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Abstract: This research presents a machine learning modeling process for detecting mental fatigue
using three physiological signals: electrodermal activity, electrocardiogram, and respiration. It
follows the conventional machine learning modeling pipeline, while emphasizing the significant
contribution of the feature selection process, resulting in, not only a high-performance model, but
also a relevant one. The employed feature selection process considers both statistical and contextual
aspects of feature relevance. Statistical relevance was assessed through variance and correlation
analyses between independent features and the dependent variable (fatigue state). A contextual
analysis was based on insights derived from the experimental design and feature characteristics.
Additionally, feature sequencing and set conversion techniques were employed to incorporate the
temporal aspects of physiological signals into the training of machine learning models based on
random forest, decision tree, support vector machine, k-nearest neighbors, and gradient boosting. An
evaluation was conducted using a dataset acquired from a wearable electronic system (in third-party
research) with physiological data from three subjects undergoing a series of tests and fatigue stages.
A total of 18 tests were performed by the 3 subjects in 3 mental fatigue states. Fatigue assessment was
based on subjective measures and reaction time tests, and fatigue induction was performed through
mental arithmetic operations. The results showed the highest performance when using random forest,
achieving an average accuracy and F1-score of 96% in classifying three levels of mental fatigue.

Keywords: fatigue detection; electrodermal activity; feature selection

1. Introduction

Fatigue is a state characterized by both physical and mental exhaustion, resulting
from prolonged activity, inadequate rest, or excessive cognitive demands. This prevalent
phenomenon spans various aspects of life, including professional, academic, and daily
routines. Mental fatigue can be defined as reduced cognitive performance due to cognitive
overload, resulting from task duration or workload, independent of sleepiness [1]. The
consequences of fatigue are significant, including impaired decision-making, an increased
risk of accidents, and a general decline in well-being [2–4]. Understanding the mechanisms
of mental fatigue and developing effective strategies to manage and mitigate its effects are
crucial for promoting health, safety, and peak performance in diverse professional settings.

Physiological signals offer a valuable insight into the body’s internal state. Monitoring
and interpreting these signals provide real-time information about an individual’s physical
and mental condition, enabling early fatigue detection [5]. This capability is particularly
relevant in mission-critical environments such as transportation [6,7], healthcare [8], and in-
dustrial settings [9]. Consequently, the study of physiological signals for fatigue assessment
is a rapidly advancing field, with far-reaching implications for human performance and
well-being.
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Despite the numerous approaches proposed for fatigue detection and monitoring,
there is no universally accepted gold standard. Current non-invasive methods are primarily
based on the following measuring principles: subjective measures, performance-related
methods, and physiological signal-based methods.

Subjective Measures: Subjective measures involve self-reported fatigue assessment
through questionnaires and scales [10,11], but they are not suitable for online monitoring.
Nevertheless, they offer valuable insights into the mental and emotional processes influ-
encing task performance, serving as valuable benchmarks when comparing results with
fatigue models.

Performance-Related Methods: Performance-related methods rely on the fact that an
individual’s cognitive and motor performance in specific tasks reflects their fatigue level.
These methods consist of conducting tests based on neuro-behavioral tasks to evaluate
performance, with a focus on cognitive abilities (e.g., vigilance, reaction time, sustained
attention) [12]. Although performance-related methods are easily standardized, they are
incapable of real-time fatigue detection for preventing the occurrence of potential incidents.

Physiological Signal-Based Methods: Physiological signal-based methods detect
fatigue onset by monitoring subjects’ physiological responses, including brain activity, mea-
sured via electroencephalogram (EEG) [13]; heart activity, measured via electrocardiogram
(ECG) [14]; and more recently, electrodermal activity (EDA) [15]. Utilizing physiological
signals as fatigue indicators allows objective real-time monitoring at the individual level.

These methods are often complemented by machine learning (ML) algorithms to
classify outputs as indicative of different fatigue states [16]. These algorithms “learn”
meaningful information from physiological signals and/or task performance results to
predict corresponding fatigue states. A primary limitation of these algorithms comes from
the quality and quantity of the data required for training. In terms of data quality, machine
learning models struggle to discern relevant information from noise. Instead, they try to
identify the optimal statistical relationships between input data and target outputs. In
terms of data quantity, depending on the specific ML algorithm, these models can be more
or less data greedy, limiting their applicability in real-world scenarios where obtaining
large volumes of physiological data may be challenging.

In this context, the current paper investigates methods of utilising physiological signals
and design techniques to efficiently model cognitive fatigue detection using ML algorithms.
We provide insights into the design of a feature engineering process that reduces data
requirements, while creating a relevant and high-performing ML model. Specifically, we
emphasize the importance of the feature selection process and the creation of a time series
dataset, illustrating how they contribute to achieving high accuracy in ML models.

This research study addresses three key issues:

• How can context awareness be integrated into a traditional ML modeling process
when implementing a cognitive fatigue detection system?

• How can we account for the time-related feature variability associated with mental
fatigue in the ML modeling process?

• How can we attain high performance while utilizing ML algorithms and working
with a small dataset?

The rest of this paper is organized as follows: Section 2 provides an overview of the
existing literature on mental fatigue detection using physiological signals. In Section 3,
the data and methods employed in our current study are presented. Section 4 describes
the machine learning model used in our fatigue detection system. Section 5 presents the
numerical evaluations used to validate the model’s performance. Finally, we conclude the
paper in Section 6.

2. Related Work

Numerous studies have demonstrated the relevance of EEG features in mental fatigue
detection [17–20]. However, EEGs are often time-consuming and susceptible to environ-
mental electromagnetic interference, making them impractical for real-life environments.
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Consequently, this led to the exploration of alternative electric extracerebral measurements
like ECG and EDA [21].

ECG signals are widely used in estimating mental fatigue, with heart rate variability
(HRV) being a key feature for detection [22]. HRV reflects autonomic neural system (ANS)
regulation, which alters during stress, fatigue, and drowsiness episodes. HRV is defined as
the variation in time intervals between consecutive heartbeats and can be analyzed in both
time and frequency domains [23–25]. In the time domain, HRV features like the number
of beats per minute, mean time interval between heart beats, and standard deviation
in beat intervals are widely used. In the frequency domain, the ratio of low-frequency
(LF) component (0.04–0.15 Hz) to high-frequency (HF) component (0.15–0.4 Hz) of HRV
power spectrum describes the sympathovagal balance, serving as an important marker of
cognitive fatigue. Various machine-learning-based fatigue detection approaches can be
found in the literature that rely on these ECG features. For instance, ref. [25] implemented
a neural-network-based model to detect fatigue using HRV features. Ref. [26] implemented
a convolutional neural network (CNN), recurrent neural network, and long short-term
memory (RNN-LSTM)-based models for fatigue detection using EEG and ECG signals
along with physiognomic data.

EDA refers to changes in sweat gland activity that are reflective of the intensity of
an individual’s emotional state, due to its close link to the sympathetic nervous system
(SNS) [27–29]. EDA manifests as continuous changes in skin electrical characteristics.
Among the various aspects of EDA, skin conductance (SC) has been one of the most exten-
sively researched. Commonly, the SC signal is deconstructed into two distinct components,
namely the tonic and phasic components. The tonic component or skin conductance level
(SCL) represents slower-acting aspects of the signal, including background characteristics.
SCL variations indicate changes in autonomic arousal, though they can also be influenced
by factors unrelated to the sympathetic nervous system, such as temperature fluctuations
and physical exercise-induced perspiration. The phasic component or skin conductance
response (SCR) overlays SCL and captures rapidly changing aspects of SC. SCR provides
moment-to-moment arousal measurement, reflecting responses specific to stimuli or gen-
eral orienting processes. EDA holds promise for quantifying human cognitive states and
has potential real-world applications.

Recently, Zeng et al. [30] developed a wearable non-invasive epidermal system for
monitoring ECG, EDA, and respiration signals simultaneously. The main advantage of their
system is that the device fabrication method is simple and provides a powerful strategy for
further development of epidermal multi-functional sensors. In their research, the system’s
potential was assessed by conducting a study to detect mental fatigue. This was achieved
by utilizing the physiological signal data collected by their system and training machine
learning algorithms, like support vector machine (SVM), K-nearest neighbors (KNN),
and decision tree (DT), with these data. They used the following physiological signal
features: mean heart rate, HRV standard deviation, number of SCR peaks, sum of SCR
peak amplitude, sum of SCR peak duration, respiration rate. They achieved a maximum
accuracy of 87% using the DT algorithm.

Our research study stands out in the literature for the following reasons:

• The correct choice of input data features in ML predictive models is critical and
should be controlled efficiently. Therefore, we integrate a feature selection process that
combines both numerical and contextual analysis. It is noteworthy that most literature
studies do not take into account contextual information when selecting features to
train their ML models. They rely on the correlation between the features and the
model’s target output or simply integrate the maximum number of features to achieve
a high accuracy. However, we highlight that a high accuracy does not necessarily
guarantee a relevant model output. Indeed, some features may be influenced by the
context of the study, and their use in an ML model may be questionable;

• The ML models used to capture time-related variations associated with mental fatigue
often rely on complex models, such as RNN and LSTM. While these models excel
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in learning feature characteristics and their temporal variability, integrating them
into real-time applications using wearable devices with limited processing capacity
is challenging. To address this constraint, we employ a feature sequencing and set
compression technique to prepare time-series “like” data for presentation to ML
algorithms that are not specialized in processing sequential data. We demonstrate
that this technique enhances the model accuracy. Notably, our model was used to
detect mental fatigue using physiological signals from [30] and achieved a maximum
accuracy of 98%.

3. Materials and Methods

The conventional ML pipeline was followed in our methodology, as depicted in
Figure 1, but with a particular emphasis given to feature extraction and selection tech-
niques. First, the collected data were cleaned, to eliminate unwanted noise and artifacts.
Then, the clean data were processed to extract and select features. This step was crucial
in our study: as previously mentioned, selecting appropriate features is important for
constructing accurate and, most importantly, relevant ML classification models, which will
be developed in the subsequent step. Finally, we evaluated the ML models and compared
their performance.

Data cleaningData acquisition Feature
Extraction /
Selection

ML Models Result Analysis

Figure 1. Machine learning modeling process.

3.1. Data Description

The data utilized in this study were obtained by request from the original owners,
Zeng et al. in [30]. As a result, the data description provided in this paragraph is based on
the limited information available in [30], supplemented by insights deduced from the raw
data and the details provided by Zeng et al. via email. These data represent a collection of
physiological signals, including ECG, EDA, and respiration signals. The data acquisition
involved three healthy subjects, each engaged in a sequence of mental tasks (cf. Figure 2).
These tasks encompassed a structured progression, commencing with a rest stage, followed
by successive stages of fatigue assessment (test stage) and fatigue induction (fatigue stage).
For the purpose of this study, we categorized the data from the test stages into three distinct
levels: no fatigue, fatigue, and severe fatigue, as previously performed in [30]. The mental
task initiation involved an initial rest period, to ensure that the subjects began in a non-
fatigue state. Subsequently, the subjects underwent the first test stage, during which their
mental fatigue level was assessed based on an objective measure and a subjective measure,
alongside concurrent recording of physiological signals, spanning a duration of 10 min.
The objective measure was based on a reaction-time test, where the subjects had to react to
a stimulus as quickly as possible. The subjective measure was based on a questionnaire,
where the subjects described their feeling of fatigue on a scale of 0 to 9. The subjects
underwent the first fatigue stage, where they engaged in intense mental work until they felt
tired and sleepy. Then, they were subject to a second test stage in the same manner as the
first test stage. Similarly, in the second fatigue stage, they performed an intense mental task
until they felt exhausted. Finally, they performed the third test stage. The entire process was
repeated, resulting in 60 min of data for each subject. To label the data, the fatigue levels
were determined through a combined analysis of subjective questionnaires and objective
measures from the test stages. The subjective scores were ≤3 for no fatigue, ≥3 and <6
for fatigue, and ≥6 for severe fatigue. The objective measures, i.e., reaction-time tests, had
a similar upward trend and the average reaction times increased from 461 ms in the no
fatigue stage to 501 ms in the fatigue stage and then to 736 ms in the severe fatigue stage.
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• Reaction Time Test

• Physiological Signal Recording

• Fatigue Self Assessment Questionnaire

Test Stage (10 minutes)

• Mental arithmetic operations

No Fatigue Fatigue Severe Fatigue

Rest
Test Stage 1

(10 min)

Fatigue Stage

(40–60 min)

Test Stage 2

(10 min)

Fatigue Stage

(50–80 min)

Test Stage 3

(10 min)

Fatigue Stage (Variable time)

x 2

Figure 2. Data acquisition process. The same process was applied to the three subjects, resulting in
60 min of physiological data acquisition per subject.

Table 1 and Figure 3 summarize the characteristics of the physiological signals obtained
during the test stages. In Figure 3, the range of amplitudes in each signal is represented by
the respective box plots, with the bottom and top edges of the box indicating the 25th and
75th percentiles of the amplitudes, the whiskers showing the extreme amplitude points,
the mean value highlighted by the dashed red line, and the median value highlighted by
the purple line. Note that the data from the first test stage 1 for one of the subjects were
corrupted. Therefore, there are 5 records of 10 min for one subject and 6 records of 10 min
for the other two, accounting for a total of 170 min of physiological signals.

Figure 3. Characteristics of physiological data. Y-axis: amplitude range. Median: purple line. Mean:
red dashed line.
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Table 1. Physiological data summary.

Signal Sampling Interval
(ms)

Sampling Frequency
(Hz)

Full Length of the
Analysed Signal

ECG 5 200 120,000
EDA 100 10 6000

Respiration 120 8.33 5000

3.2. Data Cleaning

For the data cleaning process, we employed NeuroKit2 [31], an open-source Python
package designed for processing neuro-physiological signals. The cleaning process for each
signal is described in the following paragraphs.

3.2.1. Electrodermal Activity (EDA)

In this study, the EDA signal was cleaned through noise removal and signal smoothing.
To achieve this, a low-pass filter with a 3 Hz cut-off frequency and a 4th order Butterworth
filter were applied, as shown in the top row of Figure 4. Additionally, low-frequency
artifacts, likely caused by deformation of the sensor-skin interface, in the EDA data were
manually eliminated. Subsequently, the EDA data were decomposed into SCL and SCR
data series using the Biopac Acqknowledge algorithm [32]. In this process, the raw EDA
data underwent median value smoothing, and the filtered waveform was then subtracted
from the original data. Since the median value smoothing discards areas of rapid change,
subtracting the smoothed waveform leaves behind only the sections of rapidly changing
SCR data. On the other hand, SCL data were obtained by passing the raw EDA data
through a low-pass filter with a cut-off frequency of 0.05 Hz.

3.2.2. Electrocardiogram (ECG)

The ECG signal was filtered and processed, to detect individual heart beats (see middle
row of Figure 4). The first step was to remove baseline wandering. For that purpose, a 4th
order Butterworth high-pass filter with a cut-off frequency of 0.5 Hz was used. More
precisely, the filter transfer function of order 2 was used, but the filtering was performed
in forward and reverse directions, creating a zero-phase filtered signal and a resulting
order of four [33]. It is worth mentioning that such filtering is typically preferred when
it is feasible, to have access to the entire input signal in advance. However, in real-time
processing scenarios, this may introduce some delay. Despite this inconvenience, we opted
for bi-directional filtering, because it offered superior noise reduction and a more effective
frequency response for the given data, which was essential for artifact elimination. In a
general context, this approach can be substituted with unidirectional (causal) filtering,
as discussed in [34]. The high-frequency power line noise was filtered by smoothing the
signal with a moving average kernel with a width of one period of 50 Hz. Then, the Pan–
Tompkins method [35] was used to detect the QRS complex and, eventually, R-peaks from
the filtered ECG signal. Finally, the time intervals between each two consecutive R-peaks
were sequenced to determine the heart rate variability (HRV). A fast Fourier transform
(FFT) was used to obtain the power spectral density (PSD) of the HRV.

3.2.3. Respiration

The respiration signal was filtered to remove baseline drift and high-frequency noise.
The slow baseline drifts and fluctuations in the signal were removed by applying a high-
pass filter at 0.05 Hz. The high-frequency noise was filtered by applying a low-pass filter
at 3 Hz. Then, the signal was processed using a zero-crossing algorithm [36] to detect the
breathing cycle (see bottom row of Figure 4).
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Filter
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QRS-complex

Linear
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Filter

Remove
Baseline
Wandering

High
Frequency
Noise
Filtering

Figure 4. Data processing for EDA (top row), ECG (middle row), and respiration (bottom row).

3.3. Feature Engineering
3.3.1. Windowing

An overview of the feature extraction process is shown in Figure 5. One basic design
question is the extraction of static features from temporal signals. Indeed, the characteristics
of physiological signals can be of variable length; for instance, the QRS-complex in an ECG
signal is used to extract heart rate features, and the duration of each QRS-complex and
intervals between consecutive QRS-complexes are of variable nature; similarly, the SCR
component of the EDA signal varies with stimuli. Thus, we used a sliding window of fixed
length on each physiological signal to extract features. This allowed analyzing the signals
over smaller segments, making it easier to capture temporal patterns and variations in the
data while extracting features. The key issue is to choose the right length and step size
for the sliding window. If a short-time portion of a signal is processed, it may not contain
sufficient information to identify features, whereas a longer-time portion of the signal is
not suitable for real-time applications, due to a longer processing time. A correct step size
for “sliding” the window is essential to maximize the capture of useful information, while
eliminating redundancy and edge effects.

Based on the experimental observations (discussed later in Section 5), we found a
window length of 60 s and a step size of 3 s to be the best choice for the given physiological
signals. Therefore, this is used to illustrate the feature extraction and feature selection
processes discussed in the following paragraphs.
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Window

at tn-1

EDA / ECG / Resp Signal
Slide

Extract Features at tn

Window

at tn
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Heart Rate Variability
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Figure 5. Sliding window applied to the EDA, ECG, and respiration signal to extract features.

3.3.2. Feature Extraction

Table 2 summarises the series of features extracted from the EDA, ECG, and respiration
signal.

Table 2. List of features extracted from the EDA, ECG, and respiration signals, using a sliding window
of length 60 s and step size of 3 s.

Signal Feature Description Var. Corr.
f.stage Sel

EDA SCR.peak.rate Number of SCR peaks. 0.042 0.31
SCR.amp.sum Sum of SCR peak amplitudes. 0.019 0.15
SCR.dur.sum Sum of SCR peak durations. 0.033 0.26
SCR.mean.amp Mean amplitude of SCR peaks. 0.037 0.26 X
SCR.mean.dur Mean duration of SCR peaks. 0.0085 0.24 X
mean.SCL Mean value of tonic activity. 0.029 0.14

SCL.SD Standard deviation of tonic
activity. 0.027 0.1

ECG mHR Mean heart rate. 0.041 0.17 X
HRV.MeanNN Mean of the RR intervals. 0.044 0.18 X

HRV.SDNN Standard deviation of the RR
intervals. 0.038 0.1 X

HRV.VLF Very low frequency (0.0033–0.04 Hz)
spectral power. 0 0

HRV.LF Low frequency (0.04–0.15 Hz)
spectral power. 0.060 0.09

HRV.HF High frequency (0.15–0.4 Hz)
spectral power. 0.046 0.12

HRV.VHF Very high-frequency (0.4–0.5 Hz)
spectral power. 0.025 0.11

HRV.LFHF Ratio of low-frequency power to
high-frequency power. 0.018 0.12

Respiration RSP.rate Mean breathing rate. 0.038 0.31 X
Var.: variance. Corr. f.stage: correlation of feature with respect to the fatigue stages.

As for EDA, the SCR component was used to identify SCR peaks and compute the
sum of peak amplitudes, sum of peak durations, number of peaks, mean peak ampli-



J. Sens. Actuator Netw. 2023, 12, 77 9 of 19

tude, and mean peak duration. Note that, the SCR with an amplitude over a specified
threshold (the commonly used threshold is 0.03 µS) was regarded as a significant SCR.
The SCL component was used to compute the mean value and standard deviation of the
SCL amplitude.

For ECG, the most commonly used features in the time domain and frequency do-
main were extracted. In the time domain, the mean heart rate in beats per minute and
the HRV were the most prominent. The main method used to quantify HRV was to
measure the amount of variance in inter-beat intervals : the time intervals between suc-
cessive RR peaks. HRV-based features included the mean RR peak interval, and standard
deviation of the RR interval. The frequency-domain measures, categorized as very low-
frequency, low-frequency, high-frequency, very high-frequency, and ratio of low frequency
to high-frequency, reflect the distribution of the spectral power of the HRV across different
frequencies bands, as the different regulatory systems modulate the heart rate at distinct
frequencies. The respiration rate was extracted from the respiration signal, not only as a
feature, but also to eliminate potential artifacts from ECG data.

3.3.3. Features Selection

To train an optimal and relevant ML model, we needed to make sure that we used
only the essential features. The feature selection was performed in two steps : numerical
analysis and contextual analysis.

In the numerical analysis, first, a variance analysis was performed on all features
(cf. Table 2). To prevent bias, all the features were normalized between their maximum and
minimum values. Then the variance threshold approach was used to removes all features
whose variance was inferior to a threshold. By default, this removes all zero-variance
features, i.e., features with the same value in all samples. We arbitrarily considered a
threshold of 0.03 to remove features with very little variance. We assumed that features
with a higher variance may have contained more useful information. Note that this method
did not take the relationship between the feature and target variable (in our study, fatigue
level) into account. Thus, it was combined with a correlation analysis using the Pearson
correlation coefficient. Therefore, only the features with a low correlation coefficient and
low variance were eliminated.

Note that the above method of feature selection is purely mathematical, it does not
take into account the contextual information of the study. This is a common problem found
in the literature and that impacts the modeling process, notably in the context of fatigue
detection systems. Such an issue is also pointed out in [37]. Indeed, the physiological
signals can be easily influenced by the experiment design used to collect data and assess
fatigue, particularly the EDA signal. As mentioned earlier, the phasic component or
SCR provide moment-to-moment arousal measurement, reflecting responses specific to
stimuli. This is because SCR is composed of two sub-components: event-related SCR,
which occurs following specific stimuli, and non-specific SCR, which often occurs due to
internal cognitive events. We recall that the data used in this study were collected during a
response-time test, where the subject had to respond to each stimulus as quickly as possible.
Moreover, the stimuli were presented at random time intervals. In this context, the features
like SCR.peak.rate, SCR.amplitude.sum, and SCR.duration.sum entirely depend on the
number of stimuli present/absent in a given time window, but not on the fatigue state,
due to their dependence on the number of peaks in this time window. Consequently, we
rejected these features, despite their high variance and correlation. On the contrary, we
proposed using SCR.mean.amplitude and SCR.mean.duration, which less affected by the
number of peaks and more by the characteristics of these peaks.

For ECG, we selected only the time domain features, since the frequency domain
features required a long window length (≥120 s) to represent any significant information.

Before moving to the modeling phase, the quality of these features was assessed
through a statistical null hypothesis validation. This allowed us to test for a statistically
significant difference in feature values among the three fatigue states. For this purpose,
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we employed a Kruskal–Wallis test. This is a commonly used statistical test to com-
pare two or more groups of non-normal continuous data, which was the case for our
dataset.The Kruskal–Wallis test results in a low p-value when the compared group of
data are significantly different from one another. In our test, the feature values from all
the subjects were grouped to create three groups based on their respective fatigue states.
The results revealed a statistically significant difference with p < 0.05 for all the features
between the three fatigue states, as summarized in Table 3.

Table 3. Kruskal–Wallis null hypothesis test used on the selected features in the three fatigue states.

Feature Score p

SCR.mean.amp 67.30 0.024 × 10−13

SCR.mean.dur 73.16 0.012 × 10−14

mHR 14.43 0.073 × 10−2

HRV.MeanNN 14.86 0.059 × 10−2

HRV.SDNN 83.39 0.077 × 10−17

RSP.rate 120.99 0.053 × 10−25

4. Modeling

Figure 6 illustrates our ML modeling process. The sliding window employed in the
previous step to obtain the features dataset allows capturing the variation and temporal
patterns in the features. These features can be used to train ML algorithms for classification.
Our objective was to predict one of the three fatigue levels in real-time applications. For that
purpose, we opted for the random forest (RF) algorithm [38], which combines predictions
from multiple decision trees and offers several advantages. For instance, it mitigates the risk
of overfitting and enhances the model’s generalization ability, and it excels at capturing non-
linear relationships, which is important for modeling the complex, potentially non-linear
connections between physiological signals and the cognitive fatigue level. Additionally,
it can achieve relatively better results with less input data as compared to advanced
algorithms based on neural networks, which are data-greedy.

However, the RF algorithm is not inherently designed to handle the temporal depen-
dencies and sequential patterns present in time-series data. Thus, a feature decomposition
and set conversion technique was introduced. This involved converting the sequential
features extracted from the sliding window into a single set of values, which were then
used for training the classification model. This process does not impact the class of the
signal, as it is performed on the data from each fatigue state separately. This meant the
original class annotations (no fatigue, fatigue, and severe fatigue) were preserved.

For evaluation purposes, we compared the RF algorithm with multiple ML algo-
rithms [38] including support vector machines (SVM), k-nearest neighbors (KNN), decision
trees (DT), and gradient boosting (GB). The results revealed that the RF algorithm achieved
the highest accuracy in classifying fatigue states. In each comparison scenario, during
the model training phase, hyperparameter tuning using the grid search algorithm and
cross-validation using K-folds were applied, to achieve the best accuracy, while mitigating
overfitting issues. Finally, the trained classifier performance was evaluated based on two
widely used performance metrics, namely accuracy and F1 score. A visual representation
of the model performance is given by ROC curves.

The accuracy and F1 score are given by the following equations:

acc =
TP + TN

TP + TN + FP + FN

F1 =
2 × TP

2 × TP + FP + FN
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where TP represents true-positive predictions (i.e., correctly predicted as correct), TN
corresponds to true-negative predictions (i.e., correctly predicted as incorrect), FP represents
false-positive predictions, and FN represents false-negative predictions.

Note that these formulas give an accuracy and F1 score for each output class separately.
Since our study involved classification into three output classes (no fatigue, fatigue, and se-
vere fatigue), we present the results in terms of the average accuracy and macro-averaged
F1 score, to evaluate the overall performance of the models. These were obtained using the
following equations:

averaged accuracy =
sum of accuracy per class

3

macro averaged F1 score =
sum of F1 scores per class

3

Time series
Feature Set
Conversion

Feature Dataset Classification
Model Training

Predicted
Fatigue Level

Cross Validation
and Grid Search

Optimisation

F1

F2

F3

Window
at tn-1

EDA / ECG / Resp
Slide

Features at tn
FECG,tn, FEDA,tn, FRESP,tn

Features at tn-1

FECG,tn-1, FEDA,tn-1, FRESP,tn-1

Features at tn-2

FECG,tn-2, FEDA,tn-2, FRESP,tn-2

Window
at tn

Window
at tn-2

Features set at tn with 3 windows
FECG,tn, FEDA,tn, FRESP,tn , FECG,tn-1, FEDA,tn-1, FRESP,tn-1, FECG,tn-2, FEDA,tn-2, FRESP,tn-2

Figure 6. Machine learning model.

5. Results and Discussion

In this section, we evaluate our modeling process and the resulting RF-based ML
classification model under different constraints. In each scenario, a feature dataset from
all subjects and all fatigue stages was combined. It contained 1086 values per feature and
per fatigue stage. This combined dataset was randomly split into training with validation
(80%) and testing (20%) subsets.
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5.1. Windowing Analysis

Let us start by analyzing the impact of window length and step size on the model’s
classification accuracy. For that purpose, we varied the window length from 30 s to 140 s and
the step size from 3 s to 60 s, as shown in Figure 7. Each curve in Figure 7 corresponds to a
fixed window length. The x-axis represents an increasing step size, while the corresponding
accuracy for each step size is shown on the y-axis. In each case, a similar pattern was
observed: the classification accuracy increased with longer window lengths and decreased
with larger step sizes. This trend can be explained as follows: a shorter window step results
in more overlap between adjacent windows, mitigating information loss (potentially due
to edge effects) and capturing more temporal patterns, whereas a longer window captures
more information from each input physiological signal and the extracted features tend to
be more stable and less susceptible to noise or short-term fluctuations. However, longer
windows introduce a delay in the system’s response. From a real-time application point
of view, where a smaller window size can be preferred, we consider that a window with
a length of 60 s and a step size of 3 s provides a good trade-off between accuracy and
response time; thus, this was used in the remainder of the model performance evaluation.

Figure 7. Accuracy of the RF model with different window lengths and step sizes.

5.2. Feature Selection Analysis

The feature selection approach used in our study (cf. Section 3.3.3) incorporated both
numerical and contextual analysis. The primary objective of this approach is to select
features that are relevant to the given experiment design. We assessed the selected features
by analyzing the model performance in terms of accuracy in classifying the fatigue states.
Furthermore, we show that a method that does not follow a careful feature selection process
can yield misleading results. For that purpose, we compared RF-based models trained on
three sets of features from Table 2:

• Refined features (our selected features) : SCR.mean.amp, SCR.mean.dur, mHR, HRV.-
MeanNN, HRV.SDNN, and RSP.rate;

• Zeng et al.’s features (i.e., the features used in [30]): SCR.peak.rate, SCR.amp.sum,
SCR.dur.sum, mHR, HRV.SDNN, and RSP.rate;

• All features from Table 2: the commonly used features in the literature, including our
selected features and those of Zeng et al.

The results are presented in Figure 8, where our selected features led to a classification
accuracy of 94%.

The features of Zeng et al. gave an accuracy of 88%. However, as mentioned in
Section 3.3.3, the value of the EDA features SCR.peak.rate, SCR.amp.sum and SCR.dur.sum
is highly dependent on the number of peaks, which depend on the number of stimuli
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present in a given time window during the feature extraction, rather than the fatigue state.
Recall that the data used in this study were obtained by Zeng et al. in [30] during a reaction
time test, in which stimuli were presented at random time intervals. Since the precise
timing of these stimuli is not known, the model trained using the features of Zeng et al.,
despite achieving an accuracy of 88%, provides an irrelevant output for fatigue detection.

Figure 8. Accuracy of the RF model with the different features. Note: Zeng et al. corresponds to the
features in [30].

A common technique used in the literature to achieve high accuracy is to increase
the number of features in model training. For instance, the model trained with all the
features from Table 2 achieved the highest accuracy of 98%. However, these features also
included the incorrect features of Zeng et al. Additionally, they included ECG frequency
domain features (HRV.VLF, HRV.LF, HRV.HF, HRV.VHF, and HRV.LFHF), which may
not represent any meaningful information about the cognitive state when a small time
window of 60 s is considered [39,40]. Thus, the models output, despite an accuracy of
98%, may be misleading. As previously explained in Section 3.3.3, our selected features
did not encounter the same issues as those of Zeng et al. and were more aligned with the
requirements of the experiment based on a reaction time test. Additionally, they resulted in
a classification accuracy of 94%.

5.3. Classification Algorithm Analysis

The RF-algorithm-based model was compared to other algorithms with similar com-
plexities, namely SVM, KNN, DT, and GB. The comparison results are summarized in
Table 4 and Figure 9.

For comparison, two different cases were considered. In the first case, the models were
trained without a time-series feature set conversion technique, i.e., the features extracted
at each window step were sequentially presented as input to train the model. In this case,
the maximum accuracy of 94% and F1-score of 94% was achieved by the RF algorithm,
while KNN, DT, GB, and KNN achieved relatively low accuracies and F1-scores.

In the second case, the models were trained with input feature sets obtained from time-
series feature set conversion (cf. Section 4). In Table 4, the results obtained using the feature
sets from 2, 3, and 5 consecutive windows are presented. The results were unchanged when
more than five window steps were considered, and these are not presented. The results
indicated that the performance generally improved with an increasing number of windows
for the SVM, KNN, and RF models. In each case, the RF algorithm consistently achieved
the highest accuracy and F1 score. The best performance observed was an accuracy and
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F1-score of 98% when five windows were considered. The SVM algorithm shows the worst
performance in all cases.

Table 4. Average accuracy and macro averaged F1-score of the different classification models with
and without the time-series feature set.

Model
Accuracy

without TS
Feature Set
Conversion

F1-Score
without TS
Feature Set
Conversion

Accuracy
with 2

Windows

F1-Score
with 2

Windows

Accuracy
with 3

Windows

F1-Score
with 3

Windows

Accuracy
with 5

Windows

F1-Score
with 5

Windows

SVM 0.66 0.66 0.64 0.64 0.65 0.64 0.7 0.7
KNN 0.87 0.87 0.85 0.85 0.85 0.85 0.88 0.88

DT 0.85 0.85 0.83 0.83 0.81 0.81 0.8 0.8
GB 0.83 0.84 0.82 0.83 0.8 0.8 0.82 0.82
RF 0.94 0.94 0.96 0.96 0.96 0.96 0.98 0.98

A graphical analysis of the results is presented using ROC curves in Figure 9. A ROC
curve is constructed by plotting the true positive rate (TPR) against the false positive rate
(FPR). TPR is the proportion of observations that were correctly predicted to be positive
out of all positive observations (TP/(TP + FN)). Similarly, the FPR is the proportion of
observations that were incorrectly predicted to be positive out of all negative observations
(FP/(TN + FP)). Thus, the ROC curve shows the trade-off between sensitivity (or TPR) and
specificity (1 − FPR). Classifiers that give curves closer to the top-left corner indicate a
better performance. As a baseline, a random classifier is expected to give points lying along
the diagonal (FPR = TPR). The closer the curve comes to the 45-degree diagonal of the ROC
space, the less accurate the classifier.

In order to apply the ROC for multiclass classification (in our case three fatigue states),
the notion of a one-vs-rest ROC curve was used and micro averaging was performed
to summarize the information of the multiclass ROC curves. A one-vs-rest ROC curve
consisted in computing a ROC curve for each of the three classes. In each step, a given
class was regarded as the positive class and the remaining classes were regarded as the
negative class as a bulk. Micro-averaging aggregated the contributions from all the classes
to compute the average metrics, as follows:

TPR =
∑class TPclass

∑class(TPclass + FNclass)
, FPR =

∑class FPclass

∑class(FPclass + TNclass)
,

Figure 9 shows that the RF classifier had a greater discriminative capacity and higher
performance, since it approaches farther to the top-left corner compared to others. For
comparison, it can be useful to summarize the performance of each classifier into a single
measure. One common approach is to calculate the area under the ROC curve (AUC). This
is equivalent to the probability that a randomly chosen positive instance is ranked higher
than a randomly chosen negative instance. The ideal ROC curve thus has an AUC = 1.0
and as a general rule, for any classifier output to be meaningful the AUC must be greater
than 0.5, and it must be greater than 0.8 to be considered acceptable. The ROC curve with
the largest AUC is considered to have a better performance. In our results, the RF classifier
showed the highest AUC of 0.99, KNN had an AUC of 0.96, which was greater than that of
GB (0.93), and DT had 0.90. In contrast, SVM exhibited the lowest AUC of 0.83.

When the time-series feature set conversion is considered, the enhancement of the RF
model performance is also visible in the ROC curve in Figure 10 as the number of windows
was increased from 1 to 5. The AUC was 0.99 in all the cases.
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Figure 9. One-vs-rest ROC curves micro average for the different classification models, without
a time-series feature set.

Figure 10. One-vs-rest ROC curve micro average for the RF model with time-series feature set.

5.4. Cross-Validation Analysis

To assess the reliability of the model performance, K-fold cross-validation was ap-
plied on the best RF-based model obtained in the previous steps. This technique allowed
estimating how well the model would performed on unseen data or data it was not trained
on. For that purpose, five-fold cross-validation was employed, which means the model
was trained and evaluated five times. The combined dataset from all the subjects and
fatigue stages was randomly split into five subsets (called folds), with each fold serving
as the testing set once, while the remaining folds were used for training. For each test
fold, the obtained accuracy and F1-score are summarized in Table 5. The results indicate
very little variability, with the accuracy and F1-score varying between 0.95 and 0.98. This
suggests that the model’s output was relatively stable and less sensitive to specific data
splits. Therefore, an average performance of 0.96 can be expected on new, unseen data.
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Table 5. K-fold analysis of the RF model.

K-Fold Accuracy F1-Score

1 0.98 0.98
2 0.95 0.95
3 0.96 0.96
4 0.96 0.96
5 0.95 0.95

Average 0.96 0.96

5.5. Per Subject Variability Analysis

The random split used in the cross-validation analysis did not allow independent
testing for the given three subjects. Therefore, to observe the model performance variability
per subject, separate tests were performed, in which the RF model was trained on data from
two subjects and tested on the remaining subject. However, this type of analysis for the
classification of fatigue states can be affected by the well-known problem of inter-individual
variability [41]. Indeed, mental fatigue and its markers vary among individual subjects.
An ML model trained on one set of subjects and tested on another subject cannot capture
this variability in fatigue-related features. This problem can be reduced by retraining the
same ML model on a small subset of the data from the subject to be tested.

Table 6 shows the RF model performance results under two settings. In the first,
the model was trained on data from only two subjects and tested on the remaining subject.
This resulted in a test accuracy of 68% for subject 3 and 70% for subjects 1 and 2. In the
second case, the corresponding models were retrained on a data subset (20% of the full data
size), and they were tested on the remaining data subset (80%) of the subject to be tested.
In this case, five-fold cross-validation was used to obtain the mean performance. This
resulted in an increased model accuracy of 88% for subjects 3 and 2 and 93% for subject
1. Nevertheless, we cannot prove that our model can be generalized to new participants
whose data have never been used to train the model. Inter-individual variability (sensitivity
to drowsiness and physiological/behavioral/psychological peculiarities) can be a limiting
factor for generalization (i.e., the model’s behavior with previously unseen data). Achieving
near-generalization behavior would require multiple replications of the experiment and
studies conducted under the same conditions over a longer period.

Table 6. Per subject analysis of the RF model.

Train Re-Train Test
Accuracy on
Test without
Re-Training

F1-Score on
Test without
Re-Training

Accuracy on
Test (80%) with

Re-Training
(20%)

F1-Score on
Test (80%) with

Re-Training
(20%)

Subject 1 and 2 Subject 3 Subject 3 0.68 0.68 0.88 0.88
Subject 2 and 3 Subject 1 Subject 1 0.7 0.69 0.93 0.93
Subject 3 and 1 Subject 2 Subject 2 0.7 0.6 0.88 0.88

6. Conclusions and Perspective

This research presents a machine learning modeling process for detecting mental
fatigue using physiological signals, including EDA, ECG, and respiration signals as markers
of fatigue. We implemented a RF-based model to classify three levels of fatigue. This model
was compared to SVM-, KNN-, DT-, and GB-based models.

In contrast to traditional modeling practices that aim to increase the number of features,
we demonstrated that careful feature selection can lead to high model performance, while
ensuring reliability and reducing the number of features. We identified EDA features
(SCR mean amplitude and SCR mean duration), ECG features (mean heart rate and HRV
standard deviation), and respiration rate as highly relevant in detecting mental fatigue
when the reaction time test was used in the experiment design.

The main objective of our study was to emphasize the importance of the feature
selection process, taking into account the details of experiment design and highlighting
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the common problem whereby the literature can lead to misleading results.Our study was
limited to the analysis of a small dataset, obtained from the research published in [30].
To further validate the selected features and observe their variation with respect to the
subject profiles, such as age, gender, health etc, a study on a larger dataset would be
required.

Furthermore, we employed a sliding-window-based feature extraction and feature
set conversion technique to train the RF model, incorporating the temporal aspect of
physiological signals. A thorough evaluation of our model resulted in an average an
accuracy and F1-score of 96%. In the current study, we considered a uniform length of
window for all the features, to ensure timely output and simplicity. However, the different
signals (ECG, EDA, and respiration) and their derived features have different frequencies
and variabilities over time. In our future work, we will explore the optimal window length
and step size for individual signals.
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ECG Electrocardiogram
EDA Electrodermal Activity
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ROC Receiver Operating Characteristic
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