
Citation: Awad, M.; Fraihat, S.

Recursive Feature Elimination with

Cross-Validation with Decision Tree:

Feature Selection Method for

Machine Learning-Based Intrusion

Detection Systems. J. Sens. Actuator

Netw. 2023, 12, 67. https://doi.org/

10.3390/jsan12050067

Academic Editor: Lei Shu

Received: 8 August 2023

Revised: 8 September 2023

Accepted: 13 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Recursive Feature Elimination with Cross-Validation with
Decision Tree: Feature Selection Method for Machine
Learning-Based Intrusion Detection Systems
Mohammed Awad 1 and Salam Fraihat 2,3,*

1 Department of Computer Science and Engineering, American University of Ras Al Khaimah,
Ras Al Khaimah P.O. Box 72603, United Arab Emirates; mohammed.awad@aurak.ac.ae

2 Department of Information Technology, College of Engineering and Information Technology,
Ajman University, Ajman P.O. Box 346, United Arab Emirates

3 Artificial Intelligence Research Centre, Ajman University, Ajman P.O. Box 346, United Arab Emirates
* Correspondence: s.fraihat@ajman.ac.ae

Abstract: The frequency of cyber-attacks on the Internet of Things (IoT) networks has significantly
increased in recent years. Anomaly-based network intrusion detection systems (NIDSs) offer an
additional layer of network protection by detecting and reporting the infamous zero-day attacks.
However, the efficiency of real-time detection systems relies on several factors, including the number
of features utilized to make a prediction. Thus, minimizing them is crucial as it implies faster
prediction and lower storage space. This paper utilizes recursive feature elimination with cross-
validation using a decision tree model as an estimator (DT-RFECV) to select an optimal subset of 15 of
UNSW-NB15’s 42 features and evaluates them using several ML classifiers, including tree-based ones,
such as random forest. The proposed NIDS exhibits an accurate prediction model for network flow
with a binary classification accuracy of 95.30% compared to 95.56% when using the entire feature
set. The reported scores are comparable to those attained by the state-of-the-art systems despite
decreasing the number of utilized features by about 65%.

Keywords: intrusion detection system; UNSW-NB15; recursive feature elimination; cross-validation;
machine learning; classification; feature selection

1. Introduction

The recent advancements in technology have resulted in the emergence of various
innovative concepts, including the Internet of Things (IoT). IoT networks are composed
of a vast array of Internet-connected systems and sensors. Per the International Data
Corporation (IDC), it is estimated that by 2025, the number of IoT devices connected to the
Internet will surpass 41 billion [1]. The rise of IoT and its extensive connectivity capability
had a positive impact on several domains including industry, transport, environment,
and power management [2]. On the other hand, the massive amount of data exchanged
over IoT networks poses concerns to the confidentiality, integrity, and availability of the
interconnected systems. These networks provide an ideal ground for potential attackers to
launch cyberattacks, compromising systems’ security [3,4]. Due to the high stakes, there
is an urgent need for an accurate and reliable network intrusion detection system (NIDS)
that is also capable of identifying zero-day attacks. Anomaly-based NIDS can achieve that
by creating a profile of typical network behavior and flagging any deviations as potential
attacks. Anomaly-based NIDSs can leverage various artificial intelligence (AI) techniques,
including supervised and unsupervised methods [5].

In this study, we utilize a recently world-renowned dataset known as UNSW-NB15.
This dataset was created to overcome the drawbacks of previous datasets, such as the
undistributed and outdated KDD98, NSL-KDD, and KDDCUP99 [6,7]. Our aim is to

J. Sens. Actuator Netw. 2023, 12, 67. https://doi.org/10.3390/jsan12050067 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12050067
https://doi.org/10.3390/jsan12050067
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0002-4698-133X
https://orcid.org/0000-0002-1025-7868
https://doi.org/10.3390/jsan12050067
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12050067?type=check_update&version=1


J. Sens. Actuator Netw. 2023, 12, 67 2 of 23

conduct binary classification via part of the dataset’s 49 features. By minimizing the number
of employed features, we can improve detection time, storage requirements, and overall
operational efficiency of networks. However, reducing the number of features may result
in a trade-off with prediction accuracy. Thus, we sought to find the right balance in feature
selection. Our research aims to effectively classify network data records as either standard
or malicious classes using only 15 features. Those features were determined using the
recursive feature elimination (RFE) algorithm [8]. The accuracy of the chosen features
was evaluated using six machine learning classifiers: Logistic Regression (LR) [9], Naïve
Bayes (NB) [10], Stochastic Gradient Descent [11], Random Forest (RF) [12], AdaBoost [13],
and Multi-layer Perceptron [14].

The complete UNSW-NB15 dataset comprises 49 features and a total of around
2.5 million data rows, with each row classified into either benign (normal) or one of nine
possible attacks (Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnaissance,
Shellcode, and Worms). In our research, we utilized the publicly available testing and
training sets, which comprise about 10% of the dataset (257,673 records and 42 features in-
cluding 175,341 records used for training and 82,332 records used for testing). An elaborate
description of the dataset is provided in the upcoming sections.

While previous research has achieved remarkable accuracy with extensive feature sets,
our objective was to minimize the number of features while maintaining a detection system
that remains highly accurate. Fewer features result in faster prediction times, lower storage
requirements, and improved operational efficiency.

A summary of our research contributions to the literature and findings are listed below:

• An overview of the intrusion detection problem in the UNSW-NB15 dataset, highlight-
ing the importance and challenges associated with this specific dataset.

• A detailed literature review of existing NIDSs and their limitations and shortcomings,
focusing on those that adopted the recursive feature elimination (RFE) method and
those that utilized UNSW-NB15.

• Proposed a recursive feature elimination with cross-validation (RFECV) approach
using binary decision tree classification for machine learning-based intrusion detec-
tion systems.

• Generated an optimal set of features selected from the UNSW-NB15 dataset using
RFECV with a decision tree model as the estimator. Then, we evaluated their perfor-
mance prediction capability via multiple well-known machine learning classifier models.

• Applied data preprocessing techniques on the UNSW-NB15 dataset to address over-
fitting and biasing issues. This included removing duplicate rows and eliminating
identifier features such as IP and port-related features and TTL-based features that
were deemed unrealistically correlated with the label features and could cause bias.

• Experimental findings using the UNSW-NB15 dataset demonstrated that the proposed
model reduced the feature dimension from 42 to 15 while gaining a prediction accuracy
of 95.30% compared to 95.56% with the original dataset and maintaining a similar
F1-score (95.29% compared to 95.55%).

The rest of this paper is structured as follows: Section 2 explores the literature, Section 3
presents the methodology, Section 4 explains the results and analysis, and Section 5 con-
cludes the paper and sheds light on future work directions.

2. Related Work

UNSW-NB15 is an intrusion network dataset that researchers have widely utilized
in recent years. The research interest varied based on the work objective [15–18]. This
section presents relevant intrusion detection systems that used UNSW-NB15 and reports
their results. Additionally, this section sheds light on the use of RFE in feature selection for
intrusion detection.

In [19], Yin et al. proposed an anomaly-based network intrusion detection system
utilizing UNSW-NB15. Their feature selection process consisted of two stages. In the first
stage, they applied information gain followed by random forest to eliminate less important



J. Sens. Actuator Netw. 2023, 12, 67 3 of 23

features. In the second stage, the authors employed RFE with an MLP classifier to reduce
the number of features further down to 23 features. Yin et al. proposed a multiclassification
model that resulted in %84.24 accuracy and %82.85 F1-score.

In [20], Alissa et al. utilized 34 features from the partial UNSW-NB15 dataset and
performed binary classification. The authors tested their model using several classifiers:
decision tree, XGB, and Logistic Regression. The decision tree classifier outperformed the
others with an accuracy of 94%. Likewise, the F-1 score, recall, and precision resulted in a
similar score.

In [21], the authors combined Grey Wolf Optimizer and Bald Eagle Search to select the
best 31 features. The classification was achieved using Deep Sparse Auto-Encoder (DSAE).
Mulyanto et al. reported an accuracy, F-1 score, recall, and precision above 99%.

In another study, Tama et al. [22] selected 19 UNSW-NB15 features using particle
swarm optimization (PSO) and achieved 91.27% accuracy and 91.44% F1-score using a
combined Rotation Forest and Bagging classifier. During their work on the partial dataset,
the authors also tried Ant Colony Optimization (ACO) and Genetic Algorithm (GA) for
feature selection. However, PSO’s chosen features showed the best results.

Nawir et al. [23] attempted to differentiate between benign and malicious network
flows using the entire dataset, including all 42 features. The authors experimented
with three classifiers: Average One Dependence Estimator (AODE), Naive Bayes (NB),
and Bayesian Network (BN) and reported the highest accuracy of 94.37% using AODE.

In a recent study [24], Thakkar and Lohiya employed statistical importance to select
21 features. The authors utilized deep neural networks (DNNs) to predict network traffic.
The study resulted in 89.03% accuracy and an F1-score of 96.93%. Liu and Shi also employed
deep neural networks in their classification [25]. However, they extracted 30 features using
the genetic algorithm. Liu and Shi reported an accuracy of 76.70% and an F1-score of 93.83%.
A DNN was employed by another study but as a feature selection method. Eunice et al.
fed the twenty chosen features into a random forest model, achieving 82.1% accuracy [26].

Barkah et al. [27] utilized UNSW-NB15 and conducted several experiments to deter-
mine the best detection model. In one of the scenarios, RFE was used to choose the best
13 features. The selected features were fed to four classifiers. Random forest and decision
tree exhibited the best multiclassification results, whereas RF scored an accuracy of 85.07%
and an F1-score of 85.68%, while DT resulted in 85.64% accuracy and an F1-score of 86.87%.
Their results were similar (or lower) in other scenarios where they attempted to handle
imbalanced data using oversampling and adaptive synthetic techniques.

In another study, Kumar et al. utilized the UNSW-NB15 dataset to build their mul-
ticlass detection model [28]. The authors applied Information Gain to select 13 features.
The model resulted in an accuracy of 83.84% and was later used to assess a real-time
generated dataset with a reported accuracy of 83.8%.

Kasongo and Sun [29] opted for XGBoost to extract 19 features from the UNSW-NB15
dataset. They achieved 90.85% accuracy and 88.45% F1-score using the Decision Tree
(DT) classifier. In another study [30], the authors employed an enhanced Pigeon Inspired
Optimizer (PIO) version to select five UNSW-NB15 features (dstip, dsport, sbytes, sloss,
and stime). The authors reported an accuracy of 91.7% and 90.9% F1-score. However,
it is essential to highlight that the five chosen features included two destination-related
features for the port and IP addresses (dstip and dsport). Typically, these features and
timestamps-related ones, such as stime, are dropped in the preprocessing phase to avoid
learning bias [31].

Sarhan et al. investigated the usability of UNSW-NB15 in the network security do-
main [32]. One of their observations was the biased prediction results when including any
Time-to-Live (TTL)-based features, namely sttl, dttl, and ct_state_ttl. In their work, and due
to the high correlation between these features and the outcome labels, they referred to
the TTL features as “hidden labels”. In their opinion, the high predictive powers of these
features relate to the dataset’s testbed design issues. Thus, we opted to exclude these three
features from our experiments. However, and to the best of our knowledge, none of the



J. Sens. Actuator Netw. 2023, 12, 67 4 of 23

related work followed a similar approach. In fact, some [15,16] deemed the sttl feature to
be highly efficient [32]. Likewise, as mentioned earlier, it is essential in artificial datasets to
drop features that may result in a bias toward a specific victim or attacking nodes. Thus,
identifying characteristics related to IP and port source/destination and timestamps are
usually dropped. Therefore, we excluded srcip, sport, dstip, dsport, stime, and ltime in
our research.

Many researchers investigated using RFE as a wrapper method, either by itself or
combined with another selection method, to reduce the feature subset. For example,
Megantara et al. combined RFE and Gini importance to determine the most suitable
features for detecting multiclass attacks in the NSL-KDD dataset [33]. In [34], the authors
utilized RFE to find the most suitable four features to predict attacks in CICIDS2017. Their
Multi-layer Perceptron classifier resulted in an accuracy of 89%. Sharma et al. [35] also
employed RFE to find the best features to detect multiclass attacks in the KDD CUP99
dataset. The authors tested their features using several models, including decision tree and
support vector machine (SVM), and reported a reasonable classification rate. In another
study, Tonni et al. [36] used RFE to select a subset of CSE-CIC-IDS-2018 features and then
verified their model using random forest.

Lastly, two recent studies [37,38] applied Recursive Feature Elimination over CSE-CIC-
IDS2018. In [37], Ren et al. reduced about 80% of the dataset features before implementing
deep reinforcement learning to detect anomalies. Alahmed et al. used RFE and principal
component analysis (PCA) on the same dataset [38].

3. Proposed Methodology

This section illustrates the research methodology’s architectural framework, beginning
with the proposed system’s architecture. As Figure 1 shows, the proposed system comprises
three primary blocks: Data Preprocessing, Features Selection, and Classification.

Figure 1. The proposed system architecture.

3.1. Data Preprocessing

Data processing, known as data engineering, plays a vital role in the success of the
learning process. Data processing consists of Columns and Rows Cleaning, Features
Encoding, and Data Normalization.This subsection discusses the procedures applied in the
preprocessing phase, which aims to adequately prepare the data for analysis.

3.1.1. Drop Rows with Missing Values

All rows were examined to identify any missing values. Since the partitioned 10%
dataset used in this research has been processed, no missing values were detected except



J. Sens. Actuator Netw. 2023, 12, 67 5 of 23

for the “service” feature. We decide to retain this feature in its current state, as it signifies
the absence of service. It will be encoded later during the encoding phase.

3.1.2. Drop id Column

Dropping the “id” column is a common step in data preprocessing because it does
not provide any meaningful information. Removing the “id” column ensures that only
relevant features are considered for further analysis. It is important to mention that the 10%
dataset did not include any features related to port and IP addresses, as well as timestamps,
which are considered identifiers.

3.1.3. Identifiers Features Removal

As raised by Sarhan et al. and reported by others [32,39], the inclusion of the TTL-based
features “sttl”, “dttl”, and “ct_state_ttl” in the UNSW-NB15 dataset could introduce bias
during the classification process and impact the reliability of classifier evaluation. These
features are considered unrealistically highly correlated to “Label”. For this reason, these
features were removed from the dataset to ensure a more accurate and unbiased analysis.
Consequently, the number of features were reduced from 42 to 39 features. As mentioned
earlier, the 42 features do not include other identifiers, such as those related to IP and port
source/destination and timestamps.

3.1.4. Categorical LabelEncoder Encoding

Categorical transformation is important for improving the learning capability of
classifiers that can only process numeric values. In the case of the used UNSW-NB15
dataset, the features “proto”, “service”, and “state” contain categorical data that have been
encoded into numerical values.

As encoding techniques, we have decided to use LabelEncoder [40]. It is suitable with
the UNSW_NB15 dataset as it assigns a unique numerical label to each unique categorical
value. This transformation allows the classifier to interpret and learn from the encoded la-
bels. Although LabelEncoder does not create separate binary columns like OneHotEncoder,
it still captures the categorical nature of the feature [41].

The “service” feature contains 13 categorical values, such as [‘-’ (unknown), ‘ftp’,
‘smtp’, ‘snmp’, ‘http’, ‘ftp-data’, ‘dns’, ‘ssh’, ‘radius’, ‘pop3’, ‘dhcp’, ‘ssl’, and ‘irc’]. These cat-
egorical values have been encoded into numbers ranging from 0 to 12. Similarly, the “state”
feature contains nine categorical values, namely [‘FIN’, ‘INT’, ‘CON’, ‘ECO’, ‘REQ’, ‘RST’,
‘PAR’, ‘URN’, and ‘no’], which are encoded into numbers from 0 to 8. Lastly, the “proto”
feature contains 128 categorical values that are encoded into numbers from 0 to 127.

3.1.5. MinMax Normalization

The presence of high numerical values in different features affects the learning process
of machine learning classifiers such as LR, NB, SVM, SGD, and MLP. Additionally, training
high-dimensional datasets requires significant computational resources. To address these
issues, various normalization methods, such as Min-Max Normalization, Z-score Normal-
ization, Decimal Scaling, or Max normalization could be used [42]. The choice of method
typically depends on the application. In this step, Min-Max scaling was applied on the
dataset using Equation (1).

Xscaled =
X− Xmin

Xmax − Xmin
(1)

This scaling technique mapped the original values to a range between 0 and 1, pre-
serving the relative relationships among the data points.

It is important to note that normalization was not applied during the feature selection
phase, as the decision tree (DT) model used in this phase is not sensitive to high numerical
values of features. However, the training and testing datasets used to train the machine
learning classifiers were normalized to ensure accurate and reliable model performance.

Additional details about UNSW-NB15 are provided in the upcoming sections.



J. Sens. Actuator Netw. 2023, 12, 67 6 of 23

3.2. RFECV Using DT for Features Selection

To perform feature selection, a DT-REFCV method is applied on the processed data,
which generates the best-selected features based on their importance scores. This subsection
illustrates how the features were chosen using recursive feature elimination.

3.2.1. Decision Tree

A Decision Tree (DT) is a supervised ML technique widely used for classification and
regression tasks. DT depicts a tree-like structure wherein the internal nodes represent the
features, while leaf nodes comprise the class labels or predicted values. Thus, a prediction
is made by traversing the path from the root to one of the leaf nodes depending on the
input’s feature values.

A decision tree makes predictions by following a sequence of if-else conditions, as rep-
resented in Equation (2) [43]:

F(x) =


C1, if x ∈ S1

C2, if x ∈ S2

. . .
Ck, if x ∈ Sk

(2)

where F(x) is the final prediction, Ci is the class label or predicted value for input subset Si,
and x depicts the input. The input subsets Si are defined by the tree’s decision boundaries.

Decision trees are easy to comprehend and interpret, as the decision rules can be
visualized. DTs can handle numerical and categorical features and are robust to outliers
and missing values. Additionally, DTs can capture complex nonlinear relationships within
the data with simple preprocessing. DTs are also utilized for feature selection, as they
assign importance scores to the attributes based on their contribution to the decision-
making process.

Decision tree is a powerful technique that has been employed in numerous fields,
including machine learning, image processing, and pattern identification. Furthermore, it
has been used in various applications across different disciplines.

There are various types of DT algorithms, including ID3, C4.5, CART, CHAID, MARS,
GUIDE, CTREE, CRUISE, and QUEST [43]. In our study, we used the CART algorithm,
which is the default DT algorithm implemented in the scikit-learn library.

The DT algorithms have different characteristics and are suitable for various data
types and tasks. Each algorithm has its benefits and can be applied depending on the
problem’s requirements. For example, some algorithms, like ID3 and C4.5, use entropy
and information gain for tree construction [44], while others, such as CART and CHAID,
use impurity measures like Gini index or chi-squared tests [45]. MARS employs piecewise
linear functions instead of binary splits, while GUIDE and CTREE focus on detecting
interactions [46]. CRUISE and QUEST use statistical tests for partitioning.

3.2.2. Recursive Feature Elimination with Cross-Validation

RFECV is a wrapper feature selection method that uses a machine learning algorithm
to select the most relevant features for the intrusion detection problem. To ensure its
robustness, RFECV combines recursive feature elimination and cross-validation to identify
the optimal number of features that maximize the performance of the model [8].

RFECV uses a classification machine learning model to score each feature and itera-
tively eliminates features that do not enhance the classification accuracy. As outlined in
Algorithm 1, the feature search process uses backward selection, beginning with the com-
plete feature set and progressively removing features that do not contribute to the accuracy
of classification, ultimately identifying the most effective feature subset. In this research
work, the implementation of RFECV was conducted using the decision tree classification
model DT-RFECV as an estimator and the fold (k) for cross-validation equal to 10 with



J. Sens. Actuator Netw. 2023, 12, 67 7 of 23

StratifiedKFold as splitting strategy to preserve the percentage of samples for each class.
With 10-fold cross-validation, the dataset was split into 10 equal-sized folds.

Algorithm 1 RFECV with DT

Require: Training set X
Ensure: Ranked features

1: for all features in X do
2: for k = 1 to 10 do . k is the number of folds for
3: cross-validation.
4: X is randomly divided into ten equal subsets
5: using StratifiedKFold method;
6: One subset is used as validation data, and the
7: remaining nine subsets are used as training data;
8: Train a DT model using the training data;
9: Calculate the prediction accuracy using the validation data;

10: Obtain the weight of each feature produced by the DT model;
11: Drop l least weighted features and update the training data;
12: end for
13:
14: Obtain the feature subset FS with the highest prediction accuracy;
15: if prediction accuracy of FS is the highest then
16: Selected features = FS;
17: end if
18: end for
19: Return ranked selected features.

During the recursive elimination process, as features are eliminated in a recursive
manner, the accuracy metric is calculated at each iteration for evaluating the impact of fea-
ture elimination on the model performance. By observing how the accuracy metrics change
with each iteration, insights can be gained regarding the importance and contribution of
each feature to the model’s performance. The optimal feature set was determined by the
classifier with the highest overall accuracy.

After the recursive elimination process is completed, the selected set of features is
evaluated using 10-fold cross-validation. Subsequently, the DT model is repeatedly trained
and evaluated (ten times), each time using a distinct fold as the validation set and the
remaining folds serve as the training set. The accuracy metrics were used to estimate how
well the model generalizes to unseen data and helps in evaluating DT model robustness.
The average and standard deviation of the accuracy metrics across the 10 iterations are
calculated to provide a thorough evaluation of the model’s performance.

For each iteration of the cross-validation process, the RFE process calculates internal
accuracy metrics to evaluate the performance of feature selection. It helps in assessing the
effectiveness of the selected features in classifying attack and non-attack classes.

It is important to emphasize that the accuracy values utilized to identify the model
with the highest accuracy within each training sample set were determined based on the
final accuracy assessment using the test dataset. These accuracy values were not derived
from the inner accuracy metrics calculated during the RFE execution and the 10-fold
cross-validation tuning [8].

3.3. Classification Using Machine Learning Algorithms

Once the best features are selected, several machine learning classification models are
trained using the training set. Then, the performances of the trained models are evaluated
using the test dataset. This step exhibits the best performing machine learning based IDS.
As stated earlier, machine learning plays a pivotal role in predicting network anomalies,
which is a main priority for network intrusion detection systems. This subsection presents
and describes six well-known classifiers utilized in our study.



J. Sens. Actuator Netw. 2023, 12, 67 8 of 23

3.3.1. Logistic Regression

Despite the name’s insinuation, logistic regression (LR) is a machine learning technique
commonly used for binary classification tasks. Additionally, LR can also be extended to
handle multi-classification tasks using the one-vs-rest method. The LR model applies the
sigmoid function or its variations to a linear machine learning model. This transformation
confines the output values within the range of [0, 1]. A value closer to 1 signifies a higher
probability of belonging to a particular class. Equations (3) and (4) provide the mathematical
formulation of LR [9].

hβ(x) = β0 + β1x1 + β2x2 + . . . + βnxn (3)

P(y = 1 | x) =
1

1 + e−hβ(x)
(4)

Equation (3) represents the linear combination of the input features x1, x2, ..., xn and
their corresponding coefficients β0, β1, β2, ..., βn. This linear combination is used as an input
to the sigmoid function.

The sigmoid function denoted by e−hβ(x), transforms the linear combination into a
probability value between 0 and 1. The final Equation (4) (y = 1 | x) represents the
probability of the binary outcome y being 1 given the input variables x.

3.3.2. Naive Bayes

Naive Bayes (NB) is a probabilistic classification algorithm based on Bayes’ theorem
and presumes that the features are conditionally independent of the class [10]. NB is
suited for binary classification problems. By evaluating the input features, NB computes
the probability of each class and chooses the one with the most significant likelihood,
as depicted in Equation (5):

P(Ck|x1, x2, ..., xn) =
P(Ck)∏n

i=1 P(xi|Ck)

P(x1, x2, ..., xn)
(5)

where P(Ck|x1, x2, ..., xn) is the posterior probability of class Ck given the input features
x1, x2, ..., xn, P(Ck) is the prior probability of class Ck, P(xi|Ck) is the likelihood of feature
xi given class Ck, and P(x1, x2, ..., xn) is the probability of the input features. The classifier
chooses the class with the highest posterior probability [10].

Despite its straightforward approach, Naive Bayes has achieved promising results in
diverse domains, such as text classification, spam filtering, and sentiment analysis.

3.3.3. Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an iterative optimization algorithm that has also
been widely utilized in training machine learning models [11]. SGD can efficiently update
the model’s parameters incrementally, making it extremely suitable for large-scale datasets.
SGD updates the model parameters by taking small steps toward the negative gradient of
the loss function with respect to the parameters. The update rule for each parameter θj is
represented in Equation (6):

θ
(t+1)
j = θ

(t)
j − η

∂L
∂θj

(6)

where θ
(t+1)
j is the updated value of parameter θj at iteration t + 1, η is the learning rate

that controls the step size, and ∂L
∂θj

is the gradient of the loss function with respect to θj.
The gradients are commonly estimated using a randomly selected subset of the training
data, commonly known as mini-batch, to reduce computational cost. SGD iteratively
performs these parameter updates until convergence or a predefined number of iterations.



J. Sens. Actuator Netw. 2023, 12, 67 9 of 23

Although it is susceptible to noisy updates, SGD shows fast convergence and can
handle large datasets efficiently, making it a popular choice for training a variety of machine
learning models.

3.3.4. Random Forest

Random forest (RF) is an ensemble learning technique that merges several decision
trees to create a robust and accurate model. It performs by creating multiple decision
trees during training and predicts the class based on the most frequent class predicted
by the individual trees. Each decision tree in the forest is trained on a different subset of
the training data, and the final prediction is determined by a voting method based on the
predictions of all the trees [12]. The prediction of a random forest model is represented in
Equation (7):

F(x) =
1
N

N

∑
i=1

fi(x) (7)

where F(x) is the final prediction, N is the number of decision trees in the forest, and fi(x)
is the prediction of the ith decision tree. The RF algorithm introduces randomness in two
ways. Firstly, by unsystematically selecting subsets of the features for each tree. Then,
by bootstrapping the training data after determining the number of trees to build, allowing
each tree to be trained on a different data subset. Such randomness reduces overfitting and
improves the model’s generalizability and robustness.

Random forest models apply to both classification and regression tasks. RF is capa-
ble of handling large datasets with high-dimensional feature spaces and is resistant to
overfitting. Additionally, it provides estimates of feature importance, allowing for feature
selection. Furthermore, RF can capture complex relationships and interactions between
features, making it a popular choice in various domains. However, it may be sensitive to
noisy data and can be computationally demanding when training large forests.

3.3.5. AdaBoost

Adaptive Boosting (AdaBoost) is an ensemble learning method that merges multiple
classifiers to produce a robust classifier [13]. It works by iteratively training learners on
different weighted subsets of the training data. The algorithm assigns higher weights to
misclassified samples. The final prediction is determined by a weighted mixture of the weak
learners’ predictions. The weight of each weak learner is determined by its performance
in classifying the training examples. The prediction of the AdaBoost model is computed
using Equation (8):

F(x) =
T

∑
t=1

αtht(x) (8)

where F(x) denotes the final prediction, T is the number of weak learners, αt represents the
weight assigned to the tth weak learner, and ht(x) is the prediction of the tth weak learner.
The weight αt, determined by Equation (9), depends on the accuracy of the weak learner.

αt =
1
2

log
(

1− εt

εt

)
(9)

where εt denotes the weighted error of the tth weak learner. AdaBoost is known for its
capability to handle complex classification problems by merging multiple weak learners
into a robust ensemble model.

One limitation of Adaboost is that it can be sensitive to noisy data and outliers, as the
weights assigned to misclassified samples can increase over iterations.

3.3.6. Multi-Layer Perceptron

The Multilayer Perceptron (MLP) is a renowned robust artificial neural network
architecture used for various machine learning tasks [14]. MLP comprises multiple layers



J. Sens. Actuator Netw. 2023, 12, 67 10 of 23

of interconnected nodes, known as neurons, organized in a feedforward manner. Each
neuron performs a weighted sum of its inputs, followed by an activation function that
introduces non-linearity. Equation (10) shows how a neuron’s output is determined.

aj = σ

(
n

∑
i=1

wijai + bj

)
(10)

where aj denotes the output of neuron j, wij represents the weight connecting neuron
i to neuron j, ai denotes the output of neuron i, and bj is the bias term for neuron j.
The activation function σ(·), which introduces non-linearity, is used to transform the input.

The MLP typically consists of an input layer, one or more hidden layers, and an output
layer. The hidden layers allow the network to learn complex representations of the input
data. Each layer performs the weighted sum and activation function operation. The output
of the final layer is the predicted output of the MLP model.

Training an MLP involves adjusting the weights and biases to minimize a specified
loss function, which is often achieved using an optimization algorithm such as gradient
descent. The weights are updated iteratively using Equation (11):

wnew
ij = wold

ij − η
∂L

∂wij
(11)

where wnew
ij and wold

ij represent the updated and connections weights, respectively, η is the

learning rate that controls the size of the weight update, and ∂L
∂wij

is the partial derivative of
the loss function L with respect to the weight wij. In our proposed method, we used the
default values for the MLP hyperparameters as defined in sklearn.neural_network library,
where the MLP architecture consists of three layers: (1) an Input layer, with a number of
neurons equal to the number of features, (2) a Single hidden layer with 100 neurons, (3) an
Output layer with two neurons because it is a binary classification task. The activation
function used is the rectified linear unit (ReLU). The optimizer used for optimization is the
Adam algorithm. For regularization, the default alpha value is set to 0.0001. The initial
learning rate is 0.001. The maximum number of iterations is 200.

4. Experiments and Results

In this section, we delve into the comprehensive landscape of our study, including the
experimental environment, dataset characteristics, and the evaluation metrics employed.
Finally, we provide a meticulous examination of our experiments and the astute analysis of
their results.

4.1. Hardware and Environment Setting

The ML classification models LR, NB, SGD, RF, AdaBoost, and MLP were applied
using Python 3.9.7. The implementation utilized various libraries such as Scikit-learn [47],
Pandas, and Numpy, among others, that facilitated the feature selection and supported the
data processing and visualization of our experiments.

The experiments were conducted on a desktop computer running the Windows 11
Enterprise 64-bits operating system. The hardware specifications of the desktop include
32 GB RAM, an Intel Core i7-10750H processor with a clock speed of 2.6 GHz and 16 cores,
and an NVIDIA Quadro T1000 graphics card.

4.2. Unsw-Nb15 Dataset

Synthetic datasets play a critical role in machine learning-based intrusion detection
systems. They are essential for assessing the system’s effectiveness against unknown
attacks (zero-day attacks), testing its performance, and ensuring its ability to generalize to
real-world scenarios [31]. In binary classification, a good intrusion detection dataset should
include an adequate number of benign and attack records.



J. Sens. Actuator Netw. 2023, 12, 67 11 of 23

UNSW-NB15 is a well-known network intrusion detection dataset that gained pop-
ularity among researchers and network security experts. The UNSW-NB15 dataset was
developed at the University of New South Wales (UNSW) to provide comprehensive net-
work flows with a wide range of artificial attacks to facilitate research and analysis in
network security [48]. The dataset aims to simulate real-world network traffic scenarios
and covers various network attacks and normal network behavior. The dataset consists of a
vast collection of features extracted from network traffic. For example, each record contains
packet-level information, network flow statistical measures, and protocol headers.

The UNSW-NB15 dataset is derived from 100 GB of network traffic data containing nor-
mal or modern attack traffic. The entire UNSW-NB15 dataset comprises about 2.5 million
records categorized into ten classes. Normal network behavior, alternatively referred to as
benign, represents one of the dataset classes. In contrast, the other nine classes represent
different types of attacks: Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, Reconnais-
sance, Shellcode, and Worms. The original dataset contains 49 features, categorized into six
groups: flow features, basic features, content features, time features, additional generated
features, and labeled features. These features provide valuable information for analyzing
network traffic and identifying potential attacks.

A partitioned 10% version of the dataset is provided, consisting of a training set and
a test set [49]. The training set contains 175,341 flows, while the test set includes 82,332.
The distribution of these records across the ten mentioned classes is presented in Table 1.
The statistical distributions of these sets have been carefully examined and found to be
highly correlated, ensuring the reliability of the partitioning for training machine learning
models. As mentioned earlier, this work aims to differentiate between benign and malicious
traffic regardless of the attack-specific type.

Table 1. UNSW-NB15 dataset: partitioned version.

Class Training Dataset Testing Dataset

Normal 56,000 37,000
Generic 40,000 18,871
Exploits 33,393 11,132
Fuzzers 18,184 6062

DoS 12,264 4089
Reconnaissance 10,491 3496

Analysis 2000 667
Backdoor 1746 583
Shellcode 1133 378

Worms 130 44
Total 175,341 82,332

In the partitioned dataset version, there are some underrepresented classes, such as
Analysis, Backdoor, Shellcode, and Worms, which represent under 2% of the data. The 10%
dataset has been processed to remove features that are not relevant. As a result, the number
of features has been reduced to 42, including 39 numerical features and three categorical
ones. Table 2 illustrates the format and description of the 42 features in the partitioned
version of the UNSW-NB15 dataset [48]. As mentioned earlier, the three TTL-based features,
listed in Table 2, were excluded from the selection process to avoid unintentional bias. For
the binary classification task in this research, the partitioned dataset was used as it provided
a reliable and representative subset of the original dataset.



J. Sens. Actuator Netw. 2023, 12, 67 12 of 23

Table 2. UNSW-NB15 features format and description: partitioned version.

No. Feature Format Description

1 dur Float Duration of the connection
2 proto Categorical Protocol type of the connection
3 service Categorical Network service on the destination machine
4 state Categorical State of the connection
5 spkts Integer Number of data packets sent from source to destination
6 dpkts Integer Number of data packets sent from destination to source
7 sbytes Integer Number of data bytes sent from source to destination
8 dbytes Integer Number of data bytes sent from destination to source
9 rate Float Transfer rate (packets/second)

10 sttl Integer Source TTL (Time to Live)
11 dttl Integer Destination TTL (Time to Live)
12 sload Float Source load (bytes/second)
13 dload Float Destination load (bytes/second)
14 sloss Integer Number of lost packets from source to destination
15 dloss Integer Number of lost packets from destination to source
16 sinpkt Float Interarrival time of packets sent from source
17 dinpkt Float Interarrival time of packets sent from destination
18 sjit Float Source jitter (variance of packet interarrival time)
19 djit Float Destination jitter (variance of packet interarrival time)
20 swin Integer Source TCP window size
21 stcpb Integer Source TCP base sequence number
22 dtcpb Integer Destination TCP base sequence number
23 dwin Integer Destination TCP window size
24 tcprtt Float TCP round-trip time
25 synack Float TCP SYN-ACK time
26 ackdat Float TCP ACK data time
27 smean Integer Mean of the packet sizes in the connection from source to destination
28 dmean Integer Mean of the packet sizes in the connection from destination to source
29 trans_depth Integer Transaction depth (if applicable)
30 response_body_len Integer Length of the response body (if applicable)
31 ct_srv_src Integer Number of connections to the same service and source IP
32 ct_state_ttl Integer Number of connections with the same state and source IP
33 ct_dst_ltm Integer Number of connections to the same destination IP in the last two minutes
34 ct_src_dport_ltm Integer Number of connections with the same source IP and destination port in the last two minutes
35 ct_dst_sport_ltm Integer Number of connections with the same destination IP and source port in the last two minutes
36 ct_dst_src_ltm Integer Number of connections with the same source and destination IP in the last two minutes
37 is_ftp_login Binary Indicates if the connection is an FTP login attempt (0 or 1)
38 ct_ftp_cmd Integer Number of FTP commands in the connection
39 ct _fw_http_mthd Integer Number of firewall and HTTP methods in the connection
40 ct_src_ltm Integer Number of connections with the same source IP in the last two minutes
41 ct_srv_dst Integer Number of connections to the same service and destination IP
42 is_sm_ips_ports Binary Indicates if the source IP and source port are the same (0 or 1)

4.3. Evaluation Metrics

Various well-known evaluation measures were employed to assess the results of the
conducted experiments. As the models used for binary classification, metrics such as
Precision, Recall, F1-score, Accuracy, Dimensionality Reduction rate, and Fit time [50] were
utilized. These metrics played a crucial role in evaluating the accuracy and effectiveness of
the proposed intrusion detection system when distinguishing between normal and anomaly
classes. Furthermore, the confusion matrix, illustrated in Table 3, offered valuable insights
by presenting the true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) results associated with attack and benign classes.

Table 3. Confusion matrix.

Actual Class
Attack Benign

Predicted
Class

Attack True Positives (TP) False Positives (FP)
Benign False Negatives (FN) True Negatives (TN)

The precision measure, as indicated in Equation (12), quantifies the ratio of correctly
predicted attack records to the total number of records predicted as attacks.

Precision =
TP

TP + FP
(12)



J. Sens. Actuator Netw. 2023, 12, 67 13 of 23

The recall measure, presented in Equation (13), represents the ratio of correctly pre-
dicted attack records to the total number of records in the attack class.

Recall =
TP

TP + FN
(13)

The F1-Score, defined by Equation (14), is the harmonic mean of the precision and
recall measures.

F1-Score =
2 · (Precision · Recall)
(Preciion + Recall)

(14)

The accuracy measure, given in Equation (15), captures the ratio of correctly classified
detection records (both benign and attack) to the total number of detection records.

Accuracy =
TP + TN

TP + FP + TN + FN
(15)

The dimensionality reduction rate (DRR), as shown in Equation (16), is the proportion
of selected features to the total number of features in the respective dataset.

DRR =
number o f selected f eatures

total number o f f eatures
(16)

The Fit time measure is calculated by measuring the execution time it takes for the clas-
sifier to fit the training data. The fit() function is a built-in method provided by scikit-learn
to train a classifier on a given dataset. The Fit time was measured by the following steps:

1. Begin a timer function before calling the fit() method of the classifier.
2. Call the fit() method, passing in the training data.
3. Stop the timer function after the fit() method completes.
4. Calculate the duration of the fit() method by subtracting the start time from the

stop time.

4.4. Experiments Results

Our experimental design comprised two major phases. In the first phase, all 39 features
(42-3 TTL-based features) of the UNSW-NB15 dataset were utilized to train and test the
recursive feature elimination with cross-validation (RFECV) combined with the decision
tree (DT) machine learning algorithm. The objective was to identify the optimal set of
features for the binary classification task of intrusion detection.

In the second phase, the selected features obtained from the first phase were used to
train and test various machine learning classifiers, namely LR, NB, KNN, SVM, SGD, RF,
AdaBoost, and MLP. This process allowed for the assessment of the performance of these
classifiers in the context of intrusion detection.

Figure 2 illustrates the relationship between the classification score and the number of
selected features using recursive feature elimination (RFE) with a DT classifier as estimator.
The analysis is performed for each cross-validation fold, with k-fold set to 10. As shown,
the number of features that achieved the highest classification score is 15, denoting the
optimal choice. The classification scores using the best 15 selected features is around
95%. Consequently, the original dataset is reduced from 42 features (including the three
TTL-based features) to only 15, which represents a dimensionality reduction of around 65%
of the number of dataset features. The 15 best features resulted by the RFECV-DT model
are as follows: [‘dload’, ‘tcprtt’,‘sload’, ‘synack’, ‘rate’, ‘dinpkt’, ‘sbytes’, ‘dur’, ‘smean’,
‘ct_dst_src_ltm’, ‘ct_srv_src’, ‘ct_srv_dst’, ‘ackdat’, ‘sjit’, ‘sinpkt’].



J. Sens. Actuator Netw. 2023, 12, 67 14 of 23

Figure 2. Relationship between the classification score and the number of selected features using
recursive feature elimination using cross-validation with a DT classifier as the estimator. Each line
plot represents a different cross-validation fold, with k-fold set to 10.

Table 4 and Figure 3 illustrate a comparison between the classification performance ac-
curacy of six well-known machine learning models (including LR, NB, SGD, RF, AdaBoost,
and MLP) on the original and feature-selected datasets. It is worth mentioning that both
support vector machine (SVM) and k-nearest neighbor (k-NN) algorithms were excluded
from the comparison due to their excessively long training time. As can be observed from
Figure 3, the 15 selected features dataset showed better performance than the original
dataset, which means that these features were effective in reducing the dimensionality
without sacrificing classification accuracy and were able to represent the important informa-
tion required for accurate classification. Interestingly, Table 4 also shows that the resultant
accuracy of the 15 features is superior to that of the dataset’s top 15 features across all
models. In terms of classification accuracy performance, it could be observed that the RF
model achieved the highest accuracy on both the original dataset and the Selected Features
dataset, which mean that RF is a strong classifier for the intrusion detection task. The LR,
NB, AdaBoost, and MLP achieved relatively high accuracies on both datasets. The SGD
model had significantly lower accuracies compared to other models on both datasets.
For the SGD model, the selected features have highly improved the performance of the
SDG model for the classification. This indicates that these features are the most informative
and relevant for the SGD algorithm from the list of features in the original dataset.

Table 4. Accuracies of the 6 machine learning models using the original dataset (39 features), top
15 features, and the selected features dataset.

Original Dataset
(39 Features)

Original Dataset
(Top 15 Features)

Selected Dataset
(15 Features)

Logistic Regression 0.851122 0.701149 0.847957

Naive Bayes 0.789615 0.703457 0.847187

Stochastic Gradient Descent 0.403205 0.594228 0.805783

Random Forest 0.955602 0.872613 0.953007

AdaBoost 0.931278 0.801560 0.922011

Multi-layer Perceptron 0.872765 0.764357 0.897516



J. Sens. Actuator Netw. 2023, 12, 67 15 of 23

Figure 3. The accuracies of all machine learning models using the original dataset (39 features) and
the selected features dataset (15 features).

Table 5 illustrates the most used evaluation metrics of the six machine learning models
using the original dataset (39 features) and the selected features dataset (15 features).
The main observation from this table is that RF outperforms the other models in terms of
precision, recall, and F1-score for both classes (benign and attack) and for macro average
and weighted average metrics, and this is for both the original dataset with 39 features and
the selected features dataset with only 15 features.

In addition, for class Attack, LR, RF, and AdaBoost perform slightly the same with the
selected features dataset and original dataset, while NB performs better with the selected
features dataset and SGD and MLP perform better with the original dataset. However,
for benign class, NB and SGD performed better with the selected features dataset while the
other models performed better or same with the original dataset.

To summarize, the 15 selected features dataset generally shows better performance
across all models compared to the original dataset leading to higher precision, recall,
and F1-scores for most models and classes.



J. Sens. Actuator Netw. 2023, 12, 67 16 of 23

Table 5. Evaluation metrics for the 6 machine learning models using the original dataset (39 fea-
tures) and the selected features dataset (15 features): precision, recall, F1-score, macro avg,
and weighted avg.

Original Dataset (39 Features) Selected Dataset (15 Features)

Precision Recall F1-Score Precision Recall F1-Score

Logistic Regression

Class Benign 0.8998 0.6007 0.7205 0.7859 0.7202 0.7516
Class Attack 0.8379 0.9686 0.8985 0.8737 0.9079 0.8905
macro avg 0.8689 0.7847 0.8095 0.8298 0.8140 0.8210

weighted avg 0.8577 0.8511 0.8417 0.8456 0.8480 0.8461

Naive Bayes

Class Benign 0.6685 0.6768 0.6726 0.9011 0.5858 0.7100
Class Attack 0.8475 0.8426 0.8450 0.8331 0.9698 0.8963
macro avg 0.7580 0.7597 0.7588 0.8671 0.7778 0.8031

weighted avg 0.7903 0.7896 0.7900 0.8548 0.8472 0.8368

Stochastic Gradient Descent

Class Benign 0.2899 0.5993 0.3908 0.7223 0.6366 0.6768
Class Attack 0.6234 0.3112 0.4151 0.8385 0.8852 0.8612
macro avg 0.4566 0.4552 0.4030 0.7804 0.7609 0.7690

weighted avg 0.5169 0.4032 0.4074 0.8014 0.8058 0.8023

Random Forest

Class Benign 0.9354 0.9248 0.9301 0.9345 0.9171 0.9257
Class Attack 0.9649 0.9700 0.9675 0.9615 0.9698 0.9656
macro avg 0.9502 0.9474 0.9488 0.9480 0.9435 0.9457

weighted avg 0.9555 0.9556 0.9555 0.9528 0.9530 0.9529

AdaBoost

Class Benign 0.9239 0.8553 0.8883 0.9422 0.8052 0.8683
Class Attack 0.9344 0.9669 0.9504 0.9144 0.9768 0.9446
macro avg 0.9291 0.9111 0.9193 0.9283 0.8910 0.9065

weighted avg 0.9310 0.9313 0.9305 0.9233 0.9220 0.9202

Multi-layer Perceptron

Class Benign 0.9079 0.6696 0.7707 0.8838 0.7819 0.8297
Class Attack 0.8619 0.9681 0.9120 0.9029 0.9518 0.9267
macro avg 0.8849 0.8188 0.8413 0.8934 0.8668 0.8782

weighted avg 0.8766 0.8728 0.8668 0.8968 0.8975 0.8957

Table 6 shows a comparison between the confusion matrix of the six classifiers models
on the original dataset and the selected features dataset. It is important to note that, in an
intrusion detection system, minimizing false negatives (attack missed) may be more critical,
while false positives (benign classified as an attack) could be tolerated.

As could be observed from this table, RF has the highest benign and attack class
detection. The RF confusion matrix shows a higher number of true positives and true
negatives compared to false negatives and false positives for both datasets. LR, NB,
AdaBoost, and MLP confusion matrixes for both datasets show that these models perform
well in correctly identifying attack class with a high number of true positives. However,
they have a large number of false positives, indicating a higher rate of misclassifying
instances as attacks when they are benign. The SGD classifier has a higher number of false
negatives and false positives compared to true positives and true negatives. In addition,
for SGD, the false positive rate is higher than the false negative rate for the original dataset,
which is a critical issue for the IDS. However, this issue was solved using the selected
feature dataset.

An additional observation from Table 6 is that the misclassification rate is reduced for
the LR and MLP classifiers when using the selected features dataset and it increases for
SGD, RF, and AdaBoost classifiers.



J. Sens. Actuator Netw. 2023, 12, 67 17 of 23

Table 6. Comparison of the confusion matrix of the 6 machine learning models on the original dataset
and on the Selected Features dataset.

MLs Original Dataset Selected Features Dataset

Logistic Regression

Naive Bayes

Stochastic Gradient Descent

Random Forest

AdaBoost

Multi-layer Perceptron

Figure 4 present the comparison of the Fit time of all machine learning models using
the original dataset with 39 features and with the 15 selected features dataset. As observed,
the 15 selected features considerably reduce the fit time of all the classifier models. More
specifically, for the RF, MLP, AdaBoost, LR, and NB models, the fit time reductions cor-
respond to 18%, 25%, 35%, 36%, and 63%. However, for the SGD model, the fit time is
drastically reduced with the 15 feature-selected to 87%.



J. Sens. Actuator Netw. 2023, 12, 67 18 of 23

Figure 4. Fit time of all machine learning models on the Original dataset and on the Selected
Features dataset.

Figures 5 and 6, illustrate the ranking of feature importance for the original dataset
with 39 features and the 15 features selected using the RFECV-DT method, respectively.
The RF was used for the calculation of the features’ importance scores, since it is the most
effective model for the classification task with the highest overall performance, the highest
precision, recall, and F1-scores for both classes in both datasets. As shown, the 15 most
important features of RF models are slightly different. The RF classifier was trained on
original data on the fifth rank of its feature importance, while this feature is not selected
during the RFECV-DT step.

As shown in Figures 5 and 6, there is a notable difference in the selection of the 15 most
important features between the RF classifier trained on the original data and selected data
using the RFECV-DT method. In the original data trained by the RF classifier, features such
as “dmean”, “dloss”, “state”, “dbytes”, “ct_srv_dst”, and “ct_dst_sport_itm” are included
in the top fifth most important features. However, these features were not selected by the
RFECV-DT method, indicating a divergence in the prioritization of features between the
two methods. In addition, the features ct_srv_src, dur, dinpt, sjit, sinpkt, ct_dst_itm, and
ct_dst_itm are identified as important by the RFECV-DT method but do not appear in the
top 15 features selected by the RF method. This indicates that RFECV-DT is capable of
identifying and selecting features that are most closely related to the attack pattern.

It is also observed that 9 out of the 15 features selected by the RFECV-DT method
are included in the top 15 features selected by the RF using the original dataset. This
indicates some overlap and agreement between the two methods in identifying important
features. But the importance ranks of these nine features differ between the two methods,



J. Sens. Actuator Netw. 2023, 12, 67 19 of 23

indicating that there is some variation in the relative importance assigned to these features.
However, considering the accuracy of the models, the RFECV-DT method is more effective
in prioritizing and assigning importance to these features, leading to improved performance
in terms of both the number of features selected and the accuracy of the model.

4.5. Comparison with Others

Table 7 presents a comparative analysis of existing feature selection approaches and
the proposed method for intrusion detection using the UNSW-NB15 dataset. The proposed
method is evaluated against similar studies that utilize DT-based algorithms with different
feature selection methods on the UNSW-NB15 features.

The results show that the proposed method, using DT-RFECV as a feature extraction
technique, achieves the highest accuracy (95.30%) and a competitive F1-score (95.29%) on
the UNSW-NB15 dataset compared to the existing approaches. Furthermore, the proposed
feature selection approach improves accuracy and F1-score while reducing the number of
selected features to only 15 out of the original 42 UNSW-NB15 features.

It is important to highlight that the proposed method addresses potential bias by
excluding TTL-based features, which is not the case with the other existing methods. This
enhances the fairness and reliability of the evaluation.

Figure 5. Ranking of feature importance using random forest classifier for the original UNSW-NB15
dataset with 39 features (in orange and blue). The orange bars represent the 15 features selected by
DT-RFECV algorithm, with the number beside each bar indicating the feature’s rank.



J. Sens. Actuator Netw. 2023, 12, 67 20 of 23

Figure 6. Ranking of feature importance using random forest classifier for the UNSW-NB1 dataset
with the 15 features selected using RFECV with decision tree estimator model.

Table 7. Performance comparison with some of the existing approaches using UNSW-NB15.

Classifier
Feature
Extraction
Method

Number of
Selected
Features

Accuracy F1-Score

Thakkar and Lohiya, 2023 [24] DNN Statistical 21 89.03 96.93

Liu and Shi, 2022 [25] DNN GA 30 76.70 93.83

Kasongo and Sun, 2020 [29] DT XGBoost 19 90.85 88.45

Tama et al., 2019 [22] DT PSO-CO-GA 19 91.27 91.44

Eunice et al., 2021 [26] RF DNN 20 82.1 -

Proposed method RF DT-RFECV 15 95.30 95.29

5. Conclusions and Future Research Prospects

This study proposed an improved feature selection method and provided insights into
the limitations of the existing approaches. This proposed method is called recursive feature
elimination with cross-validation using a decision tree estimator (RFECV-DT). The selected



J. Sens. Actuator Netw. 2023, 12, 67 21 of 23

features were utilized for training state-of-the-art machine learning models for intrusion
detection systems such as NB, LR, AdaBoost, RF, and MLP, using the well-renowned
network intrusion dataset, UNSW-NB15.

By applying RFECV-DT, 15 optimal features were selected out of the original set of 42.
The selection was made based on the features’ importance ranking, as determined by the de-
cision tree estimator. Experimental results using the random forest classifier demonstrated
that our feature selection method achieved an accuracy of 95.30% and a weighted F1-score
of 95.29%. These results outperform other machine learning classifiers and outperform
existing feature selection methods regarding accuracy and F1-score while using a minimal
number of features. Furthermore, the chosen 15 features’ resultant classification accuracy
was higher than the dataset’s top 15 features.

The results highlight the effectiveness of the proposed RFECV-DT feature selection
method in selecting only essential features and enhancing the efficiency of intrusion detec-
tion systems while reducing the fitting time required.

Finally, we believe that this method could be applied to feature selection in other
benchmark datasets. Thus, in the future, we plan to apply the suggested feature selection
method to different relevant datasets using alternative estimator models and machine
learning classifiers, which will allow us to gain a better understanding of its effectiveness
across different contexts.

Author Contributions: The authors confirm their contribution to the paper as follows: study con-
ceptualization: M.A. and S.F.; Methodology: M.A. and S.F.; Software: M.A.; Validation: S.F.; For-
mal Analysis: M.A. and S.F.; Investigation: M.A. and S.F.; Resources: M.A.; data curation: S.F.;
writing—original draft: M.A. and S.F.; writing—review and editing: M.A. and S.F.; visualization: S.F.;
Supervision and administration: M.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest to report regarding
the present study.

References
1. The Growth in Connected IoT Devices Is Expected to Generate 79.4 ZB of Data in 2025, According to a New IDC Forecast. 2019.

Available online: https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-
is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast (accessed on 20 May 2022 ).

2. Rose, K.; Eldridge, S.; Chapin, L. The internet of things: An overview. Internet Soc. (ISOC) 2015, 80, 1–50.
3. Radanliev, P.; De Roure, D.; Burnap, P.; Santos, O. Epistemological equation for analysing uncontrollable states in complex

systems: Quantifying cyber risks from the internet of things. Rev. Socionetw. Strateg. 2021, 15, 381–411. [CrossRef] [PubMed]
4. Al-Fawa’reh, M.; Al-Fayoumi, M.; Nashwan, S.; Fraihat, S. Cyber threat intelligence using PCA-DNN model to detect abnormal

network behavior. Egypt. Inform. J. 2022, 23, 173–185. [CrossRef]
5. Haq, N.F.; Onik, A.R.; Hridoy, M.A.K.; Rafni, M.; Shah, F.M.; Farid, D.M. Application of machine learning approaches in intrusion

detection system: A survey. IJARAI-Int. J. Adv. Res. Artif. Intell. 2015, 4, 9–18.
6. Moualla, S.; Khorzom, K.; Jafar, A. Improving the Performance of Machine Learning-Based Network Intrusion Detection Systems

on the UNSW-NB15 Dataset. Comput. Intell. Neurosci. 2021, 2021 , 5557577. [CrossRef] [PubMed]
7. Divekar, A.; Parekh, M.; Savla, V.; Mishra, R.; Shirole, M. Benchmarking datasets for Anomaly-based Network Intrusion Detection:

KDD CUP 99 alternatives. In Proceedings of the 2018 IEEE 3rd International Conference on Computing, Communication and
Security (ICCCS), Kathmandu, Nepal, 25–27 October 2018; pp. 1–8. [CrossRef]

8. Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26.
9. Itoo, F.; Meenakshi; Singh, S. Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms

for credit card fraud detection. Int. J. Inf. Technol. 2021, 13, 1503–1511. [CrossRef]
10. Berrar, D. Bayes’ theorem and naive Bayes classifier. Encycl. Bioinform. Comput. Biol. ABC Bioinform. 2018, 403, 412.
11. Li, X.; Orabona, F. On the convergence of stochastic gradient descent with adaptive stepsizes. In Proceedings of the 22nd

International Conference on Artificial Intelligence and Statistics PMLR, Naha, Japan, 16–18 April 2019; pp. 983–992.
12. Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction

modeling. Expert Syst. Appl. 2019, 134, 93–101. [CrossRef] [PubMed]

https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
https://www.businesswire.com/news/home/20190618005012/en/The-Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-Data-in-2025-According-to-a-New-IDC-Forecast
http://doi.org/10.1007/s12626-021-00086-5
http://www.ncbi.nlm.nih.gov/pubmed/35506054
http://dx.doi.org/10.1016/j.eij.2021.12.001
http://dx.doi.org/10.1155/2021/5557577
http://www.ncbi.nlm.nih.gov/pubmed/34220999
http://dx.doi.org/10.1109/CCCS.2018.8586840
http://dx.doi.org/10.1007/s41870-020-00430-y
http://dx.doi.org/10.1016/j.eswa.2019.05.028
http://www.ncbi.nlm.nih.gov/pubmed/32968335


J. Sens. Actuator Netw. 2023, 12, 67 22 of 23

13. Shahraki, A.; Abbasi, M.; Haugen, Ø. Boosting algorithms for network intrusion detection: A comparative evaluation of Real
AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020, 94, 103770. [CrossRef]

14. Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 451–455.

15. Al-Zewairi, M.; Almajali, S.; Awajan, A. Experimental evaluation of a multi-layer feed-forward artificial neural network classifier
for network intrusion detection system. In Proceedings of the 2017 International Conference on New Trends in Computing
Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 167–172.

16. Zhang, H.; Wu, C.Q.; Gao, S.; Wang, Z.; Xu, Y.; Liu, Y. An Effective Deep Learning Based Scheme for Network Intrusion Detection.
In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018;
pp. 682–687. [CrossRef]

17. Gharaee, H.; Hosseinvand, H. A new feature selection IDS based on genetic algorithm and SVM. In Proceedings of the 2016 8th
International Symposium on Telecommunications (IST), Tehran, Iran, 27–28 September 2016; IEEE: New York, NY, USA, 2016;
pp. 139–144.

18. Salman, T.; Bhamare, D.; Erbad, A.; Jain, R.; Samaka, M. Machine learning for anomaly detection and categorization in multi-cloud
environments. In Proceedings of the 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud),
New York, NY, USA, 26–28 June 2017; IEEE: New York, NY, USA, 2017; pp. 97–103.

19. Yin, Y.; Jang-Jaccard, J.; Xu, W.; Singh, A.; Zhu, J.; Sabrina, F.; Kwak, J. IGRF-RFE: A hybrid feature selection method for
MLP-based network intrusion detection on UNSW-NB15 Dataset. J. Big Data 2023, 10, 1–26. [CrossRef]

20. Alissa, K.; Alyas, T.; Zafar, K.; Abbas, Q.; Tabassum, N.; Sakib, S. Botnet Attack Detection in IoT Using Machine Learning. Comput.
Intell. Neurosci. 2022, 2022, 4515642. [CrossRef] [PubMed]

21. Mulyanto, M.; Faisal, M.; Prakosa, S.W.; Leu, J.S. Effectiveness of focal loss for minority classification in network intrusion
detection systems. Symmetry 2020, 13, 4. [CrossRef]

22. Tama, B.A.; Comuzzi, M.; Rhee, K.H. TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection
system. IEEE Access 2019, 7, 94497–94507. [CrossRef]

23. Nawir, M.; Amir, A.; Lynn, O.B.; Yaakob, N.; Badlishah Ahmad, R. Performances of machine learning algorithms for binary
classification of network anomaly detection system. J. Physics Conf. Ser. 2018, 1018, 012015. [CrossRef]

24. Thakkar, A.; Lohiya, R. Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection
System. Inf. Fusion 2023, 90, 353–363. [CrossRef]

25. Liu, Z.; Shi, Y. A hybrid IDS using GA-based feature selection method and random forest. Int. J. Mach. Learn. Comput.
2022, 12, 43–50.

26. Eunice, A.D.; Gao, Q.; Zhu, M.Y.; Chen, Z.; LV, N. Network Anomaly Detection Technology Based on Deep Learning. In
Proceedings of the 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC),
Virtual, 12–14 November 2021; pp. 6–9. [CrossRef]

27. Barkah, A.S.; Selamat, S.R.; Abidin, Z.Z.; Wahyudi, R. Impact of Data Balancing and Feature Selection on Machine Learning-based
Network Intrusion Detection. Int. J. Inform. Vis. 2023, 7, 241–248. [CrossRef]

28. Kumar, V.; Sinha, D.; Das, A.K.; Pandey, S.C.; Goswami, R.T. An integrated rule based intrusion detection system: Analysis on
UNSW-NB15 data set and the real time online dataset. Clust. Comput. 2020, 23, 1397–1418. [CrossRef]

29. Kasongo, S.M.; Sun, Y. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15
dataset. J. Big Data 2020, 7, 1–20. [CrossRef]

30. Alazzam, H.; Sharieh, A.; Sabri, K.E. A feature selection algorithm for intrusion detection system based on pigeon inspired
optimizer. Expert Syst. Appl. 2020, 148, 113249. [CrossRef]

31. Sarhan, M.; Layeghy, S.; Portmann, M. Towards a standard feature set for network intrusion detection system datasets. Mob.
Netw. Appl. 2022, 27, 357–370. [CrossRef]

32. Sarhan, M.; Layeghy, S.; Portmann, M. Feature Analysis for Machine Learning-based IoT Intrusion Detection. arXiv 2021,
arXiv:2108.12732.

33. Megantara, A.A.; Ahmad, T. Feature importance ranking for increasing performance of intrusion detection system. In Pro-
ceedings of the 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE), Yogyakarta, Indonesia,
15–16 September 2020; IEEE: New York, NY, USA, 2020; pp. 37–42.

34. Ustebay, S.; Turgut, Z.; Aydin, M.A. Intrusion detection system with recursive feature elimination by using random forest and
deep learning classifier. In Proceedings of the 2018 International Congress on Big Data, Deep Learning and Fighting Cyber
Terrorism (IBIGDELFT), Ankara, Turkey, 3–4 December 2018; IEEE: New York, NY, USA, 2018; pp. 71–76.

35. Sharma, N.V.; Yadav, N.S. An optimal intrusion detection system using recursive feature elimination and ensemble of classifiers.
Microprocess Microsyst. 2021, 85, 104293. [CrossRef]

36. Tonni, Z.A.; Mazumder, R. A Novel Feature Selection Technique for Intrusion Detection System Using RF-RFE and Bio-inspired
Optimization. In Proceedings of the 2023 57th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD,
USA, 22–24 March 2023; pp. 1–6. [CrossRef]

37. Ren, K.; Zeng, Y.; Cao, Z.; Zhang, Y. ID-RDRL: A deep reinforcement learning-based feature selection intrusion detection model.
Sci. Rep. 2022, 12, 15370. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.engappai.2020.103770
http://dx.doi.org/10.1109/ICPR.2018.8546162
http://dx.doi.org/10.1186/s40537-023-00694-8
http://dx.doi.org/10.1155/2022/4515642
http://www.ncbi.nlm.nih.gov/pubmed/36238679
http://dx.doi.org/10.3390/sym13010004
http://dx.doi.org/10.1109/ACCESS.2019.2928048
http://dx.doi.org/10.1088/1742-6596/1018/1/012015
http://dx.doi.org/10.1016/j.inffus.2022.09.026
http://dx.doi.org/10.1109/ICFTIC54370.2021.9647222
http://dx.doi.org/10.30630/joiv.7.1.1041
http://dx.doi.org/10.1007/s10586-019-03008-x
http://dx.doi.org/10.1186/s40537-020-00379-6
http://dx.doi.org/10.1016/j.eswa.2020.113249
http://dx.doi.org/10.1007/s11036-021-01843-0
http://dx.doi.org/10.1016/j.micpro.2021.104293
http://dx.doi.org/10.1109/CISS56502.2023.10089745
http://dx.doi.org/10.1038/s41598-022-19366-3
http://www.ncbi.nlm.nih.gov/pubmed/36100644


J. Sens. Actuator Netw. 2023, 12, 67 23 of 23

38. Alahmed, S.; Alasad, Q.; Hammood, M.M.; Yuan, J.; Alawad, M. Mitigation of Black-Box Attacks on Intrusion Detection
Systems-Based ML. Computers 2022, 11, 115. [CrossRef]

39. Fraihat, S.; Makhadmeh, S.; Awad, M.; Al-Betar, M.A.; Al-Redhaei, A. Intrusion detection system for large-scale IoT NetFlow
networks using machine learning with modified Arithmetic Optimization Algorithm. Internet Things 2023, 22, 100819. [CrossRef]

40. Bisong, E.; Bisong, E. Introduction to Scikit-learn. In Building Machine Learning and Deep Learning Models on Google Cloud Platform:
A Comprehensive Guide for Beginners; Springer: Berlin/Heidelberg, Germany, 2019; pp. 215–229.

41. Jackson, E.; Agrawal, R. Performance Evaluation of Different Feature Encoding Schemes on Cybersecurity Logs; IEEE: New York, NY,
USA, 2019.

42. Raju, V.G.; Lakshmi, K.P.; Jain, V.M.; Kalidindi, A.; Padma, V. Study the influence of normalization/transformation process on the
accuracy of supervised classification. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive
Technology (ICSSIT), Tirunelveli, India, 20–22 August 2020; IEEE: New York, NY, USA, 2020; pp. 729–735.

43. Batra, M.; Agrawal, R. Comparative analysis of decision tree algorithms. In Nature Inspired Computing: Proceedings of CSI 2015;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 31–36.

44. Elaidi, H.; Benabbou, Z.; Abbar, H. A comparative study of algorithms constructing decision trees: Id3 and c4.5. In Proceedings of
the International Conference on Learning and Optimization Algorithms: Theory and Applications, Rabat, Morocco, 2–5 May 2018;
pp. 1–5.

45. Lin, C.L.; Fan, C.L. Evaluation of CART, CHAID, and QUEST algorithms: A case study of construction defects in Taiwan. J. Asian
Archit. Build. Eng. 2019, 18, 539–553. [CrossRef]

46. Canete-Sifuentes, L.; Monroy, R.; Medina-Perez, M.A. A review and experimental comparison of multivariate decision trees.
IEEE Access 2021, 9, 110451–110479. [CrossRef]

47. Scikit Learn, Machine Learning in Python. Available online: https://scikit-learn.org (accessed on 20 April 2023).
48. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network

data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; IEEE: New York, NY, USA, 2015; pp. 1–6.

49. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set
and the comparison with the KDD99 data set. Inf. Secur. J. Glob. Perspect. 2016, 25, 18–31. [CrossRef]

50. Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020,
arXiv:2010.16061.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/computers11070115
http://dx.doi.org/10.1016/j.iot.2023.100819
http://dx.doi.org/10.1080/13467581.2019.1696203
http://dx.doi.org/10.1109/ACCESS.2021.3102239
https://scikit-learn.org
http://dx.doi.org/10.1080/19393555.2015.1125974

	Introduction
	Related Work
	 Proposed Methodology
	Data Preprocessing
	Drop Rows with Missing Values
	Drop id Column
	Identifiers Features Removal
	Categorical LabelEncoder Encoding
	MinMax Normalization

	RFECV Using DT for Features Selection
	Decision Tree
	Recursive Feature Elimination with Cross-Validation

	Classification Using Machine Learning Algorithms
	Logistic Regression
	Naive Bayes
	Stochastic Gradient Descent
	Random Forest
	AdaBoost
	Multi-Layer Perceptron


	Experiments and Results
	Hardware and Environment Setting
	Unsw-Nb15 Dataset
	Evaluation Metrics
	Experiments Results
	Comparison with Others

	Conclusions and Future Research Prospects
	References

