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Abstract: Accurate localization holds paramount importance across many applications within the
context of smart cities, particularly in vehicular communication systems, the Internet of Things,
and Integrated Sensing and Communication (ISAC) technologies. Nonetheless, achieving precise
localization remains a persistent challenge, primarily attributed to the prevalence of non-line-of-
sight (NLOS) conditions and the presence of uncertainties surrounding key wireless transmission
parameters. This paper presents a comprehensive framework tailored to address the intricate task of
localizing multiple nodes within ISAC systems significantly impacted by pervasive NLOS conditions
and the ambiguity of transmission parameters. The proposed methodology integrates received
signal strength (RSS) and time-of-arrival (TOA) measurements as a strategic response to effectively
overcome these substantial challenges, even in situations where the precise values of transmitting
power and temporal information remain elusive. An approximation approach is judiciously employed
to facilitate the inherent non-convex and NP-hard nature of the original estimation problem, resulting
in a notable transformation, rendering the problem amenable to a convex optimization paradigm.
The comprehensive array of simulations conducted within this study corroborates the efficacy of
the proposed hybrid cooperative localization method by underscoring its superior performance
relative to conventional approaches relying solely on RSS or TOA measurements. This enhancement
in localization accuracy in ISAC systems holds promise in the intricate urban landscape of smart
cities, offering substantial contributions to infrastructure optimization and service efficiency.

Keywords: smart cities; cooperative localization integrated sensing and communication; non-line-of-
sight; optimization.

1. Introduction

Smart cities represent urban environments where the integration of information and
communication technologies is harnessed to optimize infrastructure, services, and the
overall quality of life for residents [1–3]. These cities leverage interconnected systems
and data analytics to effectively manage resources, bolster sustainability, and enhance the
delivery of public services. Deploying smart technologies, including Internet of Things (IoT)
devices, sensors, and data-driven platforms, facilitates real-time monitoring and analysis,
enabling well-informed decision-making across transportation, energy consumption, waste
management, and public safety [4].

In the realm of smart cities, ISAC technologies play a pivotal role in their evolution and
development [5]. These interconnected systems lay the foundation for a dynamic infras-
tructure that facilitates the collection, analysis, and utilization of vast datasets, ultimately
driving efficiency, sustainability, and an enhanced quality of life. Smart cities harness a
diverse array of sensors dispersed throughout urban environments. These sensors include
but are not limited to, IoT devices, cameras, environmental sensors, and various data
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collection points [6,7]. Their collective purpose is to acquire real-time data on a broad
spectrum of urban dynamics, ranging from traffic patterns and energy consumption to
waste management and air quality. Furthermore, environmental sensors interconnected
through communication networks enable the continuous monitoring of pollution levels,
thus enabling rapid responses to environmental concerns [8]. Recently, in [9], the authors
proposed a novel synergetic neural network-based algorithm for secure digital image
watermarking in smart cities. This algorithm efficiently processes gray watermark images
and embeds them into the block Discrete Cosine Transform (DCT) component. Shifting the
focus to the challenges posed by the IoT in smart cities, the authors in [10] addressed the
conflicts arising from diverse user preferences by using the linked open data (LOD)-driven
approach that optimally leverages inhabitants’ profiles and service attributes, effectively
resolving conflicts and ensuring consistency in smart localization applications. By harmo-
niously integrating sensing and communication, smart cities cultivate an ecosystem where
data from various sensors is transmitted, analyzed, and acted upon. This, in turn, leads to
more informed decision-making and optimized resource allocation, driving progress and
improved urban living. Figure 1 provides an overview of the Location-based services in
ISAC-assisted smart cities.

ISAC technology facilitates the simultaneous execution of sensing and user communi-
cation tasks, optimizing the utilization of scarce resources and enhancing the efficiency of
both sensing and communication services. Moreover, the symbiotic relationship between
sensing and communication yields substantial coordination advantages, ultimately culmi-
nating in an elevation of overall system performance [11]. Consequently, ISAC is poised to
assume a central role in forthcoming applications, notably the domains of the IoT, intel-
ligent transportation systems, and the realization of smart cities. It is worth highlighting
that conventional communication systems predominantly rely on Quality of Service (QoS)
metrics to gauge user communication requisites, often neglecting the imperative aspect of
sensing and localization needs [12].

Figure 1. Location-based services in ISAC-assisted smart cities.

However, various application scenarios exhibit distinct levels of communication and
localization accuracy prerequisites [13]. For instance, scenarios involving critical or haz-
ardous targets, like pedestrians, necessitate a high degree of localization accuracy. In con-
trast, systems dealing with static or inanimate objects may be adequately served with
lower accuracy levels [14,15]. Consequently, the Base Station (BS) can judiciously allocate
available resources following the specific Sensing and Communication (S&C) requirements,
thereby augmenting the versatility and capacity of ISAC systems. In this context, local-
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ization has evolved into an indispensable element of ISAC systems, garnering substantial
attention lately due to its extensive range of applications. Hence, localization has taken on
a pivotal role within ISAC systems, receiving significant attention due to its wide array of
practical applications [16–18]. For instance, UAVs with various sensors, such as cameras,
LiDAR, and environmental sensors, offer unprecedented data collection and monitoring
opportunities in hard-to-reach or hazardous environments. By leveraging the capabilities
of ISAC, next-generation communication systems can efficiently relay the collected data to
ground stations or users, enabling real-time decision-making and enhancing the overall
efficiency of the networks [19].

Nevertheless, accurate localization within ISAC systems, notably in smart cities’ intri-
cate urban settings, poses substantial challenges that hinder localization efforts. Smart cities,
with their dense infrastructure and dynamic environments, complicate precise location
determination due to NLOS conditions and uncertain transmission parameters. NLOS
conditions stem from structures like buildings and vehicles, causing signal disruptions
such as blockages, reflections, and multiple signal paths [20]. These complexities weaken
signals and introduce extra complexity to the ranging, leading to localization inaccuracies.
Moreover, uncertainties in transmission parameters—such as signal strength variations,
interference from other wireless devices, and unpredictable environmental shifts—further
exacerbate these challenges [21]. Current literature highlights the shortcomings of exist-
ing approaches in addressing these intricacies in smart city environments. Recognizing
the criticality of NLOS conditions and uncertain parameters is vital, as localization inac-
curacies can significantly impact smart city applications like emergency services, traffic
management, and infrastructure monitoring [22]. To address these challenges, this paper
introduces a novel ISAC-based methodology aiming to significantly enhance the precision
and reliability of localization in smart cities. We develop a hybrid approach integrating
received signal strength (RSS) and time of arrival (TOA) measurements to tackle smart city
localization challenges. By leveraging the strengths of both methods, we enhance accuracy
and robustness, especially in scenarios with NLOS conditions and uncertain parameters.
This hybrid approach is particularly beneficial for reliable and precise localization in smart
city applications, overcoming obstacles like signal disruptions from urban structures. This
approach represents a substantial advancement in addressing the complexities of accurate
localization within smart city environments.

Localization within ISAC-based smart cities can be achieved through various ranging
techniques, including the angle of arrival (AOA), TOA, time difference of arrival (TDOA),
and RSS methods [23–25]. Among these, the RSS-based approach has been considered
the most popular ranging technique based on its cost-effectiveness and ease of imple-
mentation. It primarily relies on the signal strength measurement at the receiver’s end.
However, the accuracy of RSS-based localization schemes is susceptible to various factors,
leading to biased measurement models. These errors in RSS measurements primarily
encompass random errors and systematic biases [26–28]. Numerous RSS-based localization
techniques are documented in the literature in greater detail. For instance, the maximum
likelihood (ML) approach can theoretically approach an optimal solution, but it is non-
convex, making it challenging to attain a globally optimal solution. To overcome this
limitation, optimization-based methods such as second-order cone programming (SOC)
and semidefinite programming (SDP) are commonly employed [29]. These techniques are
convex and ensure the achievement of a globally optimal solution. Additionally, they often
offer superior accuracy compared to linear least squares (LS) methods. It’s important to note
that the methods mentioned above are designed for bias-free models. In cases where the
RSS measurements exhibit biases, these methods may no longer be applicable. Moreover,
Hybrid localization methodologies, which integrate diverse measurements, have garnered
substantial attention in recent years due to their capacity to enhance localization accu-
racy [30]. Literature demonstrated that amalgamating RSS and TOA measurements leads
to more precise localization than conventional approaches relying solely on RSS or TOA
measurements. Particularly, investigations discussed in [31] have underscored the benefits



J. Sens. Actuator Netw. 2024, 13, 2 4 of 20

of combining range-based measurements, where RSS is better suited for short-range appli-
cations while TOA is preferred for longer distances. Furthermore, multiple studies have
confirmed that hybrid localization algorithms outperform their traditional counterparts,
even in challenging scenarios, such as situations with unknown transmission parameters
and NLOS conditions [32]. The proposed framework integrates RSS measurements with
TOA, utilizing signal strength and timing information. The hybrid RSS and TOA are pivotal
for enhancing localization accuracy; RSS excels in scenarios with signal blockages and
reflections, while TOA enables accurate distance estimation. By fusing these measurements
in a hybrid approach, our framework maximizes their complementary strengths, ensuring
robust and accurate localization, especially in smart city contexts characterized by NLOS
conditions and uncertain parameters. Ensuring robust, reliable, and accurate localization
in smart city ecosystems is crucial. The continual evolution and refinement of localization
techniques within ISAC systems promise to play a pivotal role in creating more intelligent,
efficient, and safer urban environments.

Integrating cooperative and hybrid radio measurements presents a promising avenue
for achieving resilient and precise localization, particularly in scenarios characterized by
NLOS effects and uncertain transmission parameters in ISAC systems. This amalgamation
of techniques bears significant implications, enhancing the accuracy of blind node (BN)
positioning and optimizing network resource allocation. By diminishing reliance on ex-
ternal infrastructure and leveraging the capabilities of neighboring nodes, networks can
operate with better efficiency, conserving energy, minimizing communication overhead,
and maximizing the utilization of available bandwidth [33]. Despite the promising advan-
tages, a detailed performance evaluation of the cooperative localization, combined with
hybrid radio measurements in challenging conditions, remains an underexplored area in
ISAC systems. This paper is dedicated to investigating the challenge of achieving precise
and robust localization for multiple source nodes by harnessing both cooperative and
hybrid measurements in an NLOS environment, where obstacles hinder direct signal paths
and transmission parameters are fraught with uncertainty. The fundamental step-wise
contributions involved in this study are summarized as:

• First, we present a novel BN localization technique within ISAC systems. This in-
novative approach leverages cooperative RSS and TOA measurements to achieve
accurate localization, particularly when confronting the challenges of an obscured
NLOS propagation environment and uncertain transmission parameters.

• Then, we introduce an innovative approach that transforms the original location
estimation problem into an equivalent one centered on worst-case estimation errors
through parameter estimation, followed by applying convex relaxation techniques
to obtain an accurate solution. Conventionally, tackling the joint estimation problem
encompassing source location, NLOS biases, and unknown transmission parameters
poses a complex and non-convex challenge that frequently surpasses the capabilities
of conventional search algorithms.

• Lastly, through numerical simulations, we evaluated the superior performance of
our proposed cooperative localization technique, which harnesses hybrid RSS-TOA
measurements. This performance comparison is conducted against contemporary
state-of-the-art techniques.

The remainder of this paper is organized as follows. Section 2 provides a detailed
literature compared with the proposed work. In Section 3, we discuss the network model
and formulate the novel blind nodes localization problem in the ISAC system. Section 4
discusses the proposed hybrid cooperative localization technique for ISAC in NLOS con-
ditions in an uncertain transmission scenario. After that, simulations are presented to
analyze the performance of the proposed scheme in Section 5. Lastly, Section 6 provides
the concluding remarks of the paper.
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2. Related Work

In the realm of next-generation wireless networks, particularly concerning the intri-
cacies of Non-Line-of-Sight (NLOS) issues, a fundamental need exists to address these
challenges to ensure precise localization and robust positioning. The core of these chal-
lenges arises from signal interference caused by obstructions within the network, which
introduces measurement errors and significantly impacts location estimation accuracy.
According to [34–37], resolving these obstacles necessitates the deployment of innovative
methodologies and algorithms designed to counteract the effects of NLOS errors, maintain
energy efficiency and effectively manage complex communication environments. The pur-
suit of addressing these challenges has given rise to many strategies. These strategies span
a spectrum from developing resilient algorithms grounded in advanced signal processing
techniques to introducing various localization methodologies tailored specifically for NLOS
scenarios. A crucial consideration in this context is energy conservation, given that nodes
within the network often operate on limited battery power. Failure to manage energy
consumption effectively can result in node failures [38,39]. Therefore, managing energy
resources becomes a pivotal aspect of addressing localization challenges. This encompasses
tasks such as intelligent node selection, balancing localization performance and energy
consumption, and the efficient allocation of node resources. In addition to energy con-
cerns, the unreliability of hardware components and the complexity of the communication
environment contribute to a third challenge: cooperative localization. The intricacies of
cooperative localization stem from the need to harmonize the efforts of multiple nodes,
often with varying degrees of trustworthiness, in determining the location of a target [40].
The fourth challenge involves localization within heterogeneous sensor networks, where
traditional direct line-of-sight paths from a beacon node to an unknown node may be
absent in complex environments.

In the context of NLOS error challenges, several methods have been developed to
address this issue. These approaches can be categorized into two main groups: those that
aim to suppress NLOS errors using specific algorithms and filtering techniques and those
that focus on mitigating the impact of NLOS errors but may result in partial data loss,
potentially compromising accurate positioning and robustness. This ongoing research has
led to different strategies to tackle these challenges. One notable strategy involves the
utilization of the TDOA algorithm for position estimation. This method employs a least
squares algorithm, which is non-linear, to provide a robust solution. It utilizes a rough
position estimation technique based on scaling, optimizing a complex location function
that considers arrival time differences [41]. Furthermore, in [42], the authors presented
a localization algorithm for a moving target based on TOA measurements in NLOS en-
vironments. Further, a Recursive Extended Kalman Filter (REKF) algorithm transforms
the standard Extended Kalman Filter (EKF) into a linear regression model, effectively
resolving the NLOS problem. An iterative residual technique based on the hybrid AOA
and TOS approach is presented in [43]. This technique sequentially detects and eliminates
NLOS instances to enhance estimation performance. In [44], the authors presented another
interesting algorithm based on an Extended Kalman Smoothing Filter (EK-IMM) for NLOS
position estimation. This algorithm also combines the hybrid TOA and RSS approach to
improve target location accuracy and mitigate NLOS error influence. Recently, hybrid
approaches for localization using LOS and NLOS scenarios have been utilized for better
localization accuracy. For instance, in [45], the authors introduced a low-complexity two-
step algorithm for adaptive parameter estimation and target localization in wireless sensor
networks using hybrid RSS and TOA measurements for LOS only. In [46], the authors
presented a hybrid RSS/TOA approach for target localization in NLOS environments using
a dynamic heuristic approach for optimal measurement selection, enhancing performance
over fixed choices in various scenarios. Similarly, in [47], the authors introduced a precise
target node localization method under challenging NLOS conditions using hybrid RSS
and TOA measurements. This method doesn’t require prior identification of NLOS paths
and utilizes a non-linear weighted least squares (NLWLS) problem addressed using a
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majorization-minimization (MM) algorithm. Nevertheless, we utilize both LOS and NLOS
links and propose Convex optimization, distinctly showcasing the primary contributions
of our work with superior results.

The literature offers a diverse array of techniques to address NLOS localization. For ex-
ample, in [48], the authors presented an efficient algorithm to mitigate NLOS bias for target
location using combined RSS-TOA measurements. It employs a reconfiguration of the loca-
tion algorithm to address this issue effectively. Another approach with low complexity is
presented in [49], where a sparse pseudo-input Gaussian method is utilized to minimize the
effect of LOS bias and address NLOS conditions without directly identifying its instances.
In [50], the authors introduce a method that estimates the anticipated NLOS error value to
rectify measurements by subtracting the expected NLOS error value.

Various other approaches focus on enhancing the accuracy of measurement models
under NLOS conditions. These methods include reworking the classical MDS algorithm [51]
for NLOS localization problems, as well as introducing a model that captures spatial
correlation concerning NLOS error using a Maximum Posterior (MAP) estimate with
Gaussian process (GP) regression [52]. Another essential method for NLOS recognition
is based on MDS and quasi-accurate detection [53]. This approach effectively identifies
NLOS instances by mapping the NLOS issue to an error-related model. In addition,
a novel recognition method based on NLOS is introduced by utilizing a convolution
algorithm [54]. In [55], a novel approach introduces a non-uniform variable within the
RSS model to simulate path loss data, effectively distinguishing between LOS and NLOS
distances and enhancing the accuracy of the measurement model. A refined joint EKF-
based Probabilistic Data Association Location (JPDA) algorithm is presented in [56]. This
algorithm differentiates between LOS and NLOS instances, resulting in superior positioning
accuracy and robustness.

Alternatively, a probability and hypothesis testing-based model for NLOS detection is
introduced in [57]. This model uses the innovation covariance matrix for secondary NLOS
identification through hypothesis testing, disregarding location estimates affected by NLOS
errors while reinforcing accurate position estimates based on probabilistic correlation.
Moreover, in [53], an NLOS classifier based on AdaBoost is introduced to identify NLOS
instances in wireless sensor positioning applications. Convex programming serves as a
solution for NLOS issues in localization in [58]. Another approach is based on TDOA mea-
surements in NLOS environments, with a statistical location approach utilizing empirical
data [59]. Convex optimization alleviates TOA localization problems using a soft minimum
approach, improving NLOS localization accuracy. In [60], an efficient convex approxima-
tion technique is introduced, which utilizes TDOA localization for an environment where
direct LOS links are unavailable. This approach transforms the two convex relaxation
approximations into a convex set for robust least squares. Additionally, in [61], an exciting
and efficient SOC relaxation method is proposed, demonstrating minimal sensitivity to
NLOS errors by focusing on the upper and lower limits of NLOS error. It is observed that
it eliminates the requirements of the prior NLOS error information. In contrast, in [62],
the authors introduced two algorithms named Optimal Selection Filling (BOF) and Iterative
Commutative Greed (ISG) for NLOS localization. These techniques address non-convex
problems by converting them into SDP for TDOA localization with NLOS links. Further-
more, in [63], the authors discussed another important parameter called an “equilibrium
parameter” tied to NLOS error for robust localization. The authors then formulated a robust
weighted least squares algorithm using source position and NLOS equilibrium parameters
as estimation variables. Afterwards, these variables are transformed into an SDP problem
to achieve better localization accuracy. Lastly, in [64], the authors presented an algorithm
that leverages the sparsity of both LOS and NLOS measurement biases to mitigate NLOS
issues effectively.

A detailed comparison of the proposed technique with the literature is summarized in
Table 1.
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Table 1. Comparison of the proposed work with state-of-the-art.

Ref. Proposed Method Ranging Technique Used Optimization Technique Used LOS/NLOS

[41] Scaling by MAjorizing a
Complicated Function (SMACOF) TDOA Non-linear least squares (NLS)

algorithm NLOS

[42] Robust extended Kalman filter
(REKF) TOA M-estimation algorithm Both LOS and

NLOS

[43] Iterative minimum residual TOA/AOA iterative minimization Both LOS and
NLOS

[44] Kalman-based interacting multiple
model TOA Kalman estimation Both LOS and

NLOS

[45] Range-Based Localization with
Self-Calibration Hybrid TOA and RSS Joint maximum likelihood (ML)

estimation LOS

[46] Integrated and Segregated Ranging
Based model Hybrid TOA and RSS Weighted least squares (WLS) NLOS

[47] Majorization-minimization (MM)
algorithm Hybrid TOA and RSS Joint ad-hoc (JAH) estimator NLOS

[48] Generalized trust region
sub-problem (GTRS) RSS-TOA Bias mitigation algorithm NLOS

[49] Sparse Pseudo-input Gaussian
Process TOA Bias mitigation algorithm NLOS

[50] Prior knowledge-based correction
strategy (PKCS) RSS Residual weighting algorithm Both LOS and

NLOS

[52] Joint Trajectory and Ranging Offset
Estimation TOA Gaussian process regression NLOS

[55] Probabilistic data association
localization TOA EKF Both LOS and

NLOS

[56] Robust weighted least squares
(RWLS) RSS Semidefinite relaxation NLOS

[53] NIMQ-based multidimensional
scaling RSS Quasi-Accurate detection (QUAD) NLOS

[54] Fusion-based NLOS model TDOA Modified probabilistic data
association algorithm NLOS

[57] Soft-minimum method for NLOS TOA Semidefinite programming NLOS

[53] Adaptive boosting (AdaBoost) residual TOA Mean excess delay NLOS

[58] Statustics of ranging techniques TDOA Iterative positioning NLOS

[59] Soft-minimum Method TOA Semidefinite programming
algorithm NLOS

[60] Robust least squares algorithm TDOA Convex relaxation NLOS

[61] Robust second-order cone relaxation TOA Second-order cone relaxation NLOS

[62] Best option filling algorithm TDOA second-order cone relaxation LOS

[63] Robust weighted least squares TOA Semidefinite relaxation NLOS

[64] Sparse algorithm TOA Residual error function Both LOS and
NLOS

This
work Robust ISAC-based localization Hybrid RSS and TOA Convex optimization Both LOS and

NLOS

Hence, the dynamic landscape of solutions addressing NLOS issues in wireless sensor
networks reflects a promising localization accuracy and robustness evolution. The journey
to tackle NLOS problems has witnessed the emergence of diverse approaches, from con-
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vex programming to innovative optimization methods and heuristic algorithms. These
methodologies aim to tackle the impact of NLOS errors, effectively improving accuracy
and reliability in positioning within challenging environments. The continuous exploration
of new techniques and adaptations signals a path towards more resilient wireless systems,
providing greater accuracy and stability, thus affirming a promising future in overcoming
the complexities of NLOS for enhanced wireless network positioning.

3. Network Model and Problem Formulation

Consider an ISAC system in Dn with n dimensions, where n is either 2 or 3. The net-
work comprises N Blind Nodes (BNs) and M Anchor Nodes (ANs) with both LOS and
NLOS links, as depicted in Figure 2. It is important to note that the unknown position of the
i-th BN is represented as pi ∈ Dn, with i belonging to the set P = 1, · · · , N. On the other
hand, the true positions of each AN are assumed to be known and are denoted as sj ∈ D,
with k in the set K = M + 1, · · · , M + N. The variables used in this paper are listed in
Table 2. Each BN emits a radio signal in this network, and both BNs and ANs in proximity
carry out range measurements based on the received signals. Due to limited communica-
tion capabilities, BNs establish pairwise communication links only with a selected number
of nodes falling within a specified range denoted as R.

Figure 2. Network model for hybrid RSS and TOA-based ISAC system with LOS and NLOS links.

We formally define the collection of all possible BN-AN and BN-BN links as [65]

Js = {(i, j), ||pi − sj|| ≤ R, i ∈ P , j ∈ K},

Jp = {(i, j), ||pi − pj|| ≤ R, i, j ∈ P , i < j},
. (1)

respectively.

Table 2. List of major variables used in this paper.

Variable Description

N Total number of blind nodes (BNs)

M Total number of anchor nodes (ANs)

n Number of dimensions n = 2 or 3

pi Unknown position of BN

qj Unknown position of AN
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Table 2. Cont.

Variable Description

K Total number of nodes (ANs + BNs)

Js Links between BN and AN

Jp Links between BN and BN

ti Transmit time

Pi Signal power

ϑij and φij Non-negative NLOS biases

ϵij Noise in RSS

εij Noise in TOA

ζ Parameters of interest

M Maximum-likelihood estimation

rij Explicit function of pi

c Speed of light

ηi Bias parameter

dij Balancing parameter

λij Transmission parameter

qt
ij and qr

ij Auxiliary variables

3.1. Hybrid Ranging Model

The RSS and TOA measurements performed by the k-th node on the signal transmitted
by the i-th BN node are related as

pij = Pi − 10φ log10(rij)− ϑij + εij, ∀(i, k) ∈ J , (2)

cτij = cti + rij + φij + ϵij, ∀(i, k) ∈ J ≜ Js ∪ Jp, (3)

where ti and Pi represent the transmit time and signal power, respectively, ϑij and φij are
the non-negative NLOS biases in the RSS and TOA measurements, respectively. The terms
ϵij ∼ N (0, ςr

ij
2) is the noise in RSS measurements and εij ∼ N (0, ςt

ij
2
) are measurement

noise in TOA measurements, respectively [66]. According to [47], the NLOS biases are
assumed to be uniformly and randomly distributed with maximum bias bmax such that
ϑij ∈ W(0, ϑn), φij ∈ W(0, φn), ∀(i, j) ∈ J , where ϑn = φn = bmax.

In a cooperative ISAC network, the integration of RSS and TOA measurements, based
on the noisy range information in (2), yields significantly enhanced localization accuracy
when compared to conventional non-cooperative methods.

3.2. Problem Formulation

Let us denote the parameters of interest as ζ = pi, ti, Pi, ϑij, φij, encompassing all the
unknown parameters. Assuming sources that are uncorrelated and independent of error
occurrence in RSS and TOA measurements, the maximum-likelihood estimation problem
can be formulated as follows:

M = min
ζ

∑
(i,j)∈J

{
(pij − Pi + 10α log10 rij + ϑij)

2

ς2
ij

}

+ ∑
(i,j)∈J

{
(cτij − cti − rij − φij)

2

ς2
ij

} . (4)
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The challenge presented in Equation (4) is notably formidable, primarily due to its
non-convex nature, which precludes the existence of a closed-form solution. Resolving
the optimization problem outlined in Equation (4) presents a significant hurdle, entailing
a multidimensional search conundrum. Furthermore, the problem in Equation (4) is
underdetermined, characterized by jN + 2J unknown variables while only having 2J
measurements. One viable approach to address this issue involves employing iterative
search techniques, although their convergence often hinges on initializing with robust
starting points. These methods may occasionally converge to local minima rather than
achieving optimal solutions. Consequently, a preference for sub-optimal approximations is
favored over computationally intensive heuristic search algorithms.

4. Proposed Localization Method

Considering a scenario where the maximum NLOS biases for the RSS measurements
are represented by ϑmax and TOA measurements by φmax, respectively. The expression in
(2) can be reformulated as:

p̃ij = Poi − 10α log10 rij − ϑ̃ij + ϵij, ∀(i, j) ∈ J , (5)

cτ̃ij = ctoi + rij + φ̃ij + εij, ∀(i, j) ∈ J , (6)

where p̃ij = pij +
ϑmax

2 , τ̃ij = τij −
φmax

2g , ϑ̃ij = ϑij − ϑmax

2 and φ̃ij = φij −
φmax

2 . Hence,

the parameters {ϑij, φij} becomes {ϑ̃ij, φ̃ij}. It should be noted that these extra NLOS
variables make the optimization problem challenging due to an under-determined system.
This is due to the large number of variables compared to the number of measurements.
To overcome this, we use the parameters estimation technique such that the NLOS variables
are substituted with the mean NLOS variable as [63]

p̃ij ≈ Poi − 10α log10 rij − ϑ + ϵij, ∀(i, j) ∈ J , (7)

cτ̃ij ≈ ctoi + rij + φ + εij, ∀(i, j) ∈ J , (8)

where ϑ and φ are the respective estimated parameters associated with the RSS and TOA
measurements and play a critical role in our approach. Specifically, we use a technique that
incorporates the upper bound on the NLOS bias and estimates these parameters.

Now, the RSS expression in (5) can be simplified using exponential scaling and first-
order Taylor’s series expansion as

λijrij ≈ θi

(
1 +

ϵij

κ

)
, ∀(i, j) ∈ J (9)

dij − φ̃ij − ηi ≈ rij − εij, ∀(i, j) ∈ J , (10)

where θi = 10
Pi+ϑ
10α and ηi = cti + ϑ are the bias parameters which jointly represent the un-

known transmission parameters and NLOS balancing parameter, and λij= 10
p̃ij
10γ ,

dij = cτ̃ij.
Squaring both the side of (9) yields

λ2
ijr

2
ij ≈ θ2

i

(
1 + 2

ϵij

κ
+

ϵ2
ij

κ2

)
, ∀(i, j) ∈ J , (11)

d2
ij − 2d̃ijηi + η2

i = r2
ij − 2rijεij + ε2

ij, ∀(i, j) ∈ J , (12)
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Ignoring second-order noise terms in (11) and rearranging gives

κ(λ2
iju

2
ijr

2
ij − θ2

i )

2θ2
i

≈ ϵij,
d̃2

ij − 2d̃ijηi + η2
i − r2

ij

2rij
≈ εij. (13)

Utilizing (13), we formulate a worst-case estimation error minimization using a robust
least-square criterion, i.e.,

min
{pi ,ηi ,θi}

∑
∀(i,j)

{(κ(λ2
iju

2
ijr

2
ij − θ2

i )

2θ2
i

)2

+

( d̃2
ij − 2d̃ijηi + η2

i − r2
ij

2rij

)2}
. (14)

Given that our primary goal is source localization, the problem defined in Equation (14)
takes on a joint estimation approach, simultaneously addressing the blind node localization
and bias parameters. This contrasts with the traditional approach of separately estimat-
ing transmission and NLOS parameters, considerably simplifying the original optimiza-
tion problem.

Even after simplification, the optimization problem in (14) is still intractable to solve
owing to its non-convexity. Nevertheless, it can be further simplified by introducing
auxiliary variables {qt

ij, qr
ij} such that

min
{pi ,ηi ,θi}
{qt

ij ,q
r
ij}

∑
∀(i,j)

{qt
ij + qr

ij}

s.t.
(κ(λ2

ijd
2
ij − θ2

i ))
2

4θ4
i

≤ qr
ij, ∀(i, j) ∈ J ,

(d2
ij − 2dijηi + η2

i − r2
ij)

2

4r2
ij

≤ qt
ij, ∀(i, j) ∈ J , (15)

Note that the optimization problem in (15) is still non-convex due to its non-convex
constraints. Our approach involves approximating localization through a transformation
from a non-convex and NP-hard estimation problem to a convex optimization framework.
This shift aims to address the need for computational efficiency and scalability. Non-convex
optimization presents convergence and global optimality challenges. By approximating
our problem as convex, we harness the computational advantages of established solvers,
ensuring quicker convergence, scalability for larger systems, and the capability to attain a
global optimum. This strategic transformation enhances the practical feasibility of solving
the estimation problem within reasonable computational bounds, rendering our technique
suitable for real-world applications. The major bottleneck to solve the problem in (15) is
due to rij, which is an explicit function of {pi}. Instead {pi}, we use y ≜ [pT

1 , · · · , pT
N and

express rij as

δij(Y, y) = tr(WiYWT
i )− 2sT

j Wiy + sT
j sj, (i, j) ∈ Js, (16)

δij(Y, y) = tr(WiYWT
i − 2WiYWT

j + WjYWT
j ), (i, j) ∈ Jp, (17)

where Y = yyT and Wi = I[m(i−1)+1:mi,:] ∈ DmN×m indicates the matrix with (m(i− 1)+ 1)th

to (mi)th rows of the identity matrix ImN with size mN.
We utilize more auxiliary variables such that θ2 = ϕi and θi = ϕ2

i = ζi and η2
i = Υi.

Now, the constraints form s2 ≤ bg in (15) can be respectively relaxed using second-order
cone form as
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∥∥∥∥∥
[

2κ(λ2
ijδij − ϕ2

i )

4ϱi − qr
ij

]∥∥∥∥∥ ≤ 4ϱi + qr
ij, ∀(i, j), (18)∥∥∥∥∥

[
2(d2

ij − 2dijηi + η2
i − δ2

ij)

4δij − qt
ij

]∥∥∥∥∥ ≤ 4δij + qt
ij, ∀(i, j). (19)

Furthermore, the stringent equality equations tied to the newly introduced auxiliary
variables can be relaxed by employing semi-definite or second-order cone optimization
techniques, such as∥∥∥∥[ 2ηi

Υi − 1

]∥∥∥∥ ≤ Υi + 1,
∥∥∥∥[ 2ϕi

ϱi − 1

]∥∥∥∥ϱ + 1,
[

1 yT

y Y

]
⪰ 0 (20)

Using (18)–(20), the problem in (15) is given as

min
Y,y{qr

ij ,q
t
ij}

{ηi ,Υi ,θi ,ϱi}

∑
∀(i,j)

∑
∀(i,j)

{qr
ij + qt

ij}

s.t. (18), (19) and (20)

(21)

Note that the problem in (21) is now convex in nature, which can be solved using
standard interior point methods. The flow chart of the proposed NLOS localization system
for ISAC is illustrated in Figure 3.

Figure 3. Flow chart of the proposed localization algorithm.

5. Numerical Results and Discussion

The proposed method underwent comprehensive validation through various simu-
lations by providing a well-rounded assessment of its robustness. Various performance
metrics were employed to evaluate the hybrid cooperative localization method’s perfor-
mance, including localization accuracy, precision, and computational efficiency. Key criteria
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included measurements of estimation accuracy under both LOS and NLOS conditions,
convergence speed, and computational complexity, ensuring a thorough evaluation of the
proposed method’s effectiveness in addressing the challenges in localization for smart
cities. We assess the performance of the proposed hybrid cooperative localization method
by comparing it with state-of-the-art techniques through the execution of 1000 Monte Carlo
simulations (denoted as Nc). We have used MATLAB as a simulation tool due to its suit-
ability in modeling physical layer problems in ISAC-based systems. The key criterion for
evaluating localization accuracy is the root mean square error (RMSE), which is computed
as follows:

RMSEY =

√√√√ 1
NNc

N

∑
i=1

Nc

∑
k=1

∥∥pi − p̂k
i

∥∥
2

(22)

where pi and p̂k
i are the true and estimated value of the location of i-th BN at k-th run,

respectively.

5.1. Simulation Setup

We consider a 2D ISAC network where N BNs and M ANs are randomly deployed
in R × R m2 where R = 100 m indicates the range of deployment. Any BN’s maxi-
mum communication range is kept as Rc = 80 m. For the sake of simplicity, we assume
that the measurement noise in RSS and TOA are distributed with equal variance, i.e.,
ςt

ij
2
= ςr

ij
2 = ς2, ∀(i, j) ∈ J . The parameters ς and bmax are denoted in meters. The RSS and

TOA parameters are set as Poi ∈ W(30, 40) dBm, ti ∈ W(20, 30) ns, ∀i ∈ P , c = 3 × 108 m/s
and α = 3.

5.2. Results

We here compare the performance of the proposed hybrid cooperative localization
scheme with state-of-the-art techniques, including multidimensional scaling (MDS) [67],
and weighted centroid localization (WCL) [68], and majorization-minimization (MM) algo-
rithm [47]. In [67], the authors proposed a hybrid MDS-based LOS localization technique
for sensor nodes in the Internet of Underwater Things (IoUT). The results presented in [67]
have been analyzed in conjunction with our work to highlight the impact of various
parameters. In [68], the author focused on improving localization accuracy in ambient
intelligent environments using the K-Nearest Neighbors (KNN) machine-learning tech-
nique. Similarly, in [47], the authors proposed a precise localization approach by using
hybrid TOA/RSS measurements. The proposed method eliminates the need for NLOS path
identification, showcasing computational efficiency and fast convergence through the MM
algorithm.In our response, we draw parallels between the challenges addressed in [47]
and [68], our work in ISAC systems. Besides, we also compare the proposed algorithm
performance with the lower bound on the localization performance, i.e., the Cramer Rao
Lower Bound (CRLB).

5.2.1. Impact of Maximum NLOS Bias

We performed simulations in MATLAB to assess the impact of the maximum NLOS
bias, denoted as bmax, on the algorithm’s performance compared to WCL, MDS, and MM,
as illustrated in Figure 4. This analysis was carried out while maintaining constant values
for other parameters and concurrently modifying bmax. In the scenario where all com-
munication links are NLOS, the parameter estimator method approximates an additional
offset of −bmax/2. It is worth noting that this offset remains consistently applicable to
all links, leading to a performance closely aligned with the parameter estimation pro-
cess. Figure 4 also highlights the superior performance of the hybrid method compared
to WCL, MDS, and MM-based localization techniques. The hybrid approach effectively
mitigates the challenges of path-loss shadowing and the inherent uncertainties in RSS
measurements. Specifically, our proposed cooperative scheme significantly outperforms
the non-cooperative WCL, MDS, and MM schemes, achieving the CRLB.
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Figure 4. Maximum NLOS bias vs. localization error.

5.2.2. Impact of Ranging Error

To gain further insight into the performance analysis of the proposed hybrid NLOS
mitigation scheme compared to the WCL, MDS, and MM algorithm, we analyze the impact
of measurement noise as given in Figure 5.
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Figure 5. Standard deviation vs. localization error.

The ability of the proposed technique to counter the disruptive influence of measure-
ment noise offers enhanced accuracy and reliability in adverse conditions. This outcome
underscores the effectiveness of the proposed scheme, positioning it as a promising solu-
tion to address the challenges associated with noise-induced inaccuracies in localization.
The results reveal that the proposed hybrid scheme significantly outperforms existing
non-cooperative localization schemes.

5.2.3. Impact of NLOS Links

Next, we explore the impact of the network’s proportion of LOS and NLOS links.
Figure 6 presents the performance analysis as we vary the percentage of NLOS links in the
network, denoted as Mh. We set the total number of LOS and NLOS links in the network as
R(1 − Mh) and RMh, respectively. It’s worth noting that the existing algorithms strongly
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rely on the availability of a maximum number of LOS links, and their performance tends to
decline with the increase in NLOS links.
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Figure 6. Impact of LOS links vs. localization error.

Conversely, the technique proposed is much more robust, benefiting from increased
NLOS links due to its better NLOS approximation capabilities. Incorporating the estimation
alongside the maximum NLOS bias estimation enhances performance in scenarios with
low and high numbers of NLOS links. Consequently, the proposed method consistently
outperforms the state-of-the-art algorithms in all cases, with the localization performance
near the CRLB.

5.2.4. Impact of Increasing BNs

Figure 7 illustrates the influence of the number of BNs in the network. Increasing
the number of nodes improves network localization accuracy due to more node pairs. It’s
important to note that the results in Figure 7 assume a full Rc, ensuring that each BN can
communicate with every AN and other BNs. As demonstrated in Figure 7, including cooper-
ative measurements results in a substantial performance improvement compared to relying
solely on non-cooperative measurements. Furthermore, this performance enhancement
becomes more pronounced with more BNs due to a more connected network.
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Figure 7. Impact of increasing BNs vs. localization error.
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5.2.5. Sensing Performance

In addition to localization, we also assessed sensing performance using the probability
of detection. We consider a target location vector represented by o, which is one element
from a set X with a cardinality of |X |. We use the probability of detection Pdet for evaluating
detections correctly, specifically, the true positives x+true ∈ X+

true in comparison to the actual
positive targets x+ ∈ X+ as per the ground truth. For an element x+det detected in the
set X+

det to be considered part of the true positives, it must satisfy the condition that
x+det ∈ X+

true ⊆ Xdet, ensuring that it is not located farther away than a distance r from the
nearest undetected ground truth target, i.e.,

||x+det − x+||2 ≤ r, (23)

with distance given by the ℓ2-norm || · ||2. Thus, we get

Pdet =
|X+

true|
X+

. (24)

As depicted in Figure 8, the detection probabilities tend to be higher when the noise
power is lower. Precisely, the 70% detection rate in the case of a single AN aligns with
findings from previous works in [69]. However, what’s noteworthy is that the utilization of
a fusion process involving multiple ANs results in a notable enhancement in the probability
of detection across the entire range of noise power levels. This improvement attributed
to fusion is most pronounced when transitioning from a single AN to two, providing
a significant 27% increase. As we move into the low noise power saturation regime,
the improvement diminishes but still yields a 2% gain when transitioning from three to
four nodes.
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Figure 8. Probability detection concerning noise power for different sensing access points.

5.3. Computational Complexity

Ensuring precise localization is essential, but understanding the computational de-
mands of our hybrid cooperative method is equally vital for practical application, especially
in resource-limited smart city scenarios. We evaluate its implications by analyzing its com-
putational complexity and scalability across diverse urban settings. The complexity of our
convex problem is expressed as:

O
(

K
(

n
Mc

∑
i=1

mc3

i + n2
Mc

∑
i=1

mc2

i + n3
))

(25)
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where K denotes total iterations, n represents equality constraints, Mc indicates the convex
cone, and mc

i refers to the i-th cone. In a worst-case scenario of a fully connected network,

the total connected paths are given by K = MN + N(N−1)
2 . The worst-case computational

complexity, as per (21), is expressed as O(N0.5(4N2(M + N
2 )

2N2)). This comprehensive
analysis confirms the practical feasibility of our hybrid cooperative localization method,
highlighting its potential as a viable solution for real-world deployment in smart city
environments. Future exploration will delve into how these computational considerations
impact our framework’s overall performance and applicability in diverse urban landscapes.

5.4. Summary of the Results Obtained

We evaluated the performance of our proposed hybrid approach using various per-
formance metrics, including ranging error, number of LOS/NLOS links, computational
complexity, and number of nodes in the network. Moreover, we compared our hybrid
cooperative localization scheme to state-of-the-art algorithms, showing its superior per-
formance. Besides, we measured the sensing performance as a function of noise power
and the localization accuracy probability of detection. Regarding localization, our hybrid
approach consistently outperformed conventional methods across diverse scenarios, dis-
playing robustness and nearing achieving the CRLB. Meanwhile, our method improved
sensing accuracy via a fusion process involving multiple access points. The results suggest
that our hybrid cooperative localization excels in accuracy, reliability, and computational
efficiency compared to methods relying solely on RSS or TOA measurements and can pro-
vide an adaptable, advanced solution that surpasses existing methods across challenging
conditions. Despite our study proposing a hybrid scheme demonstrating better localization
and sensing performance accuracy, it is imperative to acknowledge certain limitations that
warrant in-depth exploration. Specifically, attention must be directed toward potential
scalability challenges inherent in our hybrid cooperative localization method, particularly
when applied to larger or more complex urban environments. Future research may benefit
from exploring additional aspects, such as energy efficiency, low complexity, and practical
implementation.

6. Conclusions and Future Works

This paper has introduced a novel hybrid localization framework tailored to the
specific needs of smart cities. By harnessing the combined potential of RSS and TOA
measurements, we’ve developed a framework designed to address the challenges posed
by NLOS conditions, even when NLOS error characteristics and transmission parameters
are unknown. Our approach focused on minimizing worst-case estimation errors while
employing established upper bounds on NLOS biases. We successfully transformed this
initially non-convex problem into an equivalent convex form, paving the way for efficient
and accurate localization. Notably, hybrid measurements proved to be a powerful solution
for mitigating the path-loss shadowing issues often encountered in RSS-based measure-
ments. Additionally, cooperative measurements demonstrated remarkable performance
enhancements, particularly in scenarios characterized by high node density, compared
to non-cooperative measurements. The numerical simulations carried out in this study
provided concrete evidence of the superior performance of our proposed hybrid coop-
erative localization method when compared to existing localization techniques, such as
WCL and MDS. This framework stands as a promising contribution to the development of
smart cities, where precision and reliability in localization are critical for optimizing urban
infrastructure, services, and the overall quality of life for residents.

Although the proposed hybrid localization scheme for smart cities provides accu-
rate localization and sensing performance, some limitations need further investigation.
For instance, it’s crucial to note potential scalability challenges in our proposed hybrid
cooperative localization method, especially in larger or more intricate urban settings. Its
adaptability might differ across diverse urban landscapes, prompting further investigation
into its performance in various contexts. While the proposed approach is robust, exploring
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alternative hybrid methods such as AOA and TOA could enhance localization accuracy in
future studies. Moreover, extending the framework beyond ISAC systems to other smart
city applications warrants future exploration. Besides, the proposed method’s needs may
have practical implications; integrating this framework into existing ISAC systems de-
mands compatibility and seamless integration. Addressing these concerns would facilitate
the method’s practical implementation in real-world smart city environments, ensuring its
effectiveness and adaptability across different scales and complexities.
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