
Citation: Naja, R. Safe Data-Driven

Lane Change Decision Using

Machine Learning in Vehicular

Networks. J. Sens. Actuator Netw.

2023, 12, 59. https://doi.org/

10.3390/jsan12040059

Academic Editor: Lei Shu

Received: 20 June 2023

Revised: 26 July 2023

Accepted: 27 July 2023

Published: 1 August 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Safe Data-Driven Lane Change Decision Using Machine
Learning in Vehicular Networks
Rola Naja 1,2

1 ECE Paris Research Center, 37 Quai de Grenelle, 75015 Paris, France; rnaja@ece.fr
2 LI PARAD, Université Paris-Saclay, 78180 Saint-Quentin en Yvelines, France

Abstract: This research proposes a unique platform for lane change assistance for generating data-
driven lane change (LC) decisions in vehicular networks. The goal is to reduce the frequency of
emergency braking, the rate of vehicle collisions, and the amount of time spent in risky lanes. In order
to analyze and mine the massive amounts of data, our platform uses effective Machine Learning (ML)
techniques to forecast collisions and advise the driver to safely change lanes. From the unprocessed
large data generated by the car sensors, kinematic information is retrieved, cleaned, and evaluated.
Machine learning algorithms analyze this kinematic data and provide an action: either stay in lane or
change lanes to the left or right. The model is trained using the ML techniques K-Nearest Neighbor,
Artificial Neural Network, and Deep Reinforcement Learning based on a set of training data and
focus on predicting driver actions. The proposed solution is validated via extensive simulations
using a microscopic car-following mobility model, coupled with an accurate mathematical modelling.
Performance analysis show that KNN yields up to best performance parameters. Finally, we draw
conclusions for road safety stakeholders to adopt the safer technique to lane change maneuver.

Keywords: machine learning; data analytics; lane change; vehicular networks

1. Introduction

The main cause of vehicular collisions is an incorrect lane change decision. More
specifically, the act of changing lanes is regarded as difficult to perform given that the
driver must closely monitor the current lane-leading vehicle and the vehicles surrounding
it on the target lane, and then embrace appropriate action in response to the competitive
or cooperative reactions of those vehicles. As a result, individuals engaged in road active
safety view lane changing as an essential functionality that should be carefully incorporated
into a smart vehicle [1–4].

With the emergence of intelligent transportation systems (ITS) [5–7], efficient pro-
cessors, storage facilities, and numerous cutting-edge onboard sensors and cameras that
will be producing, gathering, storing, handling, and transmitting massive amounts of
active safety data [8,9] are becoming increasingly accessible. The 5 V parameters (Volume,
Variety, Value, Veracity, and Velocity) that describe the rich data portfolio will allow for the
exploration of novel mechanisms for the creation of safe vehicular networks [10].

Traditional approaches, however, are not designed to handle the rich data provided
by a vehicle onboard devices. Machine learning (ML) develops innovative methods that
analyze data by looking for patterns and underlying structures, which can be useful for
making real-time decisions [11–13]. Additionally, since no explicit assumptions are made
regarding the distribution of the data, machine learning is considered as an efficient data-
driven approach that is ideal for handling heterogeneous data [14–16]. This will enhance
the system’s ability to make data-driven decisions and address difficult issues relating to
critical safety application assistance [17–19].

In this context, the current paper investigates the Machine Learning tool for data
processing in the purpose of safe real-time lane change. We develop some insights into the

J. Sens. Actuator Netw. 2023, 12, 59. https://doi.org/10.3390/jsan12040059 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12040059
https://doi.org/10.3390/jsan12040059
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://doi.org/10.3390/jsan12040059
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12040059?type=check_update&version=1


J. Sens. Actuator Netw. 2023, 12, 59 2 of 20

design of lane change decision module capable of providing preventive safety measures.
More specifically, we bring the focus to the machine learning solutions and demonstrate
how they may overcome collisions induced by faulty lane change decisions.

The rest of this paper is organized as follows: Section 2 exhibits machine learning
adopted models envisioned for our research work. In Section 3 we describe our proposed
lane change assistance platform. Section 4 brings the focus to the mathematical modelling of
the traffic at the RSU. Section 5 presents the simulation results that validate the performance
of the proposed platform. Finally, we conclude the paper in Section 6.

2. Related Work

Research on automated lane changing operations has been significantly tackled.
Broadly, research works fall into two functional categories: a decision-making module
and a control execution module as explained in [20]. The decision-making module is a
tactical level function which issues a request for a lane change in response to a defined
route plan (such as exiting the highway to travel in a particular direction) or to environ-
mental factors (such as passing a truck). If a command to change lanes occurs, the vehicle
applies operational control to handle the lateral and longitudinal movements for a secure
lane change.

The lane shifting decision process in [21] involves three steps: deciding to consider
a lane change, selecting a target lane, and accepting a gap. In order to capture forced
lane changing behavior and courtesy yielding, a forced merging model is built because
it is difficult to detect appropriate gaps in severely packed traffic. Modern techniques
consider the usefulness of a possible lane change. Either the value of switching lanes is
calculated [22,23], or the total utility over a time horizon is maximized by solving a partly
observable Markov choices process [24,25].

The literature review identifies the Intelligent Driver Model (IDM) [26] and the Mini-
mize Overall Braking Induced by Lane Changes (MOBIL) models [27] as two commonly
used models for speed control and lane change decision timing. These two models were
combined to serve as a baseline for assessing the suggested approach. However, a common
issue with the majority of present systems for autonomous driving lies in the fact they con-
centrate on a single type of driving scenario. The methods listed above, more particularly,
are intended for highway driving; however, in a different situation, such as while driving
on an urban road, a different method needs to be used. The authors in [28] proposed a
genetic algorithm-based strategy in an effort to expand the approach. The latter develops a
general-purpose driver model that can manage many circumstances automatically. In order
to adjust its rules and actions to various driving scenarios, the suggested technique still
needs particular features that must be designed manually.

Some researchers adopted optimization methods in a cluster of lane-changing tra-
jectory to avoid collisions [29]. An initial tuning factor is derived by optimizing a cubic
polynomial in order to achieve this cluster. Then, by modifying the tuning factor in a stable
handling envelope determined from vehicle dynamics constraints, a workable trajectory
cluster is produced. A collision avoidance algorithm is also used in the feasible cluster
to choose the collision-free trajectory cluster while taking the motions of nearby cars into
account. The TOPSIS algorithm is used to solve a multiobjective optimization problem
that is dependent on the lane change performance indices of trajectory following, comfort,
lateral slip, and speed.

On the other hand, several researchers have turned their focus on the adoption of ML
algorithms for lane change [30].

In this study, we used the K-Nearest Neighbor (KNN), artificial neural network (ANN),
and reinforcement learning (RL) three primary algorithms. KNN is a supervised learning
technique that addresses classification issues and is non-parametric and instance-based.
A case is allocated to the class most frequently chosen by its K closest neighbors as deter-
mined by a distance function by a majority vote of those neighbors [31].



J. Sens. Actuator Netw. 2023, 12, 59 3 of 20

The foundation of deep learning is ANN which is a straightforward artificial neuron
model that adopts one or more binary inputs and one binary output [32]. When more than
a specific number of its inputs are active, the artificial neuron simply turns on its output.
McCulloch and Pitts showed that it is possible to create an artificial neural network that
can generate any logical assertion, even with such a simple model. Author in [33] created
one of the most basic ANN designs, the perceptron. It is based on an artificial neuron called
a linear threshold unit (LTU), which differs slightly from other artificial neurons in that it
treats inputs and outputs as numbers rather than binary on/off values and assigns weights
to each input connection. The LTU calculates a weigthed sum of its inputs. Then, in order
to determine the outcome, ANN applies an activation function to that total.

A perceptron, on the other hand, is made up of a single layer of neurons connecting to
all inputs. Multiple layers of completely linked neurons make to a multi-layer perceptron.
Hebb’s rule states that anytime two neurons have the same output, their connection weights
are increased. A variation of this algorithm is used to train perceptrons; it does not reinforce
connections that result in incorrect output because it accounts for network errors. To be
more precise, the Perceptron receives one training instance at a time and makes predictions
for each instance. The connection weights from the inputs that helped make the correct
prediction are strengthened for each output neuron that made a mistaken prediction.

RL provides a machine the ability to acquire a certain behavior depending on feedback
obtained from its environment [34]. A RL agent precisely acts in a certain environment.
Depending on what it undertakes, it might or might not get rewarded. In reality, each time
the agent completes a positive action, it is rewarded. Learning how to perform certain
behaviors in order to maximize the reward is the agent’s major objective. When a favorable
event occurs, positive reinforcement enhances the reward, which raises the likelihood that
the action will result in the positive event. Thus, it tries to maximize the performance by
biasing towards actions that led to positive events. When a negative condition is halted
or avoided using negative reinforcement, the reward is increased, setting a minimal level
for performance.

A combination of deep learning and reinforcement learning is known as deep rein-
forcement learning (DRL). Deep learning uses a multilayer network of processing nodes,
known as neurons, to extract knowledge from a massive input of data [35]. Neural Net-
works (NN) are a general term for this network of neurons. Some of the well-known NNs
used in deep learning include the Convolution Neural Network (CNN), the Recurrent
Neural Network (RNN), and the Graph Convolution Network (GCN) [36].

Due to its capacity to learn from a dynamic environment with a sizable action space
and state space, DRL can be a good alternative for autonomous cars controllers [37].
Additionally, simulations can be used to train the DRL at a cheaper cost. They can scale
easily, offer quick inference, and exceed humans in terms of quick, accurate decision-
making [38]. Due to these factors, DRL has become one of solutions for autonomous cars
lane change problems, particularly those involving decision making. Utilizing diverse state
space and action space formulations, some research works have developed DRL-based
modules for making lane change decisions [37–39].

Based on a policy, DQNs can be used to map a high-dimensional input space to a
discrete action space [40]. This qualifies them for high-level lane-change decision making
(move left, right, or stay in the same lane), which may be based on a number of inputs
recorded from nearby sensors and moving cars [41]. With reward functions that take into
account safety, mobility, and comfort to meet lane-shifting objectives, DQNs have been
effectively applied to autonomous cars to change lanes [42,43].

Although a DQN appears to be helpful for lane change decision-making modules,
there are some issues that must be resolved before it can be used successfully. The dynamic
state space of the autonomous cars, which makes it possible for DQN inputs to have
varying sizes, can be one of the challenges [37]. However, DQNs need inputs that of a
specific size. By encoding the dynamic state space’s changeable length to a collection
of parameters with a fixed length, this problem can be solved. A dynamic state space



J. Sens. Actuator Netw. 2023, 12, 59 4 of 20

that incorporates the status of a car, the states of the nearby vehicles, and the states of the
following vehicles, for instance, was encoded using three NNs by Dong et al. [37]. However,
this LC module does not make use of the potential for cars collaboration. Chen et al. use
Graph Convolution Networks (GCNs) to incorporate topological information about traffic
to enable collaborative lane change choices between vehicles. To encode dynamic input
data and topological information to a set of fixed length parameters, which are utilized
as input to a DQN, the GCN is implemented in a centralized unit [38]. However, authors
in [43] employed a decentralized method to encode the dynamic traffic topology as a
Dynamic Coordination Graph (DCG) in order to achieve cooperative lane change decisions.

In order to perform a comparative study, we have chosen three important criterion
crucial to conduct lane change: architecture, automation penetration ratio and delay
evaluation. Table 1 identifies the different research studies compared according to the
mentioned criterion.

• Architecture: Depending on where it is located within the vehicular network, the ar-
chitecture of an LC module can be categorized as either centralized or decentralized.
The LC module can be installed in a Road Side Unit (RSU) in a centrally controlled
architecture. For trajectory planning and lane-changing choices, a centralized con-
troller can combine data from Onboard Units (OBUs). Additionally, the controller
may advise an OBU [38] to change lanes or recommend state changes, such as path
or velocity [44]. It has been discovered that centralized controllers perform better
while accomplishing cooperative objectives [45]. The difficulty of scaling the RSU,
based on traffic fluctuations, is however a drawback of the centralized architecture.
On the other hand, The LC module can be added to individual OBUs to execute the
decentralized design. An autonomous controller can be created using the LC module,
perception module, and vehicle control module. When gathering data from other
vehicles for trajectory planning and lane change choices, these autonomous controllers
can communicate through V2V communications or via the network infrastructure [46].
Based on traffic demands, this method can greatly enhance the module’s scalabil-
ity. Nevertheless, reaching consensus among numerous vehicles in a decentralized
architecture is a major difficulty [46].

• Automation penetration ratio: An environment with mixed levels of connectivity and
automation is important to consider when designing a lane change module [47]. Due to
the slow pace of autonomous vehicles adoption, significant market penetration is only
anticipated to occur starting from 2040 [48]. Therefore, it is likely that autonomous
vehicles and human driven vehicles will coexist in the near future [47], and it is
important to take mixed traffic into account while designing an effective LC module.
Creating a perspective of the surroundings in mixed traffic can be a challenging
issue [48]. Additionally, the performance analysis of the module in mixed traffic with a
varied autonomous vehicles penetration rate can offer a useful estimate of the minimal
vehicles penetration needed for the module to function properly [49].

• Delay evaluation: Lane change decision is a critical real-time process that should
be taken in a tight time window. Therefore, a special concern should be devoted
to evaluate the performance of the lane change. Mathematical modeling based on
queuing theory is an efficient tool that may be adopted to assess the average delay of
the control traffic needed to take the decision.



J. Sens. Actuator Netw. 2023, 12, 59 5 of 20

Table 1. Comparison of research studies.

Reference AI Method Architecture Penetration Ratio Delay Evaluation

[43] DQN Decentralized No No

[37] DQN Decentralized No No

[38] GNN and DQN Centralized Yes No

[49] GCN and ACN Centralized Yes No

[37] ACN Decentralized Yes No

[50] Fedeterated Leraning Decentralized Yes No

Our research study stands out of the literature for the following reasons (Figure 1):

– Mobility models should simulate the real behavior of vehicular traffic, whilst it is
critical to assess lane change decision modules for vehicle ad hoc networks. In fact,
the vehicles distribution on highways is captured by the mobility model, which also
affects vehicle trajectory. Performance results retrieved from simulations may not
accurately reflect performance in an actual deployment in case a realistic mobility
model is not used. Therefore, we adopt an authentic car-following mobility model to
validate our lane change decision module in light of this understanding. The suggested
module’s performance results demonstrate its advantages and demonstrate that it
outperforms competing machine learning algorithms.

– Research projects dealing with automatic lane switching adopt functions based on
rule-based models; while these models may function well under typical common
circumstances, they may be vulnerable to failure in the event of unforeseen conditions.
Based on this knowledge, we develop a Reinforcement Federated Machine Learning
based platform. The platform’s major goal is to train the vehicle agent to learn an
automated lane change behavior so that it can lane shift intelligently in unforeseen
situations. To calculate the total return, which is an accumulation of rewards across
a lane shifting process, we specifically treat both state space and action space as
continuous and construct a special format of Q-function approximator.

– Lane change decision is a critical process that should be performed timely. Therefore,
we perform a mathematical modelling of the downlink traffic at the Road Side Unit
(RSU), using a M/GI/1 multiclass preemptive queue. The modelling is crucial to
assess the real time feature of the lane change process.

Figure 1. Proposed research work process.



J. Sens. Actuator Netw. 2023, 12, 59 6 of 20

3. Studied Lane Change Assistance Platform
3.1. Global Federated Machine Learning Architecture

Figure 2 depicts the studied Lane Change Assistance (LCA) architecture that consists
of two modules: local lane change assistance platform and global model provided by the
federated machine learning. In fact, Federated Learning is implemented as a decentralized
learning method where learners (vehicles OBUs) are randomly assigned to training datasets
rather than having all the data centralized [50–52]. FL addresses the basic issues of privacy,
ownership, and localization of data by taking the more general approach of “bringing
the code to the data, instead of the data to the code”. Additionally, FL does not demand
synchronization among OBUs, which are thought of as learners. Consequently, even when
connectivity between OBUs and RSUs is lost, OBUs can still construct their local models
and safely navigate; this capability is essential for highly dynamic and mission-critical
V2V communication.

Figure 2. Proposed Federated Machine Learning based architecture.

Within a limited number of communication iterations, FL enables the construction of
learning models by sharing local models (a set of learning parameters) with a roadside unit.
Since RSUs have a global view of the network, their centralizing ML processing procedures
actually produce satisfactory results, but they also introduce latency and create a bottleneck
in the cloud.

Local datasets cannot predict the global number of lane change collisions at the
highway level due to the limited number of data observations that may be available to
OBUs via V2V communications. Roadside equipment can therefore help collect samples via
the network, but at the expense of higher data exchange costs. OBUs may also be reluctant
to disclose their specific kinematic parameters and with an RSU and other OBUs for privacy
purpose and for resource optimization; In fact, a significant data exchange could deplete
the resources for vehicular communications. As a conclusion, a collaborative learning
strategy that doesn’t rely on sharing individual data sets could address this restriction.

More specifically, our proposed platform operates as follows:

– In a first stage, the OBUs apply a local lane change assistance platform which is
extensively detailed in next subsection. In this context, OBUs exchange local ML
model parameters with RSU.

– At a second stage, a global model of a machine learning algorithm is maintained by
an RSU. In fact, after receiving the local model parameters sent by each OBU, the RSU
calculates model averaging across vehicles, fine-tunes these parameters, and then
feeds back the global model to the OBUs. This will collaboratively and accurately
detect lane change erroneous decisions and reduces collisions caused by lane changes.

Notably, the LCA architecture relies on various time scales: each OBU locally learns its
model parameters over a short period, while the model averaging (global learning) occurs
over a longer period.

The next subsection will bring the focus to the lane change assistance platform modules.

3.2. Local Lane Change Assistance Platform

In order to process lane change queries, we designed a Lane Change Assistance
platform illustrated by Figure 3. An ego vehicle (the vehicle under control) senses its



J. Sens. Actuator Netw. 2023, 12, 59 7 of 20

environment and communicates with other cars using an OBU. Module 1 tackles the
different types of data that are collected and stored in a data file. Next, module 2 cleans and
processes the data as explained in the following paragraphs. When a lane change queryis
raised, the processed data is fed into module 3. This module will take a real-time decision
related to an action based on the input data. The action is: change lane to right, change lane
to left, or stay in lane. The following paragraphs are devoted to the description of the three
main building blocks of our platform:

– Module 1: Data file acquisition
– Module 2: Data processing
– Module 3: Lane Change Decision Module

Module 1 is implemented with SUMO (Simulation of Urban Mobility) which is an open
source, highly portable, microscopic and continuous traffic simulation package designed
to handle large road networks. Module 2 and Module 3 are developed with Python. It
is noteworthy that we adopted the TraCI python library (TRAffic Control Interface), that
provides a seamless interaction between SUMO and python. TraCI is beneficial to link
module 1 to the other modules.

Figure 3. Lane Change Assistance Platform.

3.2.1. Module 1: Data File Acquisition

Data was acquired using SUMO. At each time-step, kinematic data is collected form
the “ego vehicle”, as well as from six surrounding vehicles in the current and adjacent
lanes. The collected data file stores kinematic parameters retrieved by vehicle sensors and
disseminated by OBUs. It consists of a table of 50 columns, where each column represents
a single vehicle variable. The variables are detailed in the following list:

– Time-step at which the data was collected;
– Detected risk (−1 if no risk detected, else equal to the risky lane ID);
– Ego vehicle variables: X position, Y position, lane ID, velocity, acceleration;
– Neighboring vehicles variables: car ID, X position, Y position, lane ID, velocity,

acceleration, distance to ego vehicle;
– Action taken by ego (stay in lane, go left, or go right).



J. Sens. Actuator Netw. 2023, 12, 59 8 of 20

3.2.2. Module 2: Data Processing

Module 2 is a key component for data analytics. In our case, it performs the following
three tasks:

– Task1: Extract relevant data
– Task 2: Fill NA (not assigned) values
– Task 3: Reduce data dimension

Task 1: Extract relevant data The data file needed to be trimmed in the pretraining
phase, as it contained some irrelevant information for a lane-change decision (e.g., the time
step and car IDs). Therefore, we extracted the following data:

– Y position, velocity, acceleration for the ego vehicle
– Y position, velocity, acceleration, distance to ego for each of the neighboring vehicles
– Action taken by ego vehicle (stay in lane, go left, or go right).

This step yields to a total of 28 variables. Twenty-seven represent the kinematic data
that will be the input for the ML algorithm, and one variable (action) will be the desired
output (label) of the algorithm.

Task 2: Fill NA values NA values occur in different scenarios:

– At the highway entrance, where the ego vehicle does not have any followers in
any lane.

– At the highway exit, where the ego vehicle does not have any leaders.
– At the right-most lane, where there are no right-side followers or leaders.
– At the left-most lane, where there are no left-side followers or leaders.

In the first (resp. second) scenario, three virtual vehicles are added behind (resp. in
front of) the ego vehicle in each of the 3 lanes of the highway. The virtual cars are 50 m
behind (resp. ahead of) the ego vehicle, and have the same velocity and acceleration. In the
third (resp. fourth) scenario, a virtual lane is added with an index of −1 (resp. 3), and two
virtual cars are added in this lane, 50 m ahead and behind of the ego vehicle.

Task 3: Reduce data dimension with Principal Component Analysis Undoubtedly, ac-
curacy degrades when the number of variables in a data collection is reduced. Nevertheless,
smaller data sets can really be explored, analyzed, stored, and visualized more easily.
For machine learning algorithms in particular, it makes data analysis much simpler and
quicker. Principal Component Analysis (PCA) is a method for reducing the dimensionality
of massive amounts of data while yet preserving as much information as possible [53]. The
PCA method moves through the following steps in order to accomplish this goal (Figure 4):
(1) Standardization (2) Calculation of covariance matrices (3) Computation of the principal
components (4) principle component filtering and recasting of the data along the axis of the
principle components (Figure 4).

(1) Standardization: In order for each continuous initial variable to contribute equally
to the analysis, this phase standardizes the range of the variables. In fact, PCA is very
sensitive to the initial variable variances. In other words, if there are significant variations
between the initial variable ranges, the wide range variables will predominate over the
short range variables, leading to biased results. Therefore, this issue can be avoided by
translating data to comparable scales. This can be accomplished mathematically by dividing
each value by the standard deviation after deducting the mean from each value.

(2) Covariance matrix computation: Due to their high correlation, variables sometimes
contain redundant information. Therefore, it is of paramount importance to compute the
covariance matrix in order to find these correlations. Checking for any relationships be-
tween variables is the goal of this stage. The covariance matrix, which holds the covariances
related to all potential pairs of the initial variables, is a p × p symmetric matrix (where p is
the number of variables). The two associated variables grow or decrease simultaneously
when the covariance value is positive. One increases when the other declines (inversely
linked) if the covariance value is negative.



J. Sens. Actuator Netw. 2023, 12, 59 9 of 20

(3) Compute principal components: The directions of the data with the greatest level
of variance are represented by principal components: They are new variables created as a
result of linear combining or mixing the initial variables. These combinations are carried
out such that most of the information included in the original variables is compressed into
the first components, which are the new uncorrelated variables (i.e., principal components).
Since the eigen vectors of the covariance matrix are the directions of the axes that exhibit
the highest variance (more information) and that we refer to as Principal Components,
eigen vectors and eigen values are essential elements of the PCA process. The coefficients
connected to eigen vectors, known as eigen values, are what determine how much variation
is carried by each Principal Component. We obtain the principal components in order of
importance by placing all of the eigen vectors in ascending order of their eigen values.

Figure 4. PCA Principal Components.

(4) Filter principal components and recast the data along the principal components’
axis: At this stage, we decide whether to preserve all of the significant components or to
discard any that have low eigenvalues, and then we combine the remaining components to
form the “Feature vector”. The data is then reoriented from the original axes to the ones
indicated by the principal components using the feature vector created using the covariance
matrix’s eigenvectors. To do this, we multiply the feature vector’s transposition by the
original data set’s transposition.

PCA execution resulted in a reduction of the number of input variables from 27 to
only 11, while preserving 90% of the information (variance).

3.2.3. Module 3: Lane Change Decision Module

Lane change decision is a critical process that should be taken carefully. We propose
in this research work to devise the driver with the optimal decision, based on predic-
tions conducted by one of the following three ML algorithms: (1) ANN, (2) KNN and
(3) reinforcement Learning.

(1) Artificial Neural Network ANN: The training data set was divided in two sets,
with (30%, 70%) proportions. Three different architectures were proposed and tested to
find the one with the best accuracy.

– Input layer: Within the input layer, we considered 11 input neurons with the ReLU
activation function.

– Hidden layers:

* With the first architecture, we adopted 5 hidden layers with 20 neurons each,
and a ReLu activation function

* The second architecture relies on 5 hidden layers with 200 neurons each, and a
ReLu activation function



J. Sens. Actuator Netw. 2023, 12, 59 10 of 20

* With the third architecture, we adopted 12 hidden layers with 20 neurons each,
and a ReLu activation function

– Output Layer: Within the output layer, we considered 3 output neurons with the
SoftMax activation function.
Performance tests show that the first architecture exhibits the best prediction accuracy
(0.89673).

(2) K-Nearest Neighbor KNN: In an effort to adjust the value of K parameter, we
conducted a series of evaluations to assess the accuracy of multiple values of K. Therefore,
we started by adopting 70% of the training data to train our algorithm, and 30% to test K
accuracy. Highest accuracy is reached (0.908936) with K = 25.

(3) Reinforcement Learning RL: With this algorithm, no previous data points are
collected. The vehicle starts driving, collecting data, and taking random lane change
actions throughout the simulation. The collected data is then evaluated through a reward
function defined as follows:

* Positive reward equal to the distance driven with no collisions:
r1 = dnocollisions

* Negative reward:
r2 = nr1 × Pc + nr2 × Ps + nr3 × Peb + nr4 × Plc
where:

• nr1, nr2, nr3 and nr4 are negative rewards.
• Pc is the collision ratio sent by the RSU.
• Ps is the probability that the distance, separating two following vehicles, is less

than the safety distance.
• Peb is the probability that an emergency brake occurs.
• Plc is the probability that a lane change takes place.

* Total reward: R = r1 + r2 −1

Note that −1 is subtracted at each time step so that our agent learns to drive as fast as
possible, while respecting appropriate safety conditions. A discount factor of γ = 0.95 was
used to reduce the value of future rewards. After data collection and reward evaluation, we
sampled 20% of these data points that had the highest 20% rewards. An ANN was trained
using these data points, to be used in the next training episode to predict the best action
(instead of taking random actions). The loop continues until the agent is fully trained.

It is noteworthy that during training phase, 10% of the performed lane change actions
are predicted using a random policy instead of the ANN. This ensures that the environment
exploration rate is high enough so that the neural network will not converge to some
local minima.

4. End to End Delay Analysis

Lane change decision is a critical process that should be undertaken in a tight time
window. Therefore, it is of paramount importance to evaluate the V2I communication delay.
In this context, we perform an accurate mathematical modelling of the network data traffic
at the RSU level. More specifically, we consider messages that fall into two classes.

• Class 1: Safety related message sent by the RSU; This message contains the collision
ratio required for the RL utility function.

• Class 2: Global update sent by the RSU related to the OBU local update required for
the federated machine learning.

It is obvious that class 1 has a higher priority that class 2.
This section tackles the delay computation using mathematical modelling based on a

M/GI/1 multiclass. In fact, the total delay of a class-i request from a RSU to a vehicle-j,
denoted as E[Wi,j], consists of two parts:

• Queuing delay at the RSU, Ws
i,j



J. Sens. Actuator Netw. 2023, 12, 59 11 of 20

• RSU-to-vehicle propagation delay, WV2I
i,j

Thus, we have

E[Wi,j] = E[Ws
i,j] + E[WV2I

i,j ] ≤ Ti, ∀j ∈ V, (1)

where V is the set of vehicles in the scenario and Ti is the maximum waiting time for a
class-i request; the request will be considered as expired in case it is not processed by the
RSU during Ti.

The transmission delays at both the vehicle and the RSU side are neglected since these
values are very small compared to the propagation delays.

4.1. Propagation Delay

The V2I propagation delay of a class-i request is calculated by

E[WV2I
i,j ] =

di,j

ri
, (2)

where di,j is the distance separating the RSU from the vehicle-j, ri is the propagation speed.

4.2. Queuing Delay at the RSU Side

As previously mentioned, RSU tackles two types of messages: while the first deals
with safety-related issues and has a high priority, the second carries the global update and
has low priority. It should be noticed that the length of safety-related messages is variable
and follows an exponential distribution. Conversely, the length of global update packets
is constant.

At the RSU side, the service of a low priority request (i.e., global update) can be
interrupted by the arrival of a high priority request (i.e., safety message). That is to say,
the queuing model is a priority queuing with preemption. In this case, the waiting time
of the high priority requests, denoted as W1, is not affected by the low priority requests,
and is solely related to the arriving process and service process of requests of class-1. On
the other hand, the waiting time of low priority requests, denoted as W2, is affected by high
priority requests, with an additional waiting time due to the arrival and interruption from
a high priority request.

Consequently, we model the message queuing at the RSU as a M/G/1 multiclass
preemptive queue. The arriving process follows a Poisson process while the service time
follows an exponential distribution. Moreover, the service times for different safety mes-
sages are independent and identically distributed. The arrival process and service time
distributions for safety-related messages and global update messages are shown in Table 2.

Table 2. The arrival process and service time distributions.

Arrival Process Service Time Distribution

Safety Message Poisson Exponential

Global update message Uniform Constant

We define the following variables:

• ρi: the occupation rate of a class-i request;
• λi: the arrival rate of a class-i request;
• E[Bi]: the mean service time at the drone of a class-i request;
• E[Wi]: the mean waiting time in the queue of a class-i request;
• E[Ri]: the mean residual service time of a class-i request;
• E[Si]: the mean sojourn time of a class-i request, note that E[Si] = E[Bi] + E[Wi];
• E[Li]: the average number of requests of class i waiting in the queue.



J. Sens. Actuator Netw. 2023, 12, 59 12 of 20

Thus, for the total incoming traffic at the RSU, we have the following:

λ =
n

∑
i=1

λi (3)

E[B] =
n

∑
i=1

λi
λ
· E[Bi] (4)

ρ = λ · E[B] (5)

4.2.1. Mean Waiting Time of High Priority Requests

The average waiting time W1 can be expressed as follows:

E[W1] = E[L1]E[B1] + ρ1E[R1], (6)

where L1 denote the number of high priority requests waiting in the queue.

According to Little’s law we have

E[L1] = λ1E[W1]. (7)

Combining the two equations yields

E[W1] =
ρ1E[R1]

1− ρ1
. (8)

Since we have

E[R1] =
E[B2

1 ]

2E[B1]
, (9)

Equation (8) becomes

E[W1] =
ρ1

2(1− ρ1)
·

E[B2
1 ]

E[B1]
. (10)

The sojourn time is then

E[S1] = E[W1] + E[B1] =
ρ1

2(1− ρ1)
·

E[B2
1 ]

E[B1]
+ E[B1]. (11)

4.2.2. Mean Waiting Time of Low Priority Requests

As explained before, the waiting time of low priority requests can be expressed as

E[W2] = E[B2] + E[W+]

The low priority packet has to first wait for the sum of the service times of all packets
with the same priority or higher priority present in the queue plus the remaining service
time of the packet in service. Thus,

E[B2] =
2

∑
j=1

E[Lj]E[Bj] +
2

∑
j=1

ρjE[Rj]. (12)

On the other hand, the W+ is related to all the higher priority requests arriving during
its waiting time and service time. This leads to

E[W+] = λ1E[W1]E[B1]. (13)



J. Sens. Actuator Netw. 2023, 12, 59 13 of 20

Applying Little’s law gives:

E[L2] = λ2E[W2],

We obtain

E[W2] =
∑2

j=1 ρjE[Rj]

(1− (ρ1 + ρ2))(1− ρ1)
. (14)

The mean sojourn time E[S2] of a class-i customer follows from E[S2] = E[W2] + E[B2],
yeilding

E[S2] =
∑2

j=1 ρjE[Rj]

(1− (ρ1 + ρ2))(1− ρ1)
+ E[B2]. (15)

Since we have

E[Ri] =
E[B2

i ]

2E[Bi]
, (16)

Equation (15) finally becomes

E[S2] =
1

(1− (ρ1 + ρ2))(1− ρ1)
·

2

∑
j=1

ρj
E[B2

i ]

2E[Bi]
+ E[B2]. (17)

5. Lane Change Assistance Platform Validation
5.1. Simulation Scenario

Conducting large-scale and extended trials on highway and free routes presents eco-
nomic and logistical hurdles for testing and evaluating vehicular protocol implementations
in real scenarios. As a result, simulation is a practical method for verifying networking
protocols and a commonly used strategy for advancing the development of vehicular
technology.

The appropriate description of vehicular mobility models is one of the key challenges
encountered in vehicular simulations.

Without an authentic mobility model, VANETs performance results obtained from
simulations may not be in phase with performance in a real highway deployment. In this
context, we adopted Krauβ which is an efficient car-following model, adapted for a single-
lane, bi-directional straight road movement [54,55]. The model takes four input variables:
the maximum velocity vmax, the maximum acceleration a, the maximum deceleration b and
the noise η that introduces stochastic behavior to the model. It aims at

• Computing the safety speed of vehicle i, vs
i (t), required to maintain a safety distance

from its leading vehicle.

• Determining the desired new speed of vehicle i, vd
i (t), which is equal to the current

speed plus the increment determined by the uniform acceleration, upper bounded by
the maximum safe speeds.

• Determining the actual speed of the vehicle i, vi(t), by adding some randomness, due
to driver’s imperfection using the measure of a maximum percentage ε of the highest
achievable speed increment a∆t. η is a random variable uniformly distributed in [0, 1].

More specifically, the Krauβ model updates the speeds of each interval ∆t according
to the following equations:

vs
i (t + ∆t) = vi+1(t) +

∆xi(t)−vi+1(t)τ
(vi(t)+vi+1(t))/2b+τ)

vd
i (t + ∆ t) = min [vmax, vi (t) + a∆t, vs

i (t + ∆ t) ]
vi (t + ∆ t) = max [0, vd

i (t + ∆ t) − εa∆tη]
Krauβ model correctly reproduces the behavior of vehicles.
In order to validate the proposed model, we conducted extensive simulation batches.

The simulation consists of 100 episodes. In each episode, the ego vehicle, with a maximal
velocity of 100 km/h, tries to safely reach the end of a 3-lane highway of 2 km before the



J. Sens. Actuator Netw. 2023, 12, 59 14 of 20

time runs out. Figure 5 illustrates the simulated highway where vehicles circulate towards
the highway exit. The wireless infrastructure hosts multiple road side units exchanging
messages. In this study, we that each RSU exchanges with OBUs information basically
related to performance parameters.

Figure 5. Simulated Highway.

5.2. Risk Modelling

A vehicle may encounter a collision risk, such as construction work, erroneous driver
behavior or icy road. We modelled risk probability at one lane at a time. Whenever a risk is
detected in a lane, the lane is tagged “risky” for a random distance, uniformly distributed
on the highway, spanning between 30 and 200 m.

5.3. Performance Parameters

In order to evaluate the performance of the LCA platform, we measure several per-
formance parameters, namely: Collision rate, emergency brakes frequency, sojourn time,
and time driven in risky lanes.

5.4. Performance Analysis

The present subsection is dedicated for assessing the performance of the proposed
platform, that adopts three ML algorithms: RL, KNN and ANN.

(1) Collision rate The main purpose behind our of LCA platform is to reduce fatali-
ties induced by faulty lane change decision; hence collision rate is crucial for the perfor-
mance analysis.

Table 3 shows a comparison between the three adopted ML algorithms in terms of
collision rates. One can see that the reinforcement learning approach incur 15 collisions out
of 100 episodes (15 car accidents where ego vehicle was involved), whereas both KNN and
ANN agents lead to zero collisions.

Table 3. Performance Parameters.

Parameters RL KNN ANN

Collision rate 15 0 0
Average number of emergency brakes 3.89 0.45 2.88

Average number of lane change requests per episode 38.27 3.91 31.66
Average sojourn time 100.0259 96.294 95.607

In fact, many training batches were performed in order to reach an acceptable accuracy.
As pointed out earlier, a high accuracy (0.908)was reached with K = 25. On the other hand,
we oriented our efforts towards deriving the best architecture for the ANN algorithm that
yields the best prediction accuracy (0.89). Performance tests show that the best accuracy
was achieved with 5 hidden layers and 20 neurons. Therefore, we may conclude that ANN
and KNN outperform the RL algorithm.

(2) Emergency brakes frequency A brake action is qualified by an emergency brake when-
ever the deceleration required to complete the brake falls below the minimum deceleration
capacity of the vehicle. Figure 6 exhibits three histrograms related to the different adopted
ML algorithms versus the episode number; the horizontal axis represents the number



J. Sens. Actuator Netw. 2023, 12, 59 15 of 20

of emergency brakes number, and the vertical axis denotes the number of episodes (out
of 100).

Figure 6. Emergency Brakes Histogram.

One can see that KNN outperforms other ML algorithms since more that 90 out
of 100 episodes were completed with no emergency brakes at all. Table 2 depicts the
average number of emergency brakes; Results point out that KNN induces the least number
of emergency brakes. This is due to the fact that KNN exhibits the highest accuracy,
as compared to the other algorithms. Therefore, we advise KNN to be applied in order to
reduce emergency braking.

(3) Number of lane change requests Another important factor we need to take into
consideration is the comfort of the vehicle passengers. A high number of lane changes
induces a zigzag driving scheme can be annoying to the passengers as well as other drivers.
Figure 7 exhibits the number of lane change (LC) requests issued by each of the ML
algorithms, versus the episode number.

Figure 7. Lane Change Requests Histogram versus Episode Number.

Table 3 depicts the average number of LC requests. It is clear that KNN achieves a
relatively low number of lane change requests, followed by ANN, and finally RL. This
points out that KNN tends towards reducing number of lane changes. The result is
obvious due to the high accuracy of KNN that yields the lowest number of lane changes,



J. Sens. Actuator Netw. 2023, 12, 59 16 of 20

as compared to the other algorithms. Therefore, KNN may be applied in order to reduce
the annoying zigzag driving.

(4) Sojourn time Figure 8 illustrates the driving time versus episode number for each
of the three ML algorithms. The negative blue peaks represent the episodes where the RL
agent issues actions that result to car accidents (sojourn time = −1).

Figure 8. Driving Time (s) versus Episode Number.

Table 4 shows a comparison between the average driving times of the ML algorithms.
Results show that ANN leads to faster trips than with KNN, and both are faster than the
RL agent. In fact, the result is expected: since ANN and KNN incur lower lane change,
they tend towards keeping a high velocity; thus achieving low sojourn time.

(5) Time driven in risky lanes Figure 9 illustrates the time driven in a risky lane versus
episode number. The figure shows random peaks and fluctuations. To better understand
the results, the average time was computed in Table 4.

Figure 9. Time Driven in Risky Lanes (s) versus Episode Number.

We can see that this was the field where the ANN outperformed the KNN agent by a
significant margin. This could be explained by the bias of the KNN agent towards staying
in the lane. In fact, the KNN privileges reducing the lane-change request at the expense of
continuing to drive in a risky lane for a higher time. Therefore, one can conclude that the
ANN is advised when the driver prefers to avoid risky lanes.



J. Sens. Actuator Netw. 2023, 12, 59 17 of 20

Table 4. Average Time Driven (s) in Risky Lanes versus Episode Number.

KNN ANN

24.87 15.91

(6) Waiting queue at the RSU Based on the mathematical modeling provided in Section 5,
we computed the waiting average delay of the downlink traffic at the road side unit. The lat-
ter is responsible for processing global update messages and collision ratio dissemination,
needed for the federated machine learning deployment. Results show that the average
delay is bounded by 0.1 s which is quite acceptable to conduct lane change in real-time.

The following general conclusions can be drawn:

• The RL agent performs poorly. In fact, RL algorithms require relatively more training
than regular algorithms, as they start learning from random data. Different tuning
of reward and penalty points might also impact the speed of convergence of the
algorithm.

• The KNN agent performs best out of the proposed algorithms, as it induces zero
collision rate and the lowest emergency brake frequency. We note that this performance
was a consequence of the bias of KNN towards staying in the same lane.

• The ANN agent presents relative satisfying performance, with zero collision rates. It
is to be noted that ANN tends to cause higher emergency brakes due to the higher
frequency of approved lane change requests. As a conclusion, the machine learning
parameter models need to be dynamic and should adapt to the traffic fluctuation. This
issue is under study in our future research work.

6. Conclusions

Erroneous lane change is a risky phenomenon that may lead to vehicle collisions.
The present research paper provides a contribution to the development of Lane Change
Assistance Platform based on machine learning algorithms. At a first step, we detailed
the components of the proposed platform for lane change assistance: data file acquisition,
data processing and lane change decision building blocks. At a second step, we deeply
investigated data analytics process that is of paramount importance to data-driven deci-
sion making. Afterwards, we validated the platform through a detailed simulation and
computed performance parameters.

In our perspectives, we intend to integrate Unmanned Aerial Vehicles (UAV), or drones,
that will hover the vehicles. These drones will cooperate efficiently with the vehicles owing
to their LoS (Line-of-Sight) links and dynamic deployment ability. More specifically, drones
are equipped with dedicated sensors, high processing capabilities and communication
devices, that enable them to undertake computations of the following parameters: vehicular
density, collision rate computations and federated machine learning global model parame-
ters. These computations will help to refine the reward function. Moreover, the cooperation
with vehicles’ On-Board Units and infrastructures allows drones to improve infrastructure
coverage and road active safety.

Funding: This work was supported by PHC-CEDRE Project 44390SA and Datawaves project, Labex
Digicosme (project ANR11LABEX0045DIGICOSME) «Investissement d’Avenir» Idex ParisSaclay
(ANR11IDEX000302). The author would like to thank Eng. Tarek Ghamrawi for his efforts to
conduct simulations.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



J. Sens. Actuator Netw. 2023, 12, 59 18 of 20

References
1. Deng, L.; Ni, W.; Zhou, T.; Yu, Y.; Zhai, L. Analysis of Vehicle Assisted Lane Change System and Autonomous Lane Change

Model. In Proceedings of the 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and
Technology (ICERECT), Mandya, India, 26–27 December 2022; pp. 1–6. [CrossRef]

2. Ranjan, A.; Sharma, S.; Goyal, H.R.; Kumar, K.C.N. Vehicle Collision Avoidance System During Lane Change using Internet-of-
Things. In Proceedings of the 2023 International Conference on Intelligent Data Communication Technologies and Internet of
Things (IDCIoT), Bengaluru, India, 5–7 January 2023; pp. 1–6. [CrossRef]

3. Ouyang, K.; Wang, Y.; Li, Y.; Zhu, Y. Lane change decision planning for autonomous vehicles. In Proceedings of the IEEE Chinese
Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 6277–6281. [CrossRef]

4. Sun, M.; Chen, Z.; Li, H.; Fu, B. Cooperative Lane-Changing Strategy for Intelligent Vehicles. In Proceedings of the IEEE Chinese
Control Conference (CCC), Shanghai, China, 26–28 July 2021; pp. 6022–6027. [CrossRef]

5. Institute of Electrical and Electronics Engineers. IEEE Standard for Information Technology—Telecommunications and Information
Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2007.

6. ETSI 302665; Intelligent Transport Systems (ITS). Communications Architecture: 2010 .
7. Naja, R. Wireless Vehicular Networks for Car Collision Avoidance; Springer: Berlin/Heidelberg, Germany, 2013.
8. Wan, F.; Li, M. Research on Coordinated Processing Scheme of Intelligent Transportation under Big Data Structure. In Proceedings

of the IEEE 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang,
China, 15–17 May 2020; pp. 628–631. [CrossRef]

9. Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Trans.
Intell. Transp. Syst. 2019, 20, 383–398. [CrossRef]

10. Sliwa, B.; Adam, R.; Wietfeld, C. Client-Based Intelligence for Resource Efficient Vehicular Big Data Transfer in Future 6G
Networks. IEEE Trans. Veh. Technol. 2021, 70, 5332–5346. [CrossRef]

11. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2014.
12. Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
13. Jiang, C.; Zhang, H.; Ren, Y.; Han, Z.; Chen, K.; Hanzo, L. Machine Learning Paradigms for Next-Generation Wireless Networks.

IEEE Wirel. Commun. 2017, 24, 98–105. [CrossRef]
14. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F. Traffic Flow Prediction With Big Data: A Deep Learning Approach. IEEE Trans. Intell.

Transp. Syst. 2015, 16, 865–873. [CrossRef]
15. Ye, H.; Li, G.Y.; Juang, B.H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans.

Veh. Technol. 2019, 68, 3163–3173. [CrossRef]
16. Khan Tayyaba, S.; Khattak, H.A.; Almogren, A.; Shah, M.A.; Ud Din, I.; Alkhalifa, I.; Guizani, M. 5G Vehicular Network Resource

Management for Improving Radio Access Through Machine Learning. IEEE Access 2020, 8, 6792–6800. [CrossRef]
17. Afify, A.A.; Mokhtar, B. Machine Learning-based Services Provisioning for Intelligent Internet of Vehicles. In Proceedings of the

2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 51–54. [CrossRef]
18. Aljeri, N.; Boukerche, A. A Novel Online Machine Learning Based RSU Prediction Scheme for Intelligent Vehicular Networks. In

Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi,
United Arab Emirates, 3–7 November 2019; pp. 1–8. [CrossRef]

19. Wang, X.; Liu, J.; Qiu, T.; Mu, C.; Chen, C.; Zhou, P. A Real-Time Collision Prediction Mechanism With Deep Learning for
Intelligent Transportation System. IEEE Trans. Veh. Technol. 2020, 69, 9497–9508. [CrossRef]

20. Zheng, Q.; Zheng, K.; Zhang, H.; Leung, V. Delay-optimal virtualized radio resource scheduling in software-defined vehicular
networks via stochastic learning. IEEE Trans. Veh. Technol. 2016, 65, 7857–7867. [CrossRef]

21. Ahmed, K. Modeling Drivers’ Acceleration and Lane Changing Behavior. Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2005.

22. Julian, E.; Damerow, F. Complex Lane Change Behavior in the Foresighted Driver Model. In Proceedings of the 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 1747–1754.

23. Nilsson, J.; Silvlin, J.; Brännström, M.; Coelingh, E.; Fredriksson, J. If, When, and How to Perform Lane Change Maneuvers on
Highways. IEEE Intell. Transp. Syst. Mag. 2016, 8, 68–78. [CrossRef]

24. Ulbrich, S.; Maurer, M. Towards Tactical Lane Change Behavior Planning for Automated Vehicles. In Proceedings of the 2015 IEEE
18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 989–995.
[CrossRef]

25. Sunberg, Z.; Ho, C.; Kochenderfer, M. The value of inferring the internal state of traffic participants for autonomous freeway
driving. In Proceedings of the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 3004–3010.

26. Treiber, M.; Hennecke, A.; Helbing, D. Congested Traffic States in Empirical Observations and Microscopic Simulations. Phys.
Rev. E 2000, 62, 1805–1824. [CrossRef]

27. Kesting, A.; Treiber, M.; Helbing, D. General Lane-Changing Model MOBIL for Car-Following Models. Transp. Res. Rec. 2007,
1999, 86–94. [CrossRef]

http://doi.org/10.1109/ICERECT56837.2022.10060490
http://dx.doi.org/10.1109/IDCIoT56793.2023.10053502
http://dx.doi.org/10.1109/CAC51589.2020.9327195
http://dx.doi.org/10.23919/CCC52363.2021.9549462
http://dx.doi.org/10.1109/ICECTT50890.2020.00142
http://dx.doi.org/10.1109/TITS.2018.2815678
http://dx.doi.org/10.1109/TVT.2021.3060459
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1109/MWC.2016.1500356WC
http://dx.doi.org/10.1109/TITS.2014.2345663
http://dx.doi.org/10.1109/TVT.2019.2897134
http://dx.doi.org/10.1109/ACCESS.2020.2964697
http://dx.doi.org/10.1109/WF-IoT51360.2021.9596012
http://dx.doi.org/10.1109/AICCSA47632.2019.9035274
http://dx.doi.org/10.1109/TVT.2020.3003933
http://dx.doi.org/10.1109/TVT.2016.2538461
http://dx.doi.org/10.1109/MITS.2016.2565718
http://dx.doi.org/10.1109/ITSC.2015.165
http://dx.doi.org/10.1103/PhysRevE.62.1805
http://dx.doi.org/10.3141/1999-10


J. Sens. Actuator Netw. 2023, 12, 59 19 of 20

28. Hoel, C.; Wolff, K.; Laine, L. Automated Speed and Lane Change Decision Making using Deep Reinforcement Learn-
ing. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA,
4–7 November 2018.

29. Zhou, J.; Zheng, H.; Wang, J.; Wang, Y.; Zhang, B.; Shao, Q. Multiobjective Optimization of Lane-Changing Strategy for Intelligent
Vehicles in Complex Driving Environments. IEEE Trans. Veh. Technol. 2020, 69, 1291–1308. [CrossRef]

30. Hegde, B.; Bouroche, M. Design of AI-based lane changing modules in connected and autonomous vehicles: A survey. In
Proceedings of the 2022 Workshop Agents in Traffic and Transportation, Vienna, Austria, 25 July 2022.

31. Bermejo, S.; Cabestany, J. Adaptive soft k-nearest-neighbour classifiers. Pattern Recognit. 2000, 33, 1999–2005. [CrossRef]
32. McCulloch, W.; Pitts, W.A. Alogical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.

[CrossRef]
33. Rosenblatt, F. Principles of Neurodynamics: Perceptions and the Theory of Brain Mechanism; Spartan Books: Washington, DC, USA,

1961; Volume 5.
34. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2017.
35. Tong, W.; Hussain, A.; Bo, W.; Maharjan, S. Artificial Intelligence for Vehicle-to-Everything: A Survey. IEEE Access 2019,

7, 10823–10843. [CrossRef]
36. Veres, M.; Moussa, M.A. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends. IEEE Trans. Intell.

Transp. Syst. 2020, 21, 3152–3168. [CrossRef]
37. Dong, J.; Chen, S.; Li, Y.; Du, R.; Steinfeld, A.; Labi, S. Space-weighted information fusion using deep reinforcement learning: The

context of tactical control of lane-changing autonomous vehicles and connectivity range assessment. Transp. Res. Part C Emerg.
Technol. 2021, 128, 103192. [CrossRef]

38. Chen, S.; Dong, J.; Ha, P.; Li, Y.; Labi, S. Graph neural network and reinforcement learning for multi-agent cooperative control of
connected autonomous vehicles. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 838–857. [CrossRef]

39. Hwang, S.; Lee, K.; Jeon, H.; Kum, D. Autonomous Vehicle Cut-In Algorithm for Lane-Merging Scenarios via Policy-Based
Reinforcement Learning Nested within Finite-State Machine. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17594–17606. [CrossRef]

40. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.; Fidjeland, A.; Ostrovski, G.;
et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

41. Liao, X.; Zhao, X.; Wang, Z.; Han, K.; Tiwari, P.; Barth, M.J.; Wu, G. Game Theory-Based Ramp Merging for Mixed Traffic with
Unity-SUMO Co-Simulation. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 5746–5757. [CrossRef]

42. Dong, J.; Chen, S.; Li, Y.; Ha, P.Y.J.; Du, R.; Steinfeld, A.; Labi, S. Spatio-weighted information fusion and DRL-based control for
connected autonomous vehicles. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), Rhodes, Greece, 20–23 September 2020; pp. 1–6. [CrossRef]

43. Yu, C.; Wang, X.; Xu, X.; Zhang, M.; Ge, H.; Ren, J.; Sun, L.; Chen, B.; Tan, G. Distributed Multiagent Coordinated Learning for
Autonomous Driving in Highways Based on Dynamic Coordination Graphs. IEEE Trans. Intell. Transp. Syst. 2020, 21, 735–748.
[CrossRef]

44. Häfner, B.; Bajpai, V.; Ott, J.; Schmitt, G.A. A Survey on Cooperative Architectures and Maneuvers for Connected and Automated
Vehicles. IEEE Commun. Surv. Tutor. 2022, 24, 380–403. [CrossRef]

45. Yang, Y.; Luo, R.; Li, M.; Zhou, M.; Zhang, W.; Wang, J. Mean Field Multi-Agent Reinforcement Learning. In Proceedings of the
35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 5571–5580.

46. Shi, P.; Yan, B. A Survey on Intelligent Control for Multiagent Systems. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 161–175.
[CrossRef]

47. Garg, M.; Johnston, C.; Bouroche, M. Can Connected Autonomous Vehicles really improve mixed traffic efficiency in realistic
scenarios? In Proceedings of the 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN,
USA, 19–22 September 2021; pp. 2011–2018. [CrossRef]

48. Zhou, W.; Chen, D.; Yan, J.; Li, Z.; Yin, H.; Ge, W. Multi-agent reinforcement learning for cooperative lane changing of connected
and autonomous vehicles in mixed traffic. Auton. Intell. Syst. 2022, 2, 5. [CrossRef]

49. Ha, Y.J.; Chen, S.; Dong, J.; Du, R.; Li, Y.; Labi, S. Leveraging the Capabilities of Connected and Autonomous Vehicles and
Multi-Agent Reinforcement Learning to Mitigate Highway Bottleneck Congestion. arXiv 2020, arXiv:2010.05436.

50. Zeng, T.; Semiari, O.; Chen, M.; Saad, W.; Bennis, M. Federated Learning on the Road Autonomous Controller Design for
Connected and Autonomous Vehicles. IEEE Trans. Wirel. Commun. 2022, 21, 10407–10423. [CrossRef]

51. Konecny, J.; McMahan, H.B.; Ramage, D.; Richtarik, P. Federated Optimization: Distributed Machine Learning for On-Device
Intelligence. arXiv 2016, arXiv:1610.02527.

52. Samarakoon, S.; Bennis, M.; Saad, W.; Debbah, M. Federated Learning for Ultra-Reliable Low-Latency V2V Communica-
tions. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates,
9–13 December 2018.

53. Giordani, P. Principal Component Analysis. In Encyclopedia of Social Network Analysis and Mining; Alhajj, R., Rokne, J., Eds.;
Springer: New York, NY, USA, 2018; pp. 1831–1844. [CrossRef]

http://dx.doi.org/10.1109/TVT.2019.2956504
http://dx.doi.org/10.1016/S0031-3203(99)00186-7
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/ACCESS.2019.2891073
http://dx.doi.org/10.1109/TITS.2019.2929020
http://dx.doi.org/10.1016/j.trc.2021.103192
http://dx.doi.org/10.1111/mice.12702
http://dx.doi.org/10.1109/TITS.2022.3153848
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1109/TSMC.2021.3131431
http://dx.doi.org/10.1109/ITSC45102.2020.9294550
http://dx.doi.org/10.1109/TITS.2019.2893683
http://dx.doi.org/10.1109/COMST.2021.3138275
http://dx.doi.org/10.1109/TSMC.2020.3042823
http://dx.doi.org/10.1109/ITSC48978.2021.9565068
http://dx.doi.org/10.1007/s43684-022-00023-5
http://dx.doi.org/10.1109/TWC.2022.3183996
http://dx.doi.org/10.1007/978-1-4939-7131-2_154


J. Sens. Actuator Netw. 2023, 12, 59 20 of 20

54. Davies, V. Evaluating Mobility Models within an Ad Hoc Network. Master’s Thesis, Colorado School of Mines, Golden, CO,
USA, 2000.

55. Fiore, M.; Harri, J.; Filali, F.; Bonnet, C. Understanding Vehicular Mobility in Network Simulation. In Proceedings of the IEEE
International Conference on Mobile Adhoc and Sensor Systems, Pisa, Italy, 8–11 October 2007; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MOBHOC.2007.4428738

	Introduction
	Related Work
	Studied Lane Change Assistance Platform
	Global Federated Machine Learning Architecture
	Local Lane Change Assistance Platform
	Module 1: Data File Acquisition
	Module 2: Data Processing
	Module 3: Lane Change Decision Module


	End to End Delay Analysis
	Propagation Delay
	Queuing Delay at the RSU Side
	Mean Waiting Time of High Priority Requests
	Mean Waiting Time of Low Priority Requests


	Lane Change Assistance Platform Validation
	Simulation Scenario
	Risk Modelling
	Performance Parameters
	Performance Analysis

	Conclusions
	References

