Since the 1960s, the increased frequency of droughts has forced the population to
migrate towards its southern border with Senegal. Severe droughts in the Sahel region
occurred during 1968–1974 and 1983–1985. In Mauritania specifically, those droughts
affected food production dramatically. The country could cover only one third of its grain
needs during the drought of 1968–1974; and food production declined to 3–8 percent of
the grain needs during 1983–1985; see Handloff (1990). With that in mind, Section 4 below
examines available data on drought and rainfall in Mauritania.

It is also valuable to consider this background in a regional and global perspective.
The Sahel as a whole is suffering from the adverse effects of global climate change; see Dai
et al. (2004). Dore (2005) reviews the literature on the globally changing pattern of observed
precipitation at major regional and continental levels. Dore’s survey reaches several conclu-
sions. (a) Increases in the variance of precipitation are widespread. (b) Consistent with that
increased variance, wet areas are becoming wetter, and dry and arid areas are becoming
drier and more arid. (c) Precipitation is increasing in high latitudes (Northern Hemisphere).
(d) Precipitation is declining in China, Australia, and the Small Island States in the Pacific.
(e) Equatorial regions show an increased variance but no definite pattern in the mean, with
one exception: the Sahel has had a persistent decline in rainfall since the late 1960s.

The ability to grow food is of paramount importance, and doing so is dependent on
the availability of water. As noted above, there has been a pattern of increased aridity in
North Africa since the late 1960s, with that aridity being more persistent in the western
regions such as Mauritania. The driest period was in the 1980s, with some increased rainfall
occurring during the 1990s, particularly in the easternmost sectors of North Africa where
rainfall in some years was near or just above the long-term means; see Nicholson et al.
(2000). On the other hand, southern Africa was relatively moist in the 1950s and 1970s
(Nicholson et al. (2000)), but Hulme (1996) found significant decreases in precipitation being
observed since the late 1970s. Early 2000 saw flood-producing rains in the eastern part of
southern Africa, possibly due to the effects of the El Niño–Southern Oscillation (ENSO).
The distributional consequences are particularly important for the poorest countries, which
are mostly in Africa. In contrast to the general increase in the mean precipitation of other
continents due to climate change, some parts of Africa have suffered increasingly severe
droughts in recent decades; see Ntale and Gan (2003). Since 1995, record low precipitation
has been observed in equatorial regions, while the sub-tropics have recovered from their
anomalously low values of the 1980s.

commons.wikimedia.org/wiki/File:Sahel_Map-Africa_rough.png#
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Demarée (1990) examined one weather station (Kaedi) in Mauritania for changes in
the means of rainfall patterns. He used a Pettitt test to look for change at a location over
time where there are changes in levels of the series. The test identifies 1967 as the year
for a change in levels, significant at the 1% level. This is in agreement with Dore and
Lamarche (2006), who found evidence of a dramatic decline in precipitation in the Sahel as
a whole, enough to characterize it as a “structural break” in the distribution of precipitation.
Section 5 below tests for and identifies similar breaks in measured Mauritanian rainfall.

4. Data

As a prelude to and motivation for considering the data on rainfall itself, Section 4.1
examines the Palmer Drought Severity Index for Mauritania. Section 4.2 then describes the
underlying rainfall data available for Mauritania and the aggregated measure of rainfall to
be examined. Section 4.3 considers some potential limitations of this data before turning to
its econometric analysis in Section 5.

4.1. Palmer Drought Severity Index

Measures of drought provide complementary descriptive evidence on changes in
Mauritania’s rainfall. A drought is caused by an extended period of dryness. Thus, to
measure drought, one needs a measure of weather conditions over an extended period of
time. The Palmer Drought Severity Index (PDSI) is a standard, standardized measure of the
past and present weather’s cumulative effect on the severity of dryness in the current month,
accounting for past and present precipitation and temperature inter alia; see Palmer (1965)
and National Center for Atmospheric Research (2022). A positive PDSI indicates relative
wetness; a negative PDSI indicates relative dryness. Values between +2 and −2 are “near
normal”; values between −2 and −3 represent a moderate drought; values between −3
and −4 represent a severe drought; and values less than −4 represent extreme drought.

The National Center for Atmospheric Research (NCAR) maintains an extensive dataset
on monthly PDSI using surface air temperature and rainfall data for all land in the world
except Antarctica and Greenland; www.cgd.ucar.edu/cas/catalog/climind/pdsi.html (ac-
cessed on 8 November 2022) and Dai et al. (2004) provide details. The data are divided by
a 2.5◦× 2.5◦ grid. In order to examine extreme conditions in Mauritania, this subsection
calculates the maximum and minimum PDSI over all months within a given year for the ten
2.5◦× 2.5◦ quadrants containing Mauritanian land area. See Coumou and Rahmstorf (2012)
on weather extremes more generally.

Figure 6 shows those calculations for the minimum and maximum PDSI. As a note on
interpretation, a sizable negative value for the minimum PDSI does not mean a drought in
the whole country. Rather, it is the extreme minimum of the PDSI, across the grid and over
all months in the year. Unsurprisingly, the values of the minimum PDSI and maximum
PDSI for 1973 indicate a severe drought in that year. The maximum PDSI (equal to −1.78)
is negative and nearly −2, and the minimum PDSI is −6.43. In fact, nearly every quadrant
in nearly every month for 1973 had a PDSI that was more negative than −2. The minimum
PDSIs for 1972 and 1973 are the most negative of any values in several decades, and the
maximum PDSI drops sharply around 1970. Both features reflect the structural change in
rainfall patterns detected in Section 5.
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Figure 6. The minimum and maximum of the Palmer Drought Severity Index for Mauritania.

4.2. Rainfall Data

Rainfall—or the lack thereof—constitutes a key aspect of drought, so the remainder
of this paper focuses on rainfall. The underlying data are monthly series for 18 raingauge
stations in Mauritania, collected over 1905–2011. These data are maintained by the National
Centers for Environmental Information (NCEI), which includes the former National Cli-
matic Data Center (NCDC) and is a component of the National Oceanic and Atmospheric
Administration (NOAA) in the U.S. Department of Commerce; see Peterson and Vose (1997)
and Jones and Hulme (1996). The Mauritanian data are part of the Global Historical Climate
Network database (version 2) (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2/, accessed on
8 November 2022) and are available through a convenient interface with the KNMI Climate
Explorer (climexp.knmi.nl, accessed on 8 November 2022).

Table 2 provides some descriptive statistics of the data, including the stations’ locations
and, for each station, the data’s sample period, number of observations, average rainfall,
maximum rainfall, and standard deviation of rainfall. Figure 7 is a map of Mauritania,
labeled with the locations of the individual stations. As Table 2 shows, rainfall patterns
vary markedly across regions, with northern locations (in the Sahara) typically having
minimal rainfall and southern locations having more.

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/v2/
climexp.knmi.nl
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Table 2. Descriptive statistics on observed monthly rainfall as measured at 18 Mauritanian rain-
gauge stations.

Station’s
Location

Sample
Period

Number
of

Observations

Average
Monthly
Rainfall

(mm)

Maximum
Monthly
Rainfall

(mm)

Standard
Deviation
of Monthly

Rainfall
(mm)

Aioun el Atrouss 1946–2011 673 20.4 245 37.9
Akjoujt 1931–2011 749 7.0 131 17.2
Aleg 1921–1997 918 20.6 290 40.8

Atar 1921–2009 907 7.0 121 15.3
Bir Moghrein 1942–2003 622 3.3 74 10.0
Boghe 1919–1997 941 23.7 310 44.0

Boutilimit 1921–2009 944 13.6 200 28.5
Chinguetti 1931–1997 774 4.4 99 10.4
F’Derik 1938–1997 685 4.2 117 11.9

Kaedi 1905–1997 956 31.2 364 56.4
Kiffa 1922–2011 944 25.5 325 47.6
Moudjeria 1911–1997 955 16.7 229 34.2

Nema 1922–2011 963 21.1 205 35.8
Nouadhibou 1906–2011 1137 1.8 83 5.8
Nouakchott 1930–2011 845 9.7 191 23.7

Rosso 1934–2011 754 21.9 498 45.9
Tichitt 1921–1997 826 6.4 102 14.2
Tidjikja 1907–2011 980 10.8 173 22.7

Figure 8 graphs the monthly rainfall data for all stations, highlighting the differences
in typical rainfall across stations. Figure 9 graphs the same data, but across months: on
each x-axis, “1” denotes January, “2” denotes February, etc. Visibly, much of the rainfall
occurs in June–October, which are thus denoted the “wet” months.

Figure 8 also makes apparent the lack of observations for (sometimes) extended
periods for every station. Some stations reported data for only a subsample of the period
1905–2011. Additionally, some observations are simply missing. To assess when the lack of
observations may be important, Figure 10 plots the number of reporting raingauge stations,
month by month, over 1905–2011. Until about 1920, only a few stations are collecting data,
and intermittently so, in part because of World War I. Likewise, few stations are collecting
data after the late 1990s. Furthermore, the stations collecting data at the ends of the sample
tend to be in more populous (and wetter) locations: hence an aggregated rainfall series
could be misleading during those periods. Thus, the analysis herein is restricted to the
period 1919–1997.
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Figure 7. Eighteen Mauritanian raingauge stations (Source for map: the U.S. Central Intelligence
Agency, available from the Perry-Castañeda Library Map Collection, University of Texas at Austin,
www.lib.utexas.edu/maps/africa/mauritania_rel95.jpg, with added labels; accessed on 8 Novem-
ber 2022).

Figure 11 plots monthly rainfall in Mauritania for that period, where each month’s
rainfall is averaged across the reported rainfall for all stations reporting. If a station does
not report a value for rainfall in a given month, that station is ignored in calculating the
average. Two patterns are apparent in Figure 11: seasonality, which reflects the seasonality
noted in Figure 9; and an apparent decline in overall rainfall, starting around 1970, with a
possible modest increase towards the end of the sample. The decline from 1970 onwards
is notable not only in the typical rainfall, but also in heavy rainfalls. The four wettest
months are all prior to 1960; and eight months prior to 1960 have rainfall of at least 100 mm,
whereas no months after 1960 do. Many years in the 1970s and 1980s have no months with
more than 50 mm rainfall, whereas all but a few years before 1960 have at least one month
with more than 50 mm rainfall.

www.lib.utexas.edu/maps/africa/mauritania_rel95.jpg


Econometrics 2022, 10, 33 13 of 27

Aioun El Atrouss 

1900 1920 1940 1960 1980 2000
0

200

400 Aioun El Atrouss Akjoujt 

1900 1920 1940 1960 1980 2000
0

200

400 Akjoujt Aleg 

1900 1920 1940 1960 1980 2000
0

200

400 Aleg 

Atar 

1900 1920 1940 1960 1980 2000
0

200

400 Atar Bir Moghrein 

1900 1920 1940 1960 1980 2000
0

200

400 Bir Moghrein Boghe 

1900 1920 1940 1960 1980 2000
0

200

400 Boghe 

Boutilimit 

1900 1920 1940 1960 1980 2000
0

200

400 Boutilimit Chinguetti 

1900 1920 1940 1960 1980 2000
0

200

400 Chinguetti F’Derik 

1900 1920 1940 1960 1980 2000
0

200

400 F’Derik 

Kaedi 

1900 1920 1940 1960 1980 2000
0

200

400 Kaedi Kiffa 

1900 1920 1940 1960 1980 2000
0

200

400 Kiffa Moudjeria 

1900 1920 1940 1960 1980 2000
0

200

400 Moudjeria 

Nema 

1900 1920 1940 1960 1980 2000
0

200

400 Nema Nouadhibou 

1900 1920 1940 1960 1980 2000
0

200

400 Nouadhibou Nouakchott 

1900 1920 1940 1960 1980 2000
0

200

400 Nouakchott 

Rosso 

1900 1920 1940 1960 1980 2000
0

200

400 Rosso Tichitt 

1900 1920 1940 1960 1980 2000
0

200

400 Tichitt Tidjikja 

1900 1920 1940 1960 1980 2000
0

200

400 Tidjikja 

Figure 8. Monthly rainfall at eighteen Mauritanian raingauge stations.
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Figure 9. Seasonal sub-plots of monthly rainfall at eighteen Mauritanian raingauge stations.

Estimated densities provide one tool for assessing potential changes in the distribution
of rainfall over time. Figure 12 plots estimated densities for low levels of monthly rainfall
(0 mm–30 mm), estimated over each of the eight decades in the sample. In Figure 12, the
lines thicken as the decades progress: densities for near-zero rainfall are higher in recent
decades, whereas densities for rainfall in the range 12 mm–30 mm tend to be lower in
recent decades. This evidence suggests an overall decline in rainfall over the sample. In
addition to these graphical comparisons of the densities, statistical comparisons are feasible.
However, such comparisons are not calculated here because the number of observations
in each subsample is relatively small for such nonparametric comparisons, and because
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the choice of decadal periods per se and of the dates spanned by each decadal period is
arbitrary. Procedures in Section 5 address both these issues.
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Figure 11. Monthly station-aggregated average rainfall, 1919–1997.

To visualize and analyze rainfall more easily, two additional adjustments to the data
are made. First, only rainfall in the “wet” months (June–October) is considered. As
Figure 9 highlights, very little rain falls outside those months, so little information is lost by
this simplification. Also, because the wet months are the months critical for agriculture,
analyzing rainfall for just the wet months is appealing economically. Second, the monthly
rainfall is aggregated over time to obtain total annual rainfall. Figure 13 plots the annual
rainfall for the wet months only (denoted “RWet”) and for all months (denoted “RTotal”).
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The series exhibit very similar fluctuations and, in fact, are numerically very similar. The
remainder of the analysis herein focuses on the annual rainfall for the wet months only,
which is denoted R for simplicity. Also, with aggregation to annual data in Figure 13, the
decline in rainfall during the 1970s and 1980s is much more apparent visually.
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Figure 12. Estimated densities of station-aggregated monthly rainfall for individual decades.
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Figure 13. Annual station-aggregated rainfall, total (RTotal) and for wet months (RWet, or “R”).

4.3. Remarks

Before turning to the detailed econometric analysis of Mauritanian rainfall, several
comments about the data are worth noting. First, some monthly observations for some
stations are simply missing. Whether a particular observation is missing may be “random”,
or not (at least to some degree). Those missing observations affect the properties of the
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calculated rainfall series, which is derived from observed observations. Second, aggregation
across raingauge stations loses information, even for months when all stations report
observations. Transforming the data from (e.g.) eighteen separate observations to one
“national” average loses seventeen points of data. That loss may or may not be relevant
for the purposes at hand. Third, analysis of wet months ignores the information in each
year’s seven remaining months of data. Equivalently, analysis of the wet months treats the
actual rainfall in the remaining months as if it were zero. Fourth, aggregation from monthly
to annual data loses information on the monthly patterns, which may be economically
important; cf. Mwale et al. (2004) and Proietti and Hillebrand (2017). Fifth, and more
generally, the analysis herein makes no use of other time series. Important relationships
may exist between rainfall and other variables such as air and sea temperatures, ENSO, air
and water currents, and increased CO2 emissions; cf. Hulme et al. (1998); Hendry (2011);
Elliott et al. (2012); Grassi et al. (2013); and Hendry and Pretis (2013). Sixth, changes in the
volatility of rainfall may be important, as well as changes in its mean—both statistically
and economically. Craioveanu and Hillebrand (2012) provide an approach for analyzing
level shifts in volatility. All of these comments turn on the treatment of the information
in data. Hendry and Richard (1982, 1983) develop a general statistical theory for thinking
about the issues involved; Campos et al. (2005b) provide a unified treatment.

5. Empirical Analysis

This section applies various procedures listed in Table 1 in order to assess whether
a structural break has occurred in the behavior of Mauritanian rainfall and, if it has, to
quantify how large that break is and when it occurred. See Doornik and Hendry (2018) for
further, detailed discussion on and interpretation of the statistics themselves.

Throughout this section, the baseline model is a second-order autoregression (or
“AR(2)” model) with an intercept, as reported in the second column in Table 3. This model
appears reasonably well-specified from a statistical standpoint. Only one of six standard
diagnostic statistics—a statistic for detecting heteroscedasticity—rejects at the 5% level; and
its p-value is still only 2.73%. The model’s estimated long-run mean rainfall is 161.3 mm
with an estimated standard error of 10.4 mm. Dynamics are statistically and numerically
significant, mainly through the first (i.e., one-year) lag of the dependent variable. That
said, the estimated root appears stationary in that the augmented Dickey–Fuller statistic
is equal to −4.08, statistically significant at the 1% level. Relative to the sample mean of
rainfall, the residual standard error (σ̂) is relatively large (45.70 mm), reflecting the high
volatility in rainfall visible in Figure 13. As additional summary information, Figure 14
reports actual and fitted values of rainfall R (as time series and as a cross-plot) for the
baseline AR(2) model, the residual density and histogram, the scaled residuals, and the
residual autocorrelation function (ACF) and partial autocorrelation function (PACF).

This evidence on the baseline model does not, however, assess whether the estimated
coefficients are constant over time. Fisher’s (1922) covariance test statistic is one way of
assessing constancy, but it does require specifying which subsamples to compare. Splitting the
sample (arbitrarily) into one third (1921–1946) and two thirds (1947–1997), Fisher’s statistic
is F(3, 71) = 2.41 [0.0743], where the numbers in parentheses are the degrees of freedom of
the F-statistic, the number after the equality sign is the value of the F-statistic itself, and the
number in the square brackets is the p-value of that F-statistic. Fisher’s statistic does not reject
the hypothesis that the coefficients in the AR(2) model are equal across these two subsamples.
That said, the test is dependent upon the choice of the sample split.

Chow (1960) proposes a different approach to evaluating constancy, namely, by as-
sessing whether the ex post forecasts generated by one subsample’s coefficient estimates
reasonably match the actual values in the forecast sample. One implementation of the
Chow statistic utilizes recursive estimates, so it is beneficial to examine them first.

Recursive estimation of the model provides one way of dealing with the sample
“split”. Estimate the model over a short subsample at the beginning of the period; then
sequentially add one observation at a time to the estimation sample, re-estimating over
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each new subsample, until the full sample is used for estimation. Figure 15 reports the
recursive least squares estimates of the first and second lags on the dependent variable R
and on the intercept in the baseline AR(2) model, and their recursive t-ratios. These do not
provide a direct statistical assessment of constancy. However, there does appear to be a
marked change in the coefficient on Rt−1 (the first lag of the dependent variable) and on
the intercept at around 1970, with consequent changes in the corresponding t-ratios.
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Figure 14. Actual and fitted values of rainfall R (as time series and as a cross-plot) for the baseline AR(2)
model, the residual density and histogram, the scaled residuals, and the residual ACF and PACF.
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Figure 15. Recursive least squares estimates of the first and second lags on the dependent variable R
and on the intercept in the baseline AR(2) model, and their recursive t-ratios.
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Table 3. Regression coefficients, estimated standard errors (in parentheses), and diagnostic statistics
for several models of rainfall Rt.

Model Description

Regressor or
Diagnostic
Statistic

Baseline
AR(2)

Baseline AR(2),
with Forecasts
for 1971–1997

AR(2) with
IIS (1%)

AR(2) with
Super Satur-

ation (1%)

Estimation Sample 1921–1997 1921–1970 1921–1997 1921–1997

Intercept 81.1
(20.6)

201.5
(40.1)

78.7
(18.9)

191.8
(25.6)

Rt−1 0.37
(0.12)

−0.08
(0.15)

0.44
(0.11)

0.11
(0.10)

Rt−2 0.12
(0.11)

−0.02
(0.15)

0.05
(0.10)

−0.16
(0.10)

I1927t — — 129.1
(42.4)

104.8
(37.1)

I1969t — — 115.4
(43.0)

—

S1970t — — — −72.6
(12.7)

S1994t — — — 68.9
(20.7)

σ̂ 45.70 41.40 41.92 36.45

AR(2)
statistic

1.59
[0.2118]
F(2, 72)

2.30
[0.1121]
F(2, 45)

0.96
[0.3884]
F(2, 70)

0.40
[0.6735]
F(2, 69)

ARCH(1)
statistic

0.01
[0.9437]
F(1, 75)

0.02
[0.9003]
F(1, 48)

0.50
[0.4812]
F(1, 75)

0.15
[0.6988]
F(1, 75)

Normality
statistic

1.30
[0.5218]
χ2(2)

0.75
[0.6860]
χ2(2)

0.87
[0.6481]
χ2(2)

0.27
[0.8738]
χ2(2)

Heteroscedasticity
statistic #1

2.48
[0.0511]
F(4, 72)

1.63
[0.1843]
F(4, 45)

1.29
[0.2824]
F(4, 70)

1.74
[0.1254]
F(6, 69)

Heteroscedasticity
statistic #2

2.70
[0.0273]
F(5, 71)

1.86
[0.1214]
F(5, 44)

1.21
[0.3126]
F(5, 69)

1.52
[0.1758]
F(7, 68)

RESET
statistic

0.78
[0.4633]
F(2, 72)

0.29
[0.7520]
F(2, 45)

0.97
[0.3858]
F(2, 70)

0.84
[0.4361]
F(2, 69)

The recursive implementation of the Chow test statistic uses the recursive estimates to
calculate forecast errors for different splits of the sample into an estimation period and a
forecast period. Figure 16 plots the recursive residual sums of squares, one-step residuals,
innovation errors, and the one-step, breakpoint, and forecast Chow statistics for the baseline
AR(2) model. Both the one-step and breakpoint Chow statistics indicate a possible struc-
tural break at around 1970. However, the breakpoint Chow statistic for a break at 1970 is
F(27, 47) = 1.60 [0.0781], statistically significant at the 10% level but not at the 5% level.

Figure 17 plots a range of auxiliary information for the baseline model estimated over
1921–1970 and with a forecast period of 1971–1997. Figure 17 includes the actual, fitted,
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and forecast values of rainfall (as time series and as a cross-plot), the residual density
and histogram, the scaled residuals and forecast errors, the forecasts and ± twice their
standard errors, and the residual ACF and PACF. In the lower left panel, the forecast
errors are systematically negative and yet the Chow statistic has little power to detect
that—probably because the average forecast error is relatively small (about −1.5σ̂), and
because the structural break occurs near the end of the sample, implying a relatively short
period for the break itself.
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Figure 16. Recursive residual sums of squares, one-step residuals, innovation errors, and the one-step,
breakpoint, and forecast Chow statistics for the baseline AR(2) model.
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Figure 17. Actual, fitted, and forecast values of rainfall R (as time series and as a cross-plot) for the
baseline AR(2) model, the residual density and histogram, the scaled residuals and forecast errors,
the forecasts and ± twice their standard errors, and the residual ACF and PACF.
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The middle column of Table 3 reports coefficient estimates, estimated standard errors,
and diagnostic statistics for the baseline model estimated through 1970. The intercept
is over twice its value from the full-sample estimate, and the autoregressive coefficients
are insignificant, suggestive of rainfall being white noise through 1970. No diagnostic
statistics reject.

Table 4 reports details on Bai and Perron’s (1998) test statistic. Table 4 lists the Schwarz
(or Bayes) information criterion for each hypothesized number of breaks, and also a modi-
fied version thereof (denoted LWZ). Both information criteria are minimized for a single
break, as indicated by the values in angled brackets. Table 4 also reports the overall and
conditional supF statistics, which just reject at the 5% level, based on the critical values
in Table 1 of Bai and Perron (1998). Conditional on there being one break, Bai and Per-
ron’s procedure estimates that the break occurs in 1970, with a 95% confidence interval of
[1968, 1980]. Again, the statistical evidence is suggestive but not conclusive of a structural
break around 1970.

The penultimate column in Table 3 reports the results from IIS on the baseline model at
a 1% target size, with the intercept and dynamics “fixed”. Two impulse indicator dummies
are detected, one for 1927 and one for 1969. Both years have particularly large amounts of
rainfall (281.7 mm and 256.3 mm respectively), as the dummies’ coefficients reflect. While
each dummy is highly statistically significant, neither captures the persistent fall in rainfall
around 1970 that appears evident in Figure 13.

The final column in Table 3 reports the results from super saturation on the baseline
model, i.e., where the machine-learning search algorithm looks at blocks taken from all
impulse and step dummies at a 1% target size, with the intercept and dynamics fixed. Three
dummies are detected: an impulse dummy (I1927, as in IIS), and two step dummies (S1970
and S1994). Notably, dynamics are numerically and statistically insignificant, contrasting
with the AR(2) model without saturation. Each step dummy is zero up until the year indi-
cated in the dummy’s name, and equal to unity from that year onward. Numerically, S1970
captures a fall of −72.6 mm, over a third of the pre-1970 mean rainfall. The corresponding
t-ratio on S1970 is −5.72. That is more than “five-sigmas”, which is a criterion sometimes
used by experimental physicists when assessing whether a measured event is likely to have
arisen purely by chance; cf. CERN (2012) and Lamb (2012). The numerical effect of the
second step dummy (S1994) nearly reverses the effect of S1970: rainfall for 1994–1997 looks
similar to pre-1970 rainfall, although having only four observations makes an accurate
assessment difficult. As indicated by the diagnostic statistics in Table 3, the AR(2) baseline
model appears well-specified when augmented by these three dummy variables. Figure 18
provides corresponding graphical evidence, which also (in the upper center panel) clearly
separates the data into two distinct regimes.

Table 4. Bai and Perron’s test statistics for multiple unknown breakpoints.

Number of Breaks Schwarz LWZ F(m) F(m | m− 1)

0 7.77 7.90 — —

1 <7.59> <7.84> 9.96 9.96
2 7.65 8.03 6.61 2.60
3 7.73 8.24 5.34 2.14

4 7.77 8.42 5.00 2.72
5 7.82 8.60 4.78 2.46
6 7.86 8.78 4.73 2.58
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Figure 18. Actual and fitted values of rainfall R (as time series and as a cross-plot) for the modified
(super-saturated) AR(2) model, the residual density and histogram, the scaled residuals, and the
residual ACF and PACF.

The results in the final column of Table 3 appear robust in several directions. Other
saturation approaches and other choices of target size obtain similar results. More-
over, the Chow and Bai-Perron tests also detect—albeit more weakly—the key structural
break around 1970. Likewise, little is altered if RTotal is used rather than RWet (aka R)—
unsurprising in light of Figure 13.

In summary, rainfall in Mauritania exhibits a statistically, numerically, and economi-
cally significant drop in its mean around 1970, with a possible recovery in the mid-1990s.

6. Remarks

Several issues merit additional remarks, including the algorithmic implementation of
saturation techniques, the models considered, power, directions for further theoretical and
empirical research, and potential policy implications.

First, algorithmic implementation of IIS requires important choices, as Hendry and
Doornik (2014) discuss. Choices include the construction of the blocks, model selection
criteria, use of diagnostic statistics, path search, block combination and re-selection, itera-
tion, and significance level. These choices may matter under the null hypothesis of correct
specification, under the alternative hypothesis, or under both.

For example, under the null hypothesis, too loose a significance level may inad-
vertently retain many irrelevant dummies, downwardly biasing the estimated residual
standard error, and upwardly biasing t-ratios; see Gamber and Liebner (2017). Hendry et al.
(2008) and Johansen and Nielsen (2009, 2013, 2016) consider this issue in detail. Chapter 15
in Hendry and Doornik (2014) and Johansen and Nielsen (2016) propose implementable
bias corrections. Even simpler, Hendry and Doornik (2014) recommend a relatively tight
significance level of 1/T as a rule of thumb to help keep such estimation bias minimal.
In Table 3, the AR(2) model with super saturation employs a 1% level, slightly tighter
than 1/T (=1/77). So, the indicators {I1927, S1970, S1994} are of substantive interest and do
not appear to have been retained spuriously. Relatedly, bare-bones IIS can actually select
fewer—or more—impulse indicators than Autometrics IIS, as Figure 4g,h imply.

Second, the models considered—and those not considered—can affect the model
selected. Thus, the saturation results may depend on the implementation of IIS, indirectly
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through which models the algorithm considers in its selection process. When the null
hypothesis is false, the choice of blocks and the implied set of models can strongly influence
IIS’s ability to detect the alternative. Hence, Autometrics searches over many blocks,
including possibly overlapping and unequally sized blocks; see Doornik (2009).

Third, IIS has power to detect many alternatives, and not just parameter nonconstancy.
Applications of IIS reflect that wide-ranging ability: see Hendry (1999) on nonconstancy;
Johansen and Nielsen (2009) and Marczak and Proietti (2016) on outliers; Chapter 15.6
in Hendry and Doornik (2014) on thick-tailed distributions; Hendry and Santos (2010);
Gamber and Liebner (2017); and Ericsson (2017b) on heteroscedasticity; Hendry and Santos
(2010) on super exogeneity; Ericsson (2011b) on omitted variables and regime changes;
Castle et al. (2012) on multiple breaks; Pretis et al. (2016) on “designer” breaks; and Ericsson
(2016) and Hillebrand et al. (2020) on measurement errors.

Relatedly, inclusion of other variables in the analysis may provide insights, as Section 4
discusses. Detection of indicator dummies by saturation provides a natural starting point
for characterizing those indicators in a more interpretable fashion. For instance, Ericsson
(2017a) detects several impulse and step indicators when analyzing forecast bias, and many
of those indicators’ dates correspond to turning points in the business cycle. Once dummy
variables for turning points are added to the model of forecast bias, few if any indicators
are detected upon re-saturation. In a similar fashion, the step shifts in rainfall detected
above could be re-evaluated by adding climatic indicators such as for ENSO. That said,
ENSO or similar climatic indicators appear unlikely to fully capture the detected step shifts
because major ENSO events occurred before 1970 but were not detected by saturation. That
implication contrasts with results in Rojas et al. (2014) and Nouaceur and Murarescu (2020).
Formally incorporating ENSO or similar climatic indicators into the model with saturation
could resolve these apparently conflicting results and permit an encompassing explanation.

Fourth, in order to achieve good power against many different alternatives, Hendry
and Doornik (2014) intentionally allow Autometrics to beneficially (and temporarily) relax
the significance level in “. . . search[ing] for potentially significant, but as yet omitted,
variables” (p. 235). Doing so has little effect under the null hypothesis but may be helpful
under alternatives.

Fifth, the persistent shifts in rainfall are much more readily detectable empirically with
the 1927 indicator included in the model, even if that retained impulse indicator is thought
of as arising purely from an “outlier”. As Hendry and Doornik (2014) summarize, “[w]hen
there is more than a single break, a failure to detect one [break] increases the residual
variance and so lowers the probability of detecting any [other breaks]” (p. 243).

Sixth, many directions for further research on saturation techniques are highly promis-
ing. In particular, generalized saturation offers parsimonious representations of outliers
and breaks; see Castle et al. (2015) and Nielsen and Qian (2022) on step indicator sat-
uration, and Ericsson (2011b) for a typology of saturation techniques. One saturation
technique—multiplicative indicator saturation—embodies a structure similar to that of
regime-switching models, while allowing a given regime to differ quantitatively across
its multiple occurrences. Highlighting this aspect, Table 7 in Ericsson (2017a) shows that
forecast biases are not equal across different occurrences of the same “event” (or regime),
where that event is a peak or a trough in the business cycle. A standard regime-switching
model would have difficulty accommodating such heterogeneity, and would have difficulty
even detecting turning points as regimes because of their brief nature.

Seventh, assessment of the behavior of more recent observations on Mauritanian
rainfall may require a modified approach, such as analyzing the monthly station-specific
data directly. Preliminary analysis along these lines has yielded promising results, using
an approach similar to the econometric analysis of panel data; cf. Baltagi (1995) and
Phillips (2020).

Eighth, the choice of methodology does substantively affect the ability to detect and
quantify underlying changes in climate; cf. McShane and Wyner (2011). Super saturation
appears particularly well-suited for capturing structural change in this time series on Mau-
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ritanian rainfall. Super saturation allows inclusion of impulse indicator dummies, with
an impulse dummy for 1927 appearing necessary to capture an extreme event in that year.
Super saturation also allows inclusion of step dummies, which parsimoniously capture
reduced average rainfall in the 1970s and 1980s and a possible subsequent increase in the
mid-1990s, itself potentially arising from measurement issues. The more “standard” proce-
dures for detecting unknown breakpoints—such as Bai and Perron’s (1998) procedure—fall
short in such circumstances. Such procedures have an inherent difficulty in dealing with
one-period extreme events, since such events are not well-proxied by a hypothesized shift
in regression coefficients that lasts several periods. Additionally, such procedures preclude
detecting breaks near the end of the sample, as with the effect from the step dummy for
1994. Fortunately, impulse indicator saturation and variants thereon enhance the range of
tools now available for examining structural change.

Ninth, recent research has successfully employed machine learning with saturation
techniques and automatic model selection to analyze many other aspects of climate change.
Hendry and Pretis (2013) examine atmospheric CO2 measurements from the Mauna Loa
observatory since 1958, allowing for a wide range of climatic and economic variables to de-
termine the extent to which anthropogenic sources increase atmospheric CO2. Their model
controls for various natural carbon sources and sinks—such as vegetation, temperature,
weather, and dynamic transport—and then ascertains the additional anthropogenic contri-
butions from industrial production, business cycles, and shocks. Anthropogenic sources
are significant contributors to changes in atmospheric CO2. Castle and Hendry (2020b)
model the causal roles of atmospheric CO2 levels in past Ice Ages over the last 800,000
years; see also Castle and Hendry (2020a). Pretis (2020) estimates energy-balance models,
interpreted as cointegrated vector autoregressions; and Jackson et al. (2021) model the
interconnectedness of polar ice sheets. Saturation and automatic model selection are key to
these analyses.

Behavioral aspects involving climate change are also amenable to saturation tech-
niques. Martinez (2020) employs a multidisciplinary approach with saturation to show
that, for US hurricanes since 1955, larger errors in a hurricane’s predicted landfall location
increase the hurricane’s damages. Hendry (2020) models CO2 emissions in the United
Kingdom over the last century and a half, demonstrating that emissions have dropped
dramatically to pre-1900 levels, even while real income increased manyfold. Legislation and
technological improvements are key factors to explaining the reduction in CO2 emissions.
Morana and Sbrana (2019); Aldy et al. (2021); Baiardi and Morana (2021), and the special
issues edited by Hillebrand et al. (2020) and Morana (2020) feature a multitude of analyses
that could be extended with saturation techniques.

Finally, and at a practical level, a long-term plan for adaptation to climate change
may be desirable, not only for Mauritania but for other countries in the Sahel. That said,
Mauritania has had continued political instability, and the country seems to move from
crisis to crisis. Under such conditions, a policy for adaptation appears unlikely to be
implemented soon unless political conditions change and there is a concerted effort to
help local agriculture adapt to the changing climate. In planning for such adaptation,
Mauritania and other countries in the Sahel might expect some international assistance,
particularly on the basis of the United Nations (1992) Framework Convention on Climate
Change. Article 4.1(e) of this Convention states that all Parties shall:

Cooperate in preparing for adaptation to the impacts of climate change; develop
and elaborate appropriate and integrated plans for coastal zone management,
water resources and agriculture, and for the protection and rehabilitation of areas,
particularly in Africa, affected by drought and desertification, as well as floods . . .

Article 4.8 contains a specific commitment of financial assistance for “. . . [c]ountries with
areas liable to drought and desertification . . . ”. For such assistance, the decline in Mauri-
tanian food production since 1970 can be reasonably attributed to the decline in rainfall.
Put somewhat differently, a “date” is needed to establish the start of these impacts. A
country may have a case for UNFCCC-based assistance if it can establish a reasonable
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benchmark for the decline in local food production. For Mauritania, the detected structural
break in 1970 of the distribution of precipitation may serve as a plausible claim. That is,
the adverse consequences of climate change and subsequent decline in food production
could be “dated” to have started around 1970; and financial assistance could be based
on this evidence. Additionally, at the 2015 UNFCCC Conference of the Parties (COP 21),
195 countries (Mauritania included) adopted the Paris Agreement on greenhouse gas emis-
sions, mitigation, and financing from 2020. That agreement went into effect on November 4,
2016, shortly before the COP 22 in Marrakesh. More recently, the COP 27 in Sharm el-
Sheikh approved a loss and damage fund to assist certain countries adversely affected by
climate change.

7. Conclusions

Various econometric techniques have helped analyze data on Mauritanian rainfall.
Our main finding is that, around 1970, the mean precipitation in Mauritania declined
by about one third, relative to the mean for 1921–1969. That finding is reinforced by an
analysis of the Palmer Drought Severity Index. Fitted probability density functions of
rainfall also show an increase in months with little or no rainfall. Because water is a
scarce resource in Mauritania, this decline in rainfall—with adverse consequences on food
production—has potential economic and policy consequences. These findings support
what Murray-Lee (1988) reports: “[t]he climate [of Mauritania] has altered drastically since
the onset of the prolonged drought in the 1960s . . . [and] that overgrazing, deforestation,
denuding of ground cover around wells, poor farming methods, and overpopulation have
aggravated the drought.”
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