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Abstract: As next-generation networks begin to take shape, the necessity of Optical Transport
Networks (OTNs) in helping achieve the performance requirements of future networks is evident.
Future networks are characterized as being data-centric and are expected to have ubiquitous artificial
intelligence integration and deployment. To this end, the efficient and timely transportation of fresh
data from producer to consumer is critical. The work presented in this paper outlines the role of
OTNs in future networking generations. Furthermore, key emerging OTN technologies are discussed.
Additionally, the role intelligence will play in the Management and Orchestration (MANO) of next-
generation OTNs is discussed. Moreover, a set of challenges and opportunities for innovation to
guide the development of future OTNs is considered. Finally, a use case illustrating the impact of
network dynamicity and demand uncertainty on OTN MANO decisions is presented.

Keywords: 6G; optical networks; next-generation networks; robust optimization; model drift;
distributed intelligence; 5G and beyond; management and orchestration

1. Introduction

The recent advances in 5G networking technologies have led industry, academia,
and standardization agencies alike to look toward the next generation of networking, 6G.
Such 6G networks are characterized by ubiquitous connectivity, higher speeds, and stricter
performance requirements compared to 5G and previous generations. Furthermore, 6G
networks are envisioned to have a much more profound integration of Artificial Intelligence
(AI) and Machine Learning (ML) to aid in Management and Orchestration (MANO) decision
making. To this end, it is important to understand the various factors affecting network
requirements, such as changing user behavior and the introduction of new and advanced
use cases when looking toward the development of future networks.

Regarding performance requirements, 6G pushes the limits of 5G networks with
an enhanced user experience and service delivery [1]. In 5G, data rates of 20 GB/s are
achievable, whereas, in 6G, TB/s data rates are envisioned. Furthermore, due to the
rapid advancements in the Internet of Things (IoT), connection densities of 107 users/km2

are being considered in 6G, thereby exceeding 5G’s connection density by an order of
magnitude. Regarding latency, 5G boasts delays as low as 1 ms; however, 6G networks
will further reduce this to 10–100 µs. Finally, 6G networks will be more reliable than 5G
networks, with 99.9999% end-to-end reliability.

The aforementioned performance requirements consider a direct comparison between
5G and 6G networks; however, additional requirements will be introduced that are not
currently supported in 5G networks. One such requirement is the intelligence level metric,
essentially defining the level of ML/AI integration in the system. To this end, a set of
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novel Key Performance Indicators (KPIs) will be developed to gauge the network’s ability
to meet the new system requirements. Given the push for ML/AI adoption, one of the
prevalent 6G KPIs is known as the Age of Information (AoI), which considers the time
between information generation and information consumption. The AoI KPI significantly
impacts ML/AI model performance, as the freshness of the data impacts the quality and
usefulness of a model’s predictive capabilities.

In 5G networks, key use cases, including Ultra-Reliable Low-Latency Communications
(uRLLC), Massive Machine-Type Communication (mMTC), and Enhanced Mobile Broad-
band (eMBB), are proposed. The implementation of 6G advances each of these use cases
through the introduction of Extremely Reliable Low-Latency Communications (eRLLC),
Ultra-Massive Machine-Type Communication (umMTC), and Further Enhanced Mobile
Broadband (feMBB). Additionally, 6G introduces additional use cases, such as Extremely
Low Power Communications (eLPC) and Long-Distance and High-Mobility Communi-
cations (LDHMC) [1]. The proposed 6G use cases enable the emergence of a plethora of
next-generation networking applications.

One of the major applications considered for 6G networks is seamless Augmented
and Virtual Reality (A/VR). In 5G, such applications are projected to require a bandwidth
capacity of 20 GB/s; however, in 6G, these applications are expected to reach 1 TB/s [2].
Another emerging application is the idea of holograms enabling telepresence. It is estimated
that an uncompressed hologram requires 4.32 Tb/s data rates with sub-millisecond latency,
something which is currently not possible with 5G networks. The widespread emergence
of telehealth and e-health services is expected to continue into the 6G networking era.
Regarding these applications, eRLLC is required to deliver <100 µs latency and 7 9’s
(99.99999%) reliability. Finally, maturing alongside the height of the Industry 4.0 revolution
puts 6G networks in a prime position to enable massive deployments of the IoT and
Industrial IoT through eLPC and umMTC.

As discussed throughout this section, 6G networking is expected to push the bound-
aries and test the limits of our network capabilities. The increased number of users, evolving
use cases, and increasingly stringent performance requirements suggest that 5G networks
will not be able to support the future demand. Additionally, due to its data-centric nature,
the amount of data generated, transported, and consumed will be unprecedented. As previ-
ously mentioned, the AoI is a critical metric in terms of 6G and beyond networks reliant on
intelligence and automation. To this end, the factors contributing to this metric, including
the delay in environment sensing, information processing, information generation, infor-
mation transfer, and information consumption, must be considered. The majority of the
mentioned contributors of the AoI metric relate to node computing resources and algorith-
mic efficiency; however, when considering the delay in information transfer, the conditions
and efficiency of the transport network are critical to minimize this delay.

The rise of Optical Transport Networks (OTN) and technologies such as Dense Wave-
length Division Multiplexing (DWDM) has revolutionized the state of our backbone trans-
port networks. These technologies, and their subsequent evolution, will be critical in
enabling future networking generations by addressing the data transfer needs across all
network regions. The advancements in the physical technology of these networks are
not the only consideration that must be made; the way in which OTNs are managed and
orchestrated and their levels of intelligence and resilience will play a critical role in their
ability to meet the growing demand.

Several works have begun outlining the requirements of 6G and how to get there.
Liu et al. [3] outline the vision and requirements for the network architecture of 6G and
beyond mobile networks focusing on digital twin integration, new application scenarios,
performance requirements, and network features. David and Berndt [4] discuss the 6G
vision and requirements for 6G, focusing on the transition between networking generations
and the requirements of 6G from the user and regulator perspectives. Finally, Liu [5]
presents an overview of enabling optical network technologies for 5G and beyond with
a focus on communication requirements and technologies. While each of the aforemen-
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tioned works discusses various aspects and requirements of future networks, they do not
conclusively address the challenges regarding the MANO of these networks as seen by the
network operators. Furthermore, many of the existing resources are highly technical and
not targeted at a diverse and mixed audience. Additionally, to the best of our knowledge,
there exists no comprehensive resource that specifically considers the vision, technologies,
challenges, and opportunities of the OTN and the role that it will play in enabling 6G and
beyond networks.To this end, the contributions of this paper can be summarized as follows:

• A vision of the role of optical networks and what they will look like in future network-
ing generations;

• A discussion as to how intelligence and automation can be leveraged and integrated
into OTN MANO;

• An overview of some of the key enabling optical technologies for future networks;
• A discussion of the challenges and opportunities for innovation in the paradigm-

shifting transition between networking generations;
• A case study highlighting the impact of network dynamicity and demand uncertainty

on management and orchestration decisions.

The remainder of this work is structured as follows. Section 2 outlines the role of
optical in 6G networks and key technologies being considered for integration into future
networks. Section 3 analyzes the effect of increasing intelligence on network operators.
Section 4 discusses open challenges and opportunities for innovation. Section 5 presents
a case study regarding dynamic networks and their effect on MANO decisions. Finally,
Section 6 concludes the paper.

2. Optical and 6G

Given the increasing performance requirements associated with 6G networks, the role
of OTNs is critical in realizing next-generation networking systems. As network complexity
and the amount of data the network generates increases, transport network operators must
adapt and enhance their networks and technologies to cope with the increasingly stringent
requirements. To this end, this section will discuss some of the key features and qualities of
OTNs in 6G and beyond networks that are not currently considered in 5G networks and list
some of the critical enabling technologies considered to realize 6G and beyond networks.

2.1. Features and Qualities of Next-Generation OTNs

The essential qualities of next-generation OTNs in 6G and beyond networks are high-
capacity fronthaul and backhaul networks, long-distance remote connectivity, and deep-
rooted AI/ML integration. As networks shift from being traditionally analytical model-
based to data-based, a significantly increased amount of network-generated data traffic
needs to be transported quickly and efficiently throughout the network. Concurrent with
the OpenRAN convention, the backhaul network is the connectivity between the Central
Unit (CU) and the Core Network (CN). In contrast, the fronthaul network is the connectivity
between the Distributed Unit (DU) and the Radio Unit (RU). The main contributing factor
to the required increase in the backhaul network’s capacity is the exponential increase in
network data generation and consumption rates. Conversely, in the fronthaul networks,
the increase in cell towers, user density, and the emergence of small cells is the motivating
factor for increasing capacity [6,7]. Figure 1 illustrates the current Radio Access Network
leveraging OpenRAN architecture, Transport Network, and Core Network configuration,
along with some expected types of User Equipment (UE) in 5G and beyond networks.

One of the main advancements of 6G networks over 5G networks is their ubiquitous
coverage. Currently, 6G is envisioned to provide network connectivity to highly remote
areas where optical fiber backhaul networks are sometimes not feasible. Additionally, 6G
coverage will extend far beyond any conceivable bound of past networking generations
through the development of underwater and outer space networks. To this end, Free-Space
Optical (FSO) networks have been proposed as an alternative to traditional fiber-based
OTNs [6]. Some advantages of FSO networks include ease of installation, maintenance,
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and reconfiguration; increased mobility; and comparable transmission speeds. Regarding
disadvantages, FSO is less secure as it is susceptible to interception.

Mobile UE

Vehicular UE

Industrial UEInstitutional UE

RU DU CU Core Network Data Network

Radio Access Network

Fronthaul Midhaul Backhaul

Emergency UE

Medical
UE

Figure 1. Current State-of-the-Art Network Architecture highlighting UE types; the OpenRAN
architecture; the identification of the front-, mid-, and backhaul networks; the core and data networks;
as well as a depiction of the connectivity between all network elements and regions.

The final quality of next-generation OTNs is the deep-rooted AI/ML integration
into all levels of the network. Some initial plans for AI applications in 6G include traffic
classification, demand prediction, and topology design [8]. Additionally, AI is required
to attain zero-touch network service management to improve MANO activities through
self-optimization, self-configuration, and self-healing.

2.2. Emerging Technologies for Next-Generation OTNs
2.2.1. Software-Defined Optical Networks

Software-Defined Networking (SDN) is a paradigm-shifting approach that separates
the control- and data- planes of the network. Due to this separation, an SDN controller is in-
troduced as a centralized entity responsible for network control. The application of SDN to
optical networks yields the Software-Defined Optical Network (SDON) to control the intri-
cacies of optical networks characterized by high transmission rates and extensive switching
capabilities. Regarding SDONs, significant research has been conducted at all levels of
the network, as summarized in [9]. The use cases for SDONs include infrastructure con-
trol, such as transceivers and Reconfigurable Optical Add-Drop Multiplexers (ROADMs),
performance monitoring at the infrastructure layer through cognitive equipment and the
application layer in terms of Quality of Service (QoS), as well as the virtualization of access,
metro, and core networks.

2.2.2. Passive Optical Networks

Passive Optical Networks (PONs) have been used extensively to deliver Fiber-to-the-
Home (FTTH) service [10]. In contrast to active optical networks, PONs leverage optical
beam splitters to split a single input signal into multiple output signals. These beam splitters
are described as being passive, as they are not powered devices. PONs are being actively
considered in 6G and beyond networks as a solution to the fronthaul capacity requirement
stemming from the increased user and cell density. Combined with Wavelength Division
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Multiplexing (WDM) or Time Division Multiplexing (TDM) technologies, the PON optical
beam splitter can serve as a powerful demand aggregator for this increased user base.
Additionally, using nonpowered devices’ positions, PONs as energy efficient compared to
traditional optical networks.

2.2.3. Elastic Optical Networks

Elastic Optical Networks (EONs) have been suggested as a candidate technology to
address the rigidity of traditional WDM-based systems [11]. The flexibility of EONs stems
from their ability to adjust essential network resources and parameters, such as channel
spacing and modulation format, based on the requested demand. This dynamic allocation
of network resources can lead to increased efficiency and better optical spectrum utilization
while ensuring that user QoS requirements are met. Another critical advantage of EONs
is the ability to provide adaptive data rates that can be scaled based on user behavior
and requirements.

2.2.4. Spectrum-Sliced Elastic Optical Path

Spectrum-sliced Elastic Optical Path (SLICE) networks are characterized by their
use of Orthogonal Frequency Division Multiplexing (OFDM) and their fine grooming
granularity capability [12]. By using OFDM, SLICE networks leverage clusters of sub-
carrier frequencies to meet a demand. Since the granularity of these sub-carrier frequencies
is much finer than the granularity of wavelengths in WDM-based systems, SLICE networks
are better equipped to handle many smaller demands. Consideration must be taken in
SLICE networks regarding the spectral continuity and consecutive sub-carrier constraints,
which ensure the availability of sub-carriers from source to destination and the spectral
adjacency of selected sub-carriers, respectively.

3. Intelligence and Automation

Improved network performance and AI/ML capabilities are two topics that form a
symbiotic relationship in the realm of future networks [13]. In order to realize the full
potential of future AI applications, the network must be able to quickly and efficiently
transfer data to reduce the AoI metric and ensure the AI model has access to the freshest
data and information. Conversely, AI is necessary to optimize network MANO activities
to achieve future network performance. Fundamentally, future networks must have both
elements to ensure the required performance targets are met.

A distinct path to achieve AI integration into the core network has been defined,
starting in 5G with the introduction of the Network Data Analytics Function (NWDAF)
into the core network architecture [14]. The NWDAF is the first standardized induction of
AI/ML into the core network operating practices and is designed to support policy and
decision-making practices in 5G networks. Looking towards future networking genera-
tions, the role of AI/ML will be significantly more profound than a single core network
function, with widespread and ubiquitous intelligence expected at all levels of the network.
Additionally, as future networks take shape, the need for advanced methods of intelli-
gence that address the increasing complexity, scalability requirements, and privacy and
ethics concerns must be considered [15]. Finally, given the massive amounts of network-
generated data, unsupervised learning techniques are expected to be an integral part of the
data-processing pipeline, specifically for data labeling purposes.

While the role of AI/ML in the core network is becoming increasingly well-defined
and more precise, a focus must be put on ensuring the same for next-generation OTNs.
Specifically, regarding OTNs, AI has been highlighted as providing benefits such as im-
proving network device operation and optimizing network performance. The extensive
list of AI applications for next-generation OTNs can be classified into network-level and
equipment-level applications.

Regarding network-level applications, resource prediction, management, and allo-
cation are at the forefront of consideration [16]. By being able to predict future resource



J. Sens. Actuator Netw. 2023, 12, 43 6 of 15

requirements and autonomously manage their allocation lifecycle, network operators can
ensure the higher efficiency and utilization of said network resources. Another critical
application considering the increased QoS requirements and SLA guarantees in 5G and
beyond networks is the ability to vary SLAs dynamically [13]. Regarding network security,
intrusion detection systems coupled with traffic classification have been a significant area
of research for AI, with numerous advancements in recent years. These advancements will
continue into future networking generations and integrate new security technologies such
as quantum security [6,17]. In terms of network performance, one of the main applications
of AI is traffic forecasting as a means of load prediction and peak detection. Finally, end-to-
end QoS, application-based Quality of Experience (QoE), and physical network Quality of
Transmission (QoT) forecasting can be used to predict unfavorable network conditions and
proactively work towards mitigating them before they materialize.

In terms of equipment-level AI applications, predictive maintenance is a critical use
case being considered across many fields. Through predictive equipment maintenance,
the failure of a specific piece of equipment can be predicted such that planned maintenance
can be conducted instead of reactive maintenance. Economically, planned maintenance is
much more cost-efficient than reactive maintenance, and practically, planned maintenance
allows the operator to ensure service continuity without experiencing a fault scenario.
Additionally, through AI, fault detection and localization can be conducted more accurately
and efficiently. Regarding the management of equipment and devices, AI can be leveraged
to optimize their configurations and active management, similar to resource management
in network-level applications [17]. Finally, fiber-related issues such as fiber nonlinearities
can be detected and mitigated.

As demonstrated throughout this section, the impact of AI applications in future
transport networks is profound. Realizing this incredible potential through the cycle of
continuous network performance improvement and enhanced AI capabilities is a critical
step toward shaping the future of OTNs.

4. Challenges and Opportunities for Innovation

The following section will outline the challenges and opportunities of next-generation
optical networks.

4.1. Challenge: Demand Uncertainty

Given the increasing number of users and emerging applications with each networking
generation, demand uncertainty significantly affects network MANO decisions. The effects
of demand uncertainty on a network capacity planning problem can be detrimental to the
final network performance, more specifically, the survivability of the network. Traditionally,
MANO decisions are made using snapshots of network conditions along with deterministic
solution methods. Considering the highly dynamic nature of next-generation networks,
this approach is exceptionally naïve, as it assumes network conditions will not vary over
time. To this end, solutions leveraging robust optimization are better suited to address the
demand uncertainty in future networks [18].

4.2. Opportunity: Robust Optimization and Learning Methods

Robust optimization methods consider the effect of parameter deviation when deter-
mining a solution. They are flexible in the conservativeness of the solution they return
through tunable parameters determining the number of system parameters that can deviate
from their nominal value and the percentage of their nominal value by which they deviate.
Due to their mechanics, robust optimization solutions may be sub-optimal at the time
of solving compared to a deterministic optimization solution; however, given parameter
uncertainty, the solution will be protected, and the constraints will not be violated in the
presence of uncertainty [19]. Leveraging robust optimization techniques enables the net-
work operator to plan for the future condition of the network and proactively ensure its
survivability and reliability.
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Despite its benefits, robust optimization has seen limited use in network MANO
problems. One of the reasons for this is that it introduces additional variables in the formu-
lation, making it more complex to solve than deterministic optimization problems. Given
the increasing size and complexity of next-generation networks, optimization problem
formulations, in general, are becoming more and more infeasible, given the processing
and time requirements to achieve a solution. To this end, a critical avenue for future
work is the development of robust learning methods that can emulate the performance of
robust optimization formulations with reduced time complexity. An essential technique for
achieving this will be deep reinforcement learning, given its ability to learn policy decisions
and adapt to various environments.

Another criticism of robust optimization in OTNs is the level of overprovisioning in
the network due to reserve capacity, a common concern with optical path recovery schemes
as well, despite the ability to directly configure the required level of overprovisioning in
the parameterized formulation. To this end, the results of a study conducted by the Fibre
to The Home Council of Europe are particularly interesting [7]. In their study, the council
explored using spare fiber capacity to handle demand uncertainty. Their study found
that reserving spare fiber capacity to address demand uncertainty had minimal additional
initial cost with incredible reactive cost reduction. The results of this study are promising
for developing the appropriate practices to ensure that the intricacies of future networks,
including demand uncertainty and variable QoS and QoE requirements in services and
applications, are considered throughout the entire MANO lifecycle.

Figure 2 compares solutions to a resource allocation problem which use deterministic
and robust methods. As seen in Figure 2, the deterministic method produces an allocation
that uses the entirety of the initial capacity. In contrast, the robust allocation has some
unused capacity—the effects of demand uncertainty cause parameter deviation, which
lead to a demand increase. Since the robust method has some unused capacity, it can
deal with the increase in demand. In contrast, an overcapacity event is observed since the
deterministic allocation did not consider the possibility of parameter deviation. This theme
will be further explored in the case study of this paper.

Demand 
Uncertainty

Parameter
Deviation

Initial 
Capacity

Deterministic
Allocation

Robust
Allocation

Figure 2. Robust vs. Deterministic Capacity Allocation under Demand Uncertainty and Parameter
Deviation. When using robust allocation methods, some spare capacity is provisioned to ensure the
solution’s feasibility under parameter deviation. The increase in demand (yellow) during uncertainty
is handled by the robust allocation but exceeds the capacity in the deterministic allocation.
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4.3. Challenge: Machine Learning Model Drift

All machine learning applications are subject to model drift; however, given the
expected dynamicity, the use of AI/ML in future networks is severely prone to the effects
of model drift [20,21]. Model drift can be defined as degradation in the performance of
a trained ML model due to a change in its deployment environment. ML model training
is highly dependent on the training data or training environment it learns from; if the
environment in which a model was trained is not representative of the environment in
which it is deployed, the effects of model drift will be felt. There are various types of
model drift, including data drift, in which a change in the statistical distribution of the data
changes, and concept drift, where the underlying relationship changes. In order to ensure
the safety and reliability of ML-based decisions in future networks, care must be taken to
ensure model drift events are detected and mitigated before they can negatively impact
network MANO decisions.

4.4. Opportunity: Drift-Resistant Architectures and Frameworks

Detection, mitigation, and prevention are the main aspects of addressing model
drift [22]. In terms of detection, methods that monitor the performance of a model or the
statistics of the environment data observed can be used to detect the presence of model drift.
Once detected, drift adaptation techniques that continue model training or that train a new
model can restore performance to a pre-drift state. In terms of prevention, drift-resistant
architectures such as federated and reinforcement learning can be used to survive a drift
without performance degradation.

In terms of innovation, the continual development, improvement, and deployment of
drift detection and mitigation frameworks, as well as drift-resistant model architectures
that conform to the requirements of future networks, is critical. Given the detrimental
impact model drift can have on a network coupled with the widespread use of AI/ML
in future networks, the prompt detection and mitigation of drift are paramount. To this
end, reducing the detection time of drift is a first step towards this end goal; however,
a forecasting framework capable of predicting drift events before they occur is ideal, as
it would give the operators enough time to take steps towards drift mitigation before the
drift materializes.

Figure 3 illustrates an ML system drift detection and mitigation framework. As seen
in Figure 3, when an observation is passed to an ML model, the preferable architecture is
to consult with a drift detection framework based on the model’s prediction. If a drift is
detected, the drift mitigation framework activates to remedy the situation. The result of
these added components to the ML lifecycle is the performance recovery stage. Conversely,
when no mechanisms are in place to detect and adapt to a drift, the model experiences
performance degradation.

4.5. Challenge: Distributed Network Data and Information

Given the vast expansion of future networks, OTN management data are expected
to be distributed throughout the network [23]. To this end, relaying all data to a cen-
tralized location is inefficient in terms of communication resources but also in terms of
privacy and security. This data distribution poses a challenge for MANO activities, as
centralized intelligence methods would not reach their full performance potential with
fragmented and oftentimes incomplete representations of the network through partial data
availability. Furthermore, the relationships observed at various network regions may differ,
leading to model drift if not handled accordingly. To this end, various strategies for dis-
tributed learning must be explored, adapted, and implemented for use in next-generation
OTN networks.

4.6. Opportunity: Distributed Intelligence Techniques

The most prevalent form of distributed intelligence, which was alluded to earlier in
this section, is federated learning. Since its development, federated learning has gained
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significant traction due to its ability to preserve privacy while leveraging insights from
various data sources. In federated learning, all collected data are stored and processed
locally without being transferred to a central location. An entity known as an aggregation
agent distributes a global model to each federated node, which is then trained locally using
the node’s available data. The node then sends a model update to the aggregation agent,
who aggregates all the node updates and distributes the revised global model. This training
process continues perpetually or until a termination criterion is met [24,25].

Observation

ML Model

ML Model

Drift Detection
Framework

Drift Mitigation
Framework

Performance
Recovery

Performance
Degradation

Figure 3. A high-level comparison of the ML system performance with and without a drift detection
and mitigation framework. Without a framework in place, a noticeable performance degradation
is observed. Conversely, when a framework is in place, corrective actions are taken to recover and
restore system performance to pre-drift levels.

While federated learning is an important distributed intelligence technique, it is not
the only one and is not suitable for every situation. Additional ML frameworks and
architectures, such as gossip learning, which removes the aggregation agent and employs
a more peer-to-peer approach, have recently gained attention [26]. Furthermore, moving
beyond the model architecture and framework, the concept of digital twins will play a
significant role in future networks. Digital twins can be described as a virtual replica of a
physical process that exists in parallel to the process. To this end, using distributed learning
techniques in digital twin architecture is a logical next step and has already been coined as
federated digital twin architecture [27]. The continual development of distributed learning
techniques, their inclusion in digital twin architectures, and the role of digital twins in
next-generation OTNs is a critical avenue of future work in the field.

Figure 4 compares a centralized intelligence scheme against a distributed one. As dis-
cussed above, the premise of this comparison is that network data and acquisition will
occur over a distributed area. In the case of centralized intelligence schemes, all collected
data must be sent to a centralized intelligence entity responsible for model training and pre-
diction. This is highly inefficient in terms of communication resources and model inference
time and leads to a single point of failure in the system. In contrast, each data collection
point in the distributed intelligence framework has its own intelligent agent, and no mass
data sending occurs.
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Centralized
Intelligence

Distributed 
Intelligence

Figure 4. A comparison between a centralized intelligence scheme and distributed intelligence scheme
(federated learning). In the centralized scheme, all entities send their data to a centralized agent that
is responsible for processing and insight generation. Conversely, in the distributed scheme, all entities
have an intelligence agent that exchanges model parameters and insights with the aggregation agent
without the transfer of entity data.

5. Case Study: Network Dynamicity—Demand Uncertainty

This section compares robust and deterministic optimization applied to the OTN traffic
grooming and infrastructure placement problem. This case study is meant to be illustrative
and highlight the benefits of robust optimization. A full mathematical formulation and
extensive analysis of the results is available in [28]. The premise of this illustrative use case
is that a network planning engineer is required to plan the OTN infrastructure required
to groom a set of demands. The inputs to this optimization problem are the physical
network topology and the set of demands. This optimization problem aims to minimize
the cost-weighted number of optical channels created and OTN switches deployed in the
network. Given this objective, the optimization problem determines the optimal grooming
and required OTN infrastructure. The capacity constraints pertain to both the optical
channel capacity constraint (i.e., the sum of demands using an optical channel cannot
exceed its capacity) and the wavelength capacity constraint (i.e., the number of optical
channels created using a physical link cannot exceed the available wavelengths on said
link). The demands are allowed to be fractional flows in this formulation to refine the level
of grooming.

The National Science Foundation Network (NSFNET) topology is used for the experi-
ment, with 80 wavelengths on each physical link. Optical channel capacities are determined
based on the standard modulation formats corresponding to physical distances traversed.
A set of 250 demands with requested bandwidth uniformly distributed along the range
from 10 to 50 GB/s is considered. Multiple robust solutions are determined while varying
the number of demands subject to uncertainty and the maximum percentage by which
each demand can deviate from its nominal value. It should be noted that when conducting
robust optimization, the worst-case demand deviation is considered and protected against
in the solution. Additionally, the deterministic solution is used as a basis for comparison, as
all deterministic solutions, including near-optimal heuristic solutions, will behave similarly.
Furthermore, performance-wise, the set of deterministic solutions can perform as good as



J. Sens. Actuator Netw. 2023, 12, 43 11 of 15

but not better than the optimal solution. The optimization models were run on an Intel®

Xenon® Gold 6348 CPU@2.6 GHz 512 GB RAM industrial-grade server.
Figure 5 presents the first set of results, where the robust and deterministic solutions’

objective values are considered. It should be noted that the case where 0% of the demands
are allowed to deviate (denoted by the red bars) corresponds to the deterministic solution
and hence is consistent across all deviation percentages. The x-axis denotes the maximum
percent deviation a demand can assume. In contrast, the bar’s color determines the
percentage of demands allowed to deviate when determining the robust solution. Both
these parameters control the conservativeness of the solution and, by extension, the level of
overprovisioning in the system. As seen through these results, as the number of demands
allowed to deviate increases, so does the objective value due to overprovisioning through
reserve capacity. Additionally, as the percentage of deviation increases, so does the objective
value. Comparatively, the increase in percentage deviation yields a higher jump in the
objective value compared to the increase in the number of demands that can deviate.
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Figure 5. A comparison of the objective value between the deterministic (red) and robust (blue,
purple) optimization model across various levels of solution conservativeness.

Figure 6 presents the second set of results where the percentage of capacity violations
resulting from simulated demand uncertainty is compared. In order to simulate demand
uncertainty, each demand is allowed to vary along a range defined by the nominal value
and the percent deviation. For example, if a demand has a nominal value of 10 and a
deviation percentage of 10%, its value during the demand uncertainty is along the range
between 9 and 11. Similarly, if the same demand has a deviation percentage of 50%, its
value during the demand uncertainty is along the range from 5 to 15. In order to assess
the performance of the models across a range of uncertainty scenarios, these simulated
demand uncertainty trials are conducted 10,000 times. The results in Figure 6 present
the number of optical channels that experience an overcapacity event stemming from the
aggregate statistics of the 10,000 trials. As seen through these results, in all cases, the robust
optimization led to a solution that protected against demand uncertainty in every scenario.
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The same cannot be said for the deterministic solution, in which 50–100% of the optical
channels in use experienced an overcapacity event at some point during the demand
uncertainty simulation trials.
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Figure 6. A comparison between the solution of the deterministic and robust optimization models
under varying levels of demand uncertainty and parameter deviation. The robust method was able
to cope with the demand uncertainty and protect the solution, exhibiting no overcapacity events.
Conversely, the deterministic solution was unable to cope with the demand uncertainty and exhibited
an increasing percentage of overcapacity.

These overcapacity events suggest that the grooming solution and deployed infras-
tructure cannot cope with demand uncertainty and the change in load exhibited. Practically
speaking, this would lead to blocked requests, incomplete services, and network dis-
ruptions requiring reactive maintenance and reconfiguration. As previously mentioned,
the initial cost of reserve capacity to deal with demand uncertainty is minor compared to
the costs associated with reactive network maintenance. This use case illustrates the detri-
mental effect demand uncertainty can have on a deterministic solution using a snapshot of
the demand matrix and a given point in time.

6. Conclusions

In conclusion, this paper presents a comprehensive resource for all audiences dis-
cussing the role OTNs will have in enabling the next-generation and future networks,
the technologies being considered to achieve the anticipated performance requirements,
the challenges faced by network operators, various opportunities for innovation to address
these challenges, as well as a case study demonstrating the effect of demand uncertainty
on OTN resource allocation tasks. The work presented in this paper demonstrates the
integral role of optical transport networks in next-generation networking systems. Integrat-
ing technologies such as Software-Defined Optical Networks, Passive Optical Networks,
Elastic Optical Networks, Spectrum-sliced Elastic Optical Path Networks, and Free-Space
Optical Networks will help realize the vision and performance requirements of 6G and
beyond networking generations. As discussed, machine learning and artificial intelligence
will have a significant role to play in next-generation optical network management and
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orchestration. Finally, challenges such as demand uncertainty, model drift, and distributed
network data give rise to incredible opportunities for innovation regarding next-generation
optical network development.
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