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Abstract: The COVID-19 pandemic is a serious threat to all of us. It has caused an unprecedented
shock to the world’s economy, and it has interrupted the lives and livelihood of millions of people.
In the last two years, a large body of literature has attempted to forecast the main dimensions of
the COVID-19 outbreak using a wide set of models. In this paper, I forecast the short- to mid-term
cumulative deaths from COVID-19 in 12 hard-hit big countries around the world as of 20 August 2021.
The data used in the analysis were extracted from the Our World in Data COVID-19 dataset. Both
non-seasonal and seasonal autoregressive integrated moving averages (ARIMA and SARIMA) were
estimated. The analysis showed that: (i) ARIMA/SARIMA forecasts were sufficiently accurate in
both the training and test set by always outperforming the simple alternative forecasting techniques
chosen as benchmarks (Mean, Naïve, and Seasonal Naïve); (ii) SARIMA models outperformed
ARIMA models in 46 out 48 metrics (in forecasting future values), i.e., on 95.8% of all the considered
forecast accuracy measures (mean absolute error [MAE], mean absolute percentage error [MAPE],
mean absolute scaled error [MASE], and the root mean squared error [RMSE]), suggesting a clear
seasonal pattern in the data; and (iii) the forecasted values from SARIMA models fitted very well
the observed (real-time) data for the period 21 August 2021–19 September 2021 for almost all the
countries analyzed. This article shows that SARIMA can be safely used for both the short- and
medium-term predictions of COVID-19 deaths. Thus, this approach can help government authorities
to monitor and manage the huge pressure that COVID-19 is exerting on national healthcare systems.

Keywords: COVID-19 deaths; forecasting models; SARIMA; MASE; MAPE; ACF; Brazil; South
Africa; Russia; the US

1. Introduction

The COVID-19 pandemic is one of the most severe and dangerous challenges that
the world has faced. As a result, the human and socio-economic costs of the COVID-
19 pandemic have been dramatically high. As of 20 August 2021, the global death toll
from COVID-19 had reached more than 4.4 million people, and several countries had
effectively entered the fourth wave of the pandemic (Worldometer 2021). In fact, the
virus that caused COVID-19 has mutated multiple times, resulting in highly alarming and
contagious variants, such as Alpha, Beta, Delta, and Gamma, which first appeared in the
UK, South Africa, Brazil (and Japan), and India, respectively (Centers for Disease Control
and Prevention [CDC] 2021).

In such a situation, it becomes crucial to provide reliable forecasts of the patterns of
the pandemic so healthcare facilities and personnel can be managed better. Thus, in the
last two years, a wide body of studies has attempted to forecast the main dimensions of
the COVID-19 pandemic, such as the number of confirmed cases, deaths, hospitalizations,
recovered, and vaccinated.

The most used prediction techniques were the seasonal and non-seasonal autoregres-
sive integrated moving average (SARIMA and ARIMA) models (Alzahrani et al. 2020;

Econometrics 2022, 10, 18. https://doi.org/10.3390/econometrics10020018 https://www.mdpi.com/journal/econometrics

https://doi.org/10.3390/econometrics10020018
https://doi.org/10.3390/econometrics10020018
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com
https://orcid.org/0000-0002-0614-6727
https://doi.org/10.3390/econometrics10020018
https://www.mdpi.com/journal/econometrics
https://www.mdpi.com/article/10.3390/econometrics10020018?type=check_update&version=4


Econometrics 2022, 10, 18 2 of 23

Kufel 2020; Sahai et al. 2020; ArunKumar et al. 2021; Katoch and Sidhu 2021; Malki et al.
2021; Roy et al. 2021; Satpathy et al. 2021), machine learning algorithm (Ardabili et al. 2020;
Sujatha et al. 2020; Tuli et al. 2020; Wang et al. 2020; Ahmad et al. 2021; Kwekha-Rashid
et al. 2021), susceptible-exposed-infectious-recovered (SEIR) approach (Annas et al. 2020;
Carcione et al. 2020; Piovella 2020; Engbert et al. 2021; Korolev 2021; Viguerie et al. 2021),
and hybrid approaches (Hasan 2020; Pinter et al. 2020; Zheng et al. 2020; Castillo Ossa et al.
2021; Safi and Sanusi 2021; Talkhi et al. 2021).

The aim of this paper is to predict the cumulative deaths related to COVID-19 in
12 hard-hit big countries from 21 August 2021 to 19 September 2021 (that is 30 days), using
ARIMA and SARIMA models. The choice of the time window is not random. In fact, even
if the ARIMA/SARIMA approach is especially used for short-term predictions, it proved
to be suitable and sufficiently accurate also for COVID-19 mid-term forecasts (Khan and
Gupta 2020; Alabdulrazzaq et al. 2021; Al-Turaiki et al. 2021; ArunKumar et al. 2021). Thus,
a 30-day ahead forecast of COVID-19 deaths seems to be a good balance and allows me to
closely link my analysis to the recent literature.

The 12 countries chosen for the analysis are very heterogenous, and they come from
four continents (Africa, Asia, and North and South America): Argentina, Bangladesh,
Brazil, India, Iran, Mexico, the Philippines, Russia, South Africa, Thailand, the United
States (US), and Vietnam.

The rest of this paper is organized as follows. In Section 2, I provide a brief review of
the related literature. In Section 3, I present the data used for the forecasting analysis. In
Section 4, I discuss the methodology. In Section 5, I present and discuss the results. Finally,
in Section 6, I provide some conclusive considerations.

2. Brief Review of the Literature

The ARIMA model, also known as the Box–Jenkins method (Box and Jenkins 1976),
is one of the most widely used statistical methods for forecasting stationary time series.
It has been extensively employed in many areas of research, including environmental
pollution (Sen et al. 2016; Zhang et al. 2018), meteorological factors (Valipour 2015; Liu
et al. 2021), financial markets (Chung et al. 2009; Adebiyi et al. 2014), and especially for
predicting trends and patterns of infectious disease (Earnest et al. 2005; Gaudart et al.
2009; Li et al. 2012; Kane et al. 2014; Liu et al. 2016; Wang et al. 2018; Singh et al. 2020;
Ala’raj et al. 2021). The ARIMA model has very good properties. It is easy to fit and
manage, and it is understandable even for non-professional users. It can deal with many
common practical situations and complex patterns such as calendar variation, cyclicity,
seasonality, trends, external or exogenous interventions, outliers, randomness caused by
other factors and/or diseases, and other relevant real aspects of time series (Pack 1990;
Barnett and Dobson 2010). Moreover, it does not assume any knowledge of underlying
models or structure as do some other forecasting methods (Adebiyi et al. 2014). It simply
allows the prediction of a given time series by considering its own lags, i.e., the previous
values of the observed time series and the lagged forecast errors.

Table 1 lists 32 studies that used an ARIMA/SARIMA framework to forecast the
patterns of infectious diseases over the last 16 years.

Table 1. Thirty-two selected studies on infectious disease forecasting, which used non-seasonal and
seasonal ARIMA model.

Authors Disease Methodological Approach Investigated Area

Earnest et al. (2005) SARS ARIMA Singapore
Gaudart et al. (2009) Malaria ARIMA, SIRS Mali

Liu et al. (2011) HFRS ARIMA China
Li et al. (2012) HFRS SARIMA China

Ren et al. (2013) Hepatitis E ARIMA, BPNN Shanghai, China
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Table 1. Cont.

Authors Disease Methodological Approach Investigated Area

Kane et al. (2014) H5N1 ARIMA and RANDOM FOREST Egypt
Zheng et al. (2015) Tuberculosis SARIMA Xinjiang, China

Wei et al. (2016) Hepatitis A SARIMA, GRNN, and SARIMA-GRNN Heng County, China
Zeng et al. (2016) Pertussis SARIMA, ETS China

Xu et al. (2017) Mumps SARIMA Zibo, China
He and Tao (2018) Influenza ARIMA Wuhan, China
Wang et al. (2018) Hepatitis B SARIMA, GM (1,1) China
Cong et al. (2019) Influenza SARIMA Mainland China
Wang et al. (2019) Human Brucellosis ARIMA Jinzhou, China

Alzahrani et al. (2020) COVID-19 ARIMA Saudi Arabia
Cao et al. (2020) Human Brucellosis SARIMA Hebei, China

Ceylan (2020) COVID-19 ARIMA France, Italy, Spain
Chintalapudi et al. (2020) COVID-19 ARIMA Italy

Hossain et al. (2020) Dengue fever ARIMA Dhaka, Bangladesh
Perone (2020) COVID-19 ARIMA Italy

Polwiang (2020) Dengue fever ANN, ARIMA, MPR Bangkok, Thailand
Singh et al. (2020) COVID-19 ARIMA 15 countries
Tran et al. (2020) COVID-19 ARIMA Iran

Yousaf et al. (2020) COVID-19 ARIMA Pakistan
Ala’raj et al. (2021) COVID-19 SEIRD-ARIMA US

ArunKumar et al. (2021) COVID-19 ARIMA and SARIMA 16 countries
Li et al. (2021) Tuberculosis EEMD-ARIMA-NANN Tibet

Malki et al. (2021) COVID-19 SARIMA 20 countries

Perone (2021b) COVID-19 ETS, NARNN, SARIMA, TBATS, and
hybrid models Italy

Qiu et al. (2021) Mumps SARIMA Chongqing, China
Roy et al. (2021) COVID-19 ARIMA India

Satrio et al. (2021) COVID-19 ARIMA and PROPHET Indonesia

Notes: ARIMA, autoregressive integrated moving average; ANN, artificial neuron network, BPNN, back propaga-
tion neural network; EEMD, ensemble empirical mode decomposition; ETS, exponential smoothing model; GM
(1,1), gray model; GRNN, generalized regression neural network, HFRS, hemorrhagic fever with renal syndrome;
GM (1, 1), H5N1, highly pathogenic avian influenza; MPR, multivariate Poisson regression; NARNN, nonlinear
autoregressive artificial neural network; SARIMA, seasonal autoregressive integrated moving average; SEIRD,
susceptible-exposed-infectious-recovered-deceased; SIRS, susceptible-infectious-recovered-susceptible.

3. Data

The data used to forecast the cumulative deaths from COVID-19 in the 12 selected coun-
tries were extracted from the Our World in Data COVID-19 dataset (https://ourworldindata.
org/coronavirus, accessed on 25 September 2021), which relies on data collected by The
Johns Hopkins University (JHU). Table 2 reports for each country the start date, the end
date, and the number of observations. As suggested by several authors (Box and Tiao
1975; McCleary et al. 1980; Box et al. 1994), a reasonable ARIMA model requires at least
40–50 observations. Since the time series for this paper range from a minimum of 386
observations (Vietnam) to a maximum of 549 (Iran), this condition is met. All the time series
are plotted in Figure 1, and they suggest an upward trend in the cumulative deaths from
COVID-19 in all 12 countries. The COVID-19 daily deaths—obtained by first-differencing
each time series—show that 10 of the countries experienced multiple waves, and Thailand
and Vietnam are undergoing the first severe wave of COVID-19 (Figure 2). This seems to
suggest the presence of complex patterns and seasonality in the dynamics of deaths from
COVID-19. Figure 3 shows plots of the numbers of cumulative deaths from COVID-19 per
100,000 inhabitants. As of 20 August 2021, Argentina, Brazil, and Mexico had reached the
highest values, with 269.81, 242.57, and 195.51 deaths per 100,000 inhabitants, respectively.
By contrast, Vietnam, Thailand, and Bangladesh had the lowest values, with 7.75, 12.65,
and 15.19 deaths per inhabitant, respectively. This is a matter of concern, especially for
American countries.

https://ourworldindata.org/coronavirus
https://ourworldindata.org/coronavirus
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Table 2. Data used in this study.

Countries Start Date End Date Observations

Argentina 8 March 2020 20 August 2021 531
Bangladesh 18 March 2020 20 August 2021 521

Brazil 17 March 2020 20 August 2021 522
India 11 March 2020 20 August 2021 528
Iran 19 February 2020 20 August 2021 549

Mexico 19 March 2020 20 August 2021 520
Philippines 11 March 2020 20 August 2021 528

Russia 19 March 2020 20 August 2021 520
South Africa 27 March 2020 20 August 2021 512

Thailand 23 March 2020 20 August 2021 516
US 29 February 2020 20 August 2021 539

Vietnam 31 July 2020 20 August 2021 386
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Figure 1. Cumulative deaths from COVID-19 for the 12 selected countries until 20 August 2021. 
Source: Our World in Data (2021). 
Figure 1. Cumulative deaths from COVID-19 for the 12 selected countries from 19 February 2020 to
20 August 2021. Source: Our World in Data (2021).
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Figure 2. Daily deaths from COVID-19 for the 12 selected countries from 19 February 2020 to 20 
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Figure 2. Daily deaths from COVID-19 for the 12 selected countries from 19 February 2020 to 20
August 2021. Source: Our World in Data (2021).
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Figure 3. The number of deaths from COVID-19 per 100,000 inhabitants in 12 hard-hit big countries
from 19 February 2020 to 20 August 2021. Source: Author’s elaborations on Source: Our World in
Data (2021) and World Bank (2021).

4. Methodology
4.1. ARIMA and SARIMA Models

The non-seasonal ARIMA model is classified as “ARIMA(p,d,q)”, where: p is the order
of the autoregressive (AR) process, d is the order of differencing required by the time series
to get stationary, and q is the order of the moving average (MA) process. By multiplying
the seasonal terms by the non-seasonal terms in the ARIMA model, it is possible to get a
seasonal ARIMA (SARIMA) model. It assumes the notation “SARIMA (p,d,q)(P,D,Q)m”,
where: m is the frequency of data, and the lowercase and uppercase notations refer to the
non-seasonal and seasonal components of the model, respectively.

The analysis used the following steps:

i. First, I split the original dataset into training and test sets, and I ran the model with the
training set. Its output was compared with the target, i.e., the test set. In particular, the
training set was used to predict the last 20 observations of the original dataset.1 The
best ARIMA and SARIMA2 models were identified using the “auto.arima( )” function
included in the package “forecast” (in the R software), developed by Hyndman and
Khandakar (2008).3 This function follows sequential steps to identify the best model
to fit. It finds the best model by using the unit root test to assess the non-seasonal
and seasonal degrees of difference necessary to make the time series stationary4 and
by looking at the minimization of the Akaike’s information criterion (AIC) and the
maximum likelihood estimation (MLE).5 This procedure was used to prevent issues
of overfitting and underfitting and to evaluate the overall performance of the model,
i.e., its ability to predict unseen data. In addition, as suggested by Hyndman and
Athanasopoulos (2021, sct. 5.2), I also compared my preferred methods to three simple
forecasting methods, i.e., Mean, Naïve, and Seasonal Naïve approaches.6 To assess
the suitability of each model, I used the mean absolute percentage error (MAPE)
metric. In fact, it is the most widely used error metric (Kim and Kim 2016; Hyndman
and Athanasopoulos 2018, sct. 3.4), and it is not scale-dependent. Thus, it is easily
comparable, immediately giving a good approximation of the accuracy of the models.7
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ii. Second, I forecasted the time window of specific interest, from 21 August 2021 to
19 September 2021, and I compared the best ARIMA and SARIMA models on the
minimization of AIC and four common measures of the accuracy of models: the
mean absolute error (MAE), MAPE, mean absolute scaled error (MASE) and the root
mean squared error (RMSE). After identifying the best models with the “auto.arima( )”
function, I fitted the SARIMA models with Gretl-2021-c software, using the exact MLE
approach and standard errors of parameters based on the Hessian matrix.

iii. Then, I investigated the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of the residuals for the first 14 lags to establish if the residuals
described a white noise process. If signs of autocorrelation were present, as suggested
by Hyndman and Athanasopoulos (2018, sct. 8.7), I graphically investigated ACF and
PACF of the original time series (after differencing), and I added enough parameters
until the residuals showed to be randomly distributed. This iterative process was
based on the minimization of AIC and four common measures of the accuracy of
models: MAE, MAPE, MASE, and RMSE.8

iv. Finally, I compared 30-day forecasts, from 21 August 2021 to 19 September 2021, with
the actual trends (real-time data) to assess the overall reliability of the models by
looking at the MAPE between them.

The steps of this procedure are summarized in Figure 4. The estimated baseline
equation for the ARIMA models with (p,d,q) non-seasonal order terms was the following
(Davidson 2000)9:

∆d
yt = φ1∆d

yt−1
+ . . . φp∆d

yt−p + γ1εt−1 + . . . γqεt−q + εt, (1)

where ∆d is the difference operator,10 yt means the forecasted values, p is the lag order of
the AR process, φ is the coefficient of each parameter p, q is the order of the MA process, γ
is the coefficient of each parameter q, and εt denotes the residuals of the errors at time t.
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The estimated basic equation for the SARIMA models with (p,d,q) non-seasonal order
terms and (P,D,Q) seasonal order terms was the following (Chatfield 2000; Clarke and
Clarke 2018):

φP(B)ΦP(Bs)(1− B) d(1− Bs
)

DYt = θq(B)Θq(Bs)εt (2)

where:
φp(B) = (1− φ1B− . . .− φpBp) (3)

θq(B) = (1− θ1B− . . .− θqBq) (4)

ΦP(Bs) = (1−Φ1Bs − . . .−ΦPBsP
)

(5)

ΘQ(Bs) = (1−Θ1Bs − . . .−ΘQBsQ
)

(6)

where d is the order of non-seasonal differencing, D is the order of seasonal differencing, s
is the number of seasons per year, B is the backshift operator, φp(B) and θq(B) denote the
non-seasonal polynomials of order p and q in B, ΦP

(
BS) and ΘQ

(
BS) denote the seasonal

polynomials of order P and Q in BS, and εt denotes the residuals of the errors at time t.

4.2. Evaluation Metrics

I used four common metrics—MAE, MAPE, MASE, and RMSE—to evaluate the overall
accuracy of the forecasted models. In fact, since each of these error measures has specific
characteristics and criticalities, I safely considered them jointly in the analysis (omitted
reference). The formulae used to calculate each of these metrics were:

MAE =
1
n ∑n

i=1|yi − ŷi| (7)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

∗ 100% (8)

MASE =
1
n ∑n

i=1

(
|yi − ŷi|

1
n−1 ∑n

i=2|yi − ŷi − 1|

)
(9)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (10)

where n represents the number of observations, yi denotes the actual values, and ŷi indicates
the forecasted values.

5. Results and Discussion

Figures 5 and 6 show the results of the training and test sets for each country by fitting
ARIMA and SARIMA models, respectively. The training set and the test set exhibited,
in most cases, very low and similar MAPE for ARIMA and SARIMA models. The only
exception was the ARIMA model for Vietnam, where MAPE for the test set was 15 times
larger than MAPE for the training set. In this case, MAPE for the test set was definitively
greater than that for the training set, suggesting overfitting issues. However, this is not
particularly worrying because the SARIMA model for Vietnam exhibited much better per-
formance than the ARIMA model. Moreover, SARIMA outperformed both ARIMA models
and the simple forecasting methods used as benchmarks, i.e., Mean, Naïve, and Seasonal
Naïve (Table 3). Notably, MAPE for SARIMA models was always lower or very close to
1%, except for Vietnam. This could be deemed a satisfying output considering that many
factors were not included in the forecasting process, such as climate and environmental
conditions, the efficiency and capacity of the health systems, non-pharmaceutical interven-
tions (lockdowns, physical distancing, quarantine), the age structure of the population, and
vaccination campaigns.11 Thus, the models seem able to learn from previous data, and they
can be effective in predicting unseen observations.
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Figure 5. ARIMA forecasting models built on the training set over the period 1 August 2021–20
August 2021, in Argentina, Bangladesh, Brazil, India, Iran, Mexico, the Philippines, Russia, South
Africa, Thailand, the US, and Vietnam.

In Table 4, I present the ARIMA models for forecasting the cumulative deaths from
COVID-19 for each country in the period from 21 August 2021 to 19 September 2021, chosen
by using the “auto.arima( )” function. Adding the seasonal effect in the “auto.arima( )”
algorithm, I attained the SARIMA models for each country. However, looking at the plots of
the ACF and PACF for lags up to 14, it seems that there is structure left in the residuals of the
SARIMA fitted models for Bangladesh, Brazil, Iran, the Philippines, Russia, South Africa,
Thailand, the US, and Vietnam (Figure S1, in Supplementary Materials S1). Therefore,
I adjusted model parameters until I attained a white noise process.12 The final optimal
SARIMA models are reported in Table 5.13
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In Table 6, I compare the ARIMA and SARIMA models on the minimization of AIC
and on common accuracy metrics (MAE, MAPE, MASE, and RMSE). The outcomes show
that SARIMA models outperformed ARIMA models in 46 out 48 metrics, i.e., on 95.8%
of all the forecast accuracy measures, except for MASE in the Philippines and MAPE in
Thailand. . Since AIC is always lower for SARIMA models, adding seasonal terms seems
to be justified. Specifically, SARIMA models minimize AIC from 0.04% for India to 7.49%
for Russia, MAE from 0.01% for India to 39.07% for Brazil, MAPE from 0.18% for India
to 36.62% for Brazil, MASE from 84.4% for Vietnam to 91.74% for Brazil, and RMSE from
1.13% for India to 33.59% for Russia.
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Table 3. Comparing ARIMA and SARIMA approaches to three simple statistical methods (Mean,
Naïve, and Seasonal Naïve).

Methods AR BD BR IN IR MX

Mean Training 72,976.46 9848.56 77,102.94 165,478.16 15,028.63 80,758.69

Test 65.428 71.1171 64.6042 68.3176 58.2728 53.0982

Naïve Training 2.1205 1.8492 2.3508 2.4336 1.8627 2.285

Test 2.1855 10.3307 1.5637 1.1819 5.0682 2.0799

Seasonal Naïve Training 12.6593 10.3185 10.959 12.9676 9.0316 11.3767

Test 3.1073 13.4784 2.1704 1.6031 6.0435 2.6464

ARIMA Training 1.1251 0.8419 0.8078 1.1925 0.4128 1.1023

Test 0.7961 0.7185 0.4104 0.2059 1.746 0.6032

SARIMA Training 1.0683 0.8141 0.4796 1.1867 0.364 1.026

Test 0.7081 0.4334 0.1098 0.6559 1.4504 0.5796

Methods PH RU ZA TH US VN

Mean Training 4911.19 83,559.78 27,054.27 627.5129 173,294.91 92.761

Test 68.9418 67.2429 61.9092 94.129 49.7039 98.1843

Naïve Training 1.8171 2.1524 2.0984 1.5583 2.2007 1.5119

Test 5.1284 4.8805 4.7421 25.8882 0.9331 60.9863

Seasonal Naïve Training 9.4063 11.8052 11.6468 7.9684 9.8018 7.1452

Test 6.5852 6.3732 6.3233 33.0028 1.1509 79.0645

ARIMA Training 1.001 0.8599 1.0944 0.837 0.9601 1.7891

Test 1.344 0.0784 0.1913 2.3214 0.4333 27.36

SARIMA Training 0.9768 0.5512 0.7008 0.8679 0.606 1.5797

Test 1.0353 0.0782 0.4488 0.2977 0.3122 7.98

Countries: AR, Argentina; BD, Bangladesh; BR, Brazil; IN, India; IR, Iran; MX, Mexico; PH, the Philippines; RU,
Russia; ZA, South Africa; TH, Thailand; US, the United States; VN, Vietnam.

Table 4. Forecast accuracy measures for ARIMA models performed on cumulative deaths from
COVID-19.

Countries Parameters AIC MAE MAPE MASE RMSE

Argentina (3,2,2) 6881.541 66.581 1.0787 0.3196 159.55
Bangladesh (3,2,2) 3812.116 6.7566 0.8228 0.1378 9.3994

Brazil (3,2,2) 7664.725 265.97 0.7199 0.2541 378.57
India (0,2,1) 7655.07 126.01 1.152 0.1524 348.46
Iran (1,2,4) 5023.525 16.479 0.4051 0.0893 23.59

Mexico (2,2,2) 7508.783 190.91 1.0532 0.3924 336.16
Philippines (4,2,1) 5489.394 26.527 0.9718 0.4464 44.104

Russia (3,2,2) 5217.116 27.871 0.9781 0.0764 36.772
South Africa (2,2,3) 5776.75 44.677 1.0602 0.288 68.688

Thailand (1,2,4) 3760.553 3.2342 0.9101 0.188 9.255
US (5,2,0) 7751.229 212.06 0.9297 0.181 325.17

Vietnam (1,2,4) 3945.154 8.2099 1.9751 0.4174 40.251
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Table 5. Forecast accuracy measures for SARIMA models performed on cumulative deaths from
COVID-19.

Countries Parameters AIC MAE MAPE MASE RMSE

Argentina (0,2,1)(2,0,2)7 6851.536 58.478 1.0298 0.0399 154.55
Bangladesh (3,1,3)(1,1,2)7 3745.92 6.425 0.5554 0.0192 8.9982

Brazil (1,1,8)(0,1,1)7 7190.918 162.06 0.4563 0.021 256.97
India (0,2,1)(2,0,2)7 7652.34 126 1.1499 0.0216 344.51
Iran (6,2,2)(2,0,1)7 4944.182 15.442 0.3413 0.0122 21.571

Mexico (0,2,1)(4,0,0)7 7438.09 156.18 0.9417 0.0456 312.81
Philippines (6,2,4)(3,0,4)7 5456.546 24.988 0.9385 0.9385 41.113

Russia (4,2,4)(4,0,3)7 4826.443 17.983 0.6797 0.0079 24.422
South Africa (5,1,8)(4,1,4)7 5665.571 41.036 0.6862 0.0373 62.244

Thailand (4,2,10)(4,0,2)7 3536.975 2.8601 0.9368 0.0261 7.0336
US (6,1,1)(0,1,1)7 7446.294 172.95 0.5977 0.0208 263.14

Vietnam (5,2,4)(0,0,1)7 3903.771 7.8076 1.9188 0.0651 37.599

Table 6. Comparison between ARIMA and SARIMA models, considering the minimization of AIC,
MAE, MAPE, MASE, and RMSE metrics (in percentage), for cumulative deaths from COVID-19.

Countries AIC MAE MAPE MASE RMSE

Argentina −0.44 −12.17 −4.53 −87.52 −3.13
Bangladesh −1.74 −4.91 −32.5 −86.07 −4.27

Brazil −6.18 −39.07 −36.62 −91.74 −32.12
India −0.036 −0.008 −0.18 −85.83 −1.13
Iran −1.58 −6.29 −15.75 −86.34 −8.56

Mexico −0.94 −18.19 −10.59 −88.38 −6.95
Philippines −0.598 −5.8 −3.43 110.24 −6.78

Russia −7.49 −35.48 −30.51 −89.66 −33.59
South Africa −1.92 −8.15 −35.28 −87.05 −9.38

Thailand −5.95 −11.57 2.93 −86.12 −24
US −3.93 −18.44 −35.71 −88.51 −19.08

Vietnam −1.05 −4.9 −2.85 −84.4 −6.59

Notes: negative (positive) values show the percentage efficiency gain (loss) from using SARIMA models. Roman
values indicate that SARIMA models were better, while italic values indicate that ARIMA models were better.

Therefore, the optimal number of parameters for predicting cumulative the deaths
from COVID-19 for each country were the following (Table 5): Argentina (0,2,1)(2,0,2)7,
Bangladesh (3,1,3)(1,1,2)7, Brazil (1,1,8)(0,1,1)7, India (0,2,1)(2,0,2)7, Iran (6,2,2)(2,0,1)7,
Mexico (0,2,1)(4,0,0)7, the Philippines (6,2,4)(3,0,4)7, Russia (4,2,4)(4,0,3)7, South Africa
(5,1,8)(4,1,4)7, Thailand (4,2,10)(4,0,2)7, the US (6,1,1)(0,1,1)7, and Vietnam (5,2,4)(0,0,1)7.

Since MASE was always much lower than 1, the actual forecast performance is much
better than the naïve method (Table 5).14 In other words, the proposed method yields
smaller errors than one-step errors from the average naïve method (Hyndman and Koehler
2006). According to Lewis (1982), the results of MAPE indicated that SARIMA models had
very high accuracy. In fact, the MAPE difference between the observed and fitted data
was much smaller than 10%, ranging from 0.34% for Iran to 1.92% for Vietnam. Notably,
except for Argentina, India, and Vietnam, the remaining countries had a MAPE smaller
than 1% (Table 5). The excellent goodness of fit is confirmed by the analysis of ACF and
PACF of the models (Figure 7). In fact, both functions did not show any significant spike,
suggesting that residuals were not correlated in all the countries analyzed. That is, the
fitted data described a white noise process.
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In Figures 8 and 9, I graphically represent the optimal SARIMA models for forecasting
cumulative deaths from COVID-19 in the 12 hard-hit big countries in the next 30 days, from
21 August 2021 to 19 September 2021. The light blue area identifies the prediction interval
at a 95% level of confidence. The red dashed line represents the forecasted values, and the
light green continuous line identifies the original time series until 20 August 2021.

Although the predictions seem to stress a common upward trend for cumulative
deaths from COVID-19 in the next 30 days for all the countries, the fitted curves of the
forecasted values exhibit different slopes. A slowdown in the growth curve of the deaths
from COVID-19 seems to be possible in Argentina, Bangladesh, Brazil, and India. In
this respect, the predicted values underline the likelihood of a flattening in the curves of
cumulative deaths from COVID-19 around the end of September 2021. On the contrary,
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Iran, Mexico, the Philippines, South Africa, Russia, Thailand, the US, and Vietnam appear
to be characterized by sustained growth of the total deaths from COVID-19 in the next
30 days. Among them, Thailand and Vietnam show a possible explosive growth in the
number of deaths from COVID-19 in the same period.
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Figure 9. SARIMA models for forecasting the dynamics of cumulative deaths from COVID-19 over
the period 21 August 2021–19 September 2021, in the Philippines, Russia, South Africa, Thailand, the
US, and Vietnam.

Notably, Brazil, Iran, the Philippines, Russia, Thailand, and the US had the smallest
prediction intervals, suggesting a low uncertainty in estimating deaths from COVID-19
at the 95% level of confidence, while Argentina, Bangladesh, India, and Vietnam had the
largest prediction intervals.
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Finally, in Figures 10 and 11, I compare the estimated models to the real-time data
over the period 21 August 2021 to 19 September 2021. The predictions from the SARIMA
models seemed to fit very well with the observed data over that time window. The only
exception was Thailand, whose forecasts—although also increasing—overestimated the
real trend.15
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Table 7 shows that MAPE difference between forecasted and observed data tended,
on average, to grow in all countries. However, this is not particularly worrying because
the absolute values of MAPE generally remained low over the whole forecasting window.
On 19 September 2021 (i.e., after 30 days), MAPE was lower than 1% for ten out of twelve
countries, that is, 83.33% of the sample (Table 7). The highest values were reached by
Vietnam and Thailand, with a MAPE of 4.21% and 10.69%, respectively. Russia, Argentina,
and the US showed the lowest MAPE after 30 days, with average differences between
forecasted and observed data of 0.03%, 0.11%, and 0.15%, respectively. Thus, the models
proved to be not only accurate but also reliable enough in short- to mid-term. This is
consistent with the recent literature (Khan and Gupta 2020; Alabdulrazzaq et al. 2021;
Al-Turaiki et al. 2021; ArunKumar et al. 2021) and suggests the suitability of the SARIMA
models to predict the trend of cumulative deaths from COVID-19 around the world.
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Table 7. Comparison of forecasted values and real-time data over the period 21 August 2021–19
September 2021, considering the MAPE difference between them.

Countries Values Values Values Values

Until 25 August
2021

Until 30 August
2021

Until 9
September 2021

Until 19
September 2021

Argentina 0.057 0.061 0.09 0.1107
Bangladesh 0.1955 0.3179 0.4651 0.4761

Brazil 0.0271 0.0588 0.1691 0.3131
India 0.0479 0.1376 0.2671 0.2961
Iran 0.0981 0.2209 0.2975 0.3846

Mexico 0.0515 0.0642 0.0808 0.2623
Philippines 0.6835 0.6182 0.5423 0.8411

Russia 0.0076 0.011 0.014 0.032
South Africa 0.0558 0.092 0.132 0.3331

Thailand 1.2301 2.4151 5.6266 10.6897
US 0.0848 0.1124 0.1458 0.1463

Vietnam 1.2779 1.4391 2.6018 4.2089

6. Conclusions

In this paper, I attempted to forecast the cumulative deaths from COVID-19 in 12 hard-
hit big countries for the period 21 August 2021–19 September 2021. The results showed
that: (i) the implemented forecasting procedures proved to have a good prediction accuracy
both in the training and the test set, by outperforming the simple alternative methods
(Mean, Naïve, and Seasonal Naïve); (ii) SARIMA models outperformed ARIMA models (in
predicting future values) on AIC and almost all the considered forecast accuracy measures
(MAE, MAPE, MASE, and RMSE), suggesting the existence of strong seasonal patterns in
the time series; and (iii) the 30-day forecasts from the SARIMA models fitted very well
the observed data over the period 21 August 2021–19 September 2021 in almost all the
countries analyzed.

Thus, SARIMA models were shown to be accurate and reliable tools for forecasting
cumulative deaths from COVID-19. They adapted very well to the implemented data,
even with complex patterns and seasonality. This is consistent with the extensive and
successful use of this approach in the recent literature for predicting the outcomes of the
COVID-19 disease (ArunKumar et al. 2021; Malki et al. 2021; Satpathy et al. 2021). Although
predictions beyond 15 or 20 days should be taken with some caution, the models estimated
in this article may give a reliable approximation of the pattern of growth of the main
dimensions of the COVID-19 pandemic and other similar diseases. In particular, SARIMA
models proved that they could be safely used for both the short- and mid-term. Therefore,
these predictions can help the government authorities to monitor and manage the huge
pressure that COVID-19 is exerting on national healthcare systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/econometrics10020018/s1, Figure S1: ACF and PACF plot of the
residuals of the SARIMA models obtained using the “auto.arima( )” function; Table S1: Comparison
between SARIMA models obtained using “auto.arima( )” function and adjusted SARIMA models
considering the minimization of AIC, MAE, MAPE, MASE, and RMSE metrics (in percentage), for
cumulative deaths from COVID-19; Table S2: The parameters values of the best SARIMA models
(reported in Table 5).
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Notes
1 In fact, as suggested by Hyndman and Athanasopoulos (2021, sct. 5.8), in the first stage, it is crucial to ensure that models perform

well on data that are not used to predict the future, and splitting the original dataset into two different subsets is a very common
practice to do this. The choice of 20 observations for the test set was due to the fact that my predictive analysis was focused on
the medium term.

2 In this case, as suggested by Hyndman (2013), since the time series had daily observations, the frequency was set to 7. This is the
easiest approach, and, in this case, it gives the most accurate results.

3 The “auto.arima( )” function is discussed in detail in Hyndman and Athanasopoulos (2018, sct. 8.7).
4 Specifically, the function uses as default the repeated Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test (Kwiatkowski et al. 1992)

to determine the appropriate non-seasonal order of differencing. As suggested by Hyndman (2014), this is generally more
accurate than the two alternative tests, the augmented Dickey–Fuller (ADF) test (Dickey and Fuller 1979) and the Phillips–Perron
(PP) test (Phillips and Perron 1988). To identify the appropriate seasonal order of differencing, the algorithm uses, as default, the
test “seas”. This is a measure of seasonal strength developed by Wang et al. (2006).

5 For the ARIMA models, I used the following script: auto.arima(training_data,stationary=FALSE,seasonal=FALSE,ic=c(“aic”),
stepwise=FALSE,nmodels=1000,approximation=FALSE,test=c(“kpss”)). While for the SARIMA models, I used the following
script: auto.arima(train_argentina,stationary=FALSE,seasonal=TRUE,ic=c(“aic”),stepwise=FALSE,nmodels=1000,approximation
=FALSE,test=c(“kpss”),seasonal.test=c(“seas”)). The same procedure was also applied to forecast the window of interest (from 21
August 2021 to 19 September 2021).

6 They were used as benchmarks, i.e., to ensure that ARIMA/SARIMA models were better than simple alternatives and, thus,
worthy of being considered.

7 In this regard, it is useful to stress that MAPE also has some disadvantages, such as giving infinite or undefined results when one
or more time series data point equals 0 or close-to-zero actual values. Moreover, it puts a heavier penalty on negative errors
(i.e., when predicted values are higher than actual values) than on positive errors. In this case, the mean arctangent absolute
percentage error (MAAPE) suggested by Kim and Kim (2016) could be implemented. However, since it did not modify the results
of this paper, I preferred not to include it in the analysis. The output of MAAPE is available upon request.

8 The “auto.arima( )” function does not consider the functional form of the residuals. Thus, residuals could not be described as a
white noise process. In this case, a manual adjustment is required (Hyndman and Athanasopoulos 2018, sct. 8.7).

9 The drift is omitted because all the models reported in Table 4 had a second difference operator (Hyndman and Athanasopoulos
2018, sct. 8.7). Moreover, a drift in first differences would imply the presence of a linear trend in levels, and that did not seem
likely (Figures 1 and 2).

10 I.e., the order of differencing needed to achieve stationarity.
11 To this regard, several studies showed the importance of demographic, environmental, healthcare, and lockdown policies in

explaining COVID-19 deaths (Conyon et al. 2020; Sarkodie and Owusu 2020; Perone 2021a).
12 In Table S2 (Supplementary Materials S2), I compared the SARIMA models obtained using the “auto.arima( )” function and the

adjusted SARIMA models on the minimization of AIC and four error measures (MAE, MAPE, MASE, and RMSE). The results
showed that the latter outperformed the models obtained using the “auto.arima( )” function in 35 out 40 metrics, i.e., on 87.5% of
all the forecast accuracy measures. The outcomes were not straightforward for Vietnam; however, the AIC, the ACF, and PACF
clearly favored the adjusted SARIMA model.

13 The parameter values of the best SARIMA models are reported in Table S3 (Supplementary Materials S3).
14 Only the SARIMA model for Philippines exhibited a MASE close to 1 (0.9385). However, since it was lower than 1, SARIMA

model was better than the naïve method.
15 It is necessary to stress that also the SARIMA model for Vietnam tended to overestimate the real trend. However, the MAPE

difference between forecasted and observed data (after 30 days) is significantly lower (4.21%) than that for Thailand (10.69%).
Thus, it does not appear to be a matter of serious concern.

https://ourworldindata.org/coronavirus
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