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Abstract: The current work is an illustration of an empirical investigation conducted on a pharma-
ceutical water treatment plant that subsequently proposes potential ICT implications for optimizing
the plant’s conventional operating procedures and improving production efficiency. Typically, the
pilot plant incorporates a standard infrastructure for maintaining quality and production goals. In
the study, a schematic of the reverse osmosis section of the pilot treatment plant was developed.
A mathematical modeling and process simulation approach was adopted to carry out the linear
process investigation and validation of key performance parameters. The study’s findings reveal that
the performance and lifecycle of the RO treatment unit are primarily determined via the structured
pre-treatment filtering procedures, including critical parameters such as volumetric flowrate, solute
concentrations, and differential pressure across the membrane. These operational parameters were
also found to be instrumental in increasing plant production and improving equipment efficiency.
Based on our results, the study proposes cost-effective ICT implications for plant managers through
which pilot organization can substantially save on their annual water and energy consumption.

Keywords: water treatment plant; pharmaceuticals; ICT; pilot study; Pakistan; sensors and actuators;
simulation modeling; process analysis

1. Introduction

Due to the ageing of infrastructure and population expansion, improving sustain-
able water management is a crucial and increasingly important issue [1]. By 2050, food
expectancy is estimated to double due to the increase in world’s population, which might
exceed 9 billion people [2]. Insufficient water or inadequate water management systems
will significantly constrain the increase in food production. In particular, droughts, erosions,
and other climate culminations are worsening water scarcity. To address these challenges,
various research and development activities affiliated with global research institutions em-
barking new solutions supported by more rational management were recently conducted
to canvass different technological areas [3–5]. Currently, besides from Goal 6 “Clean Water
and Sanitation” of UN SDGs of the 2030 agenda for sustainable development [6], water is
involved in various sustainability targets and is essential in achieving a majority of other
SDGs, such as poverty reduction, food production, healthier lifestyles, economic growth,
and environmental sustainability. Sustainable water usage is also fundamental to combat
climate change [7].

In this regard, a new generation of innovative analytical tools offer a wide range of op-
portunities to address these challenges and transform raw data into actionable intelligence
both strategically and tactically. Likewise, big data analytics can help in identifying infras-
tructure failures, reducing water losses, preventing overflows, and measuring asset health.
Moreover, data can unlock operational efficiencies, identify maintenance opportunities,
and guide long-term investment plans [8].

Despite big data technology’s relative maturity as a cutting-edge ICT tool and its
adoption in numerous sectors globally, uptake in the water industry for sustainable devel-
opment purposes remains limited to date [9]. For instance, multinational corporations, such
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as Coca-Cola, Pepsi, Nestle, Abbot, IBM, General Electric and other companies of similar
capacity, which are working hard to reduce their freshwater dependencies; technology
startups, such as Imagine H2O, TaKaDu, and a few others that address the water–energy
generation nexus and need for more intelligent infrastructure; and other companies that
are advancing to become responsible water stewards need to reconsider their operational
strategies for data acquisition, administration, and appropriate decision-making based
on the obtained information, which could significantly enhance their performances as
organizations [10].

1.1. ICTs Role in Water Industry

The evolution of ICT in the water industry and its far-reaching effects towards sus-
tainable environment attracted unparalleled recognition in recent years. It is observed that
the continuous improvements in ICT tools and application methods are vital for a resilient
water management infrastructure, as well as to preserve biodiversity in terrestrial and
aquatic ecosystems [11]. In fact, these advanced ICT systems are mainly smart sensors, big-
data analytics tools, and Internet of Things devices, which now lead the world’s collective
economic, social, and cultural development [12].

As we move into the era of innovation and technology, performance monitoring, asset
maintenance, and treatment operations are identified as the top three operational areas
in water resource management that data analytics and IoT sensor networks would help
to improve the most [13]. An illustration of this potential is shown in below Figure 1,
with results based on a survey conducted by Black and Veatch. Through improving
these operational areas, businesses will be able to achieve lower operating costs, improve
procedures, and extend asset life, which are some of the leading challenges in the water
industry at present.
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1.2. Smart Meters and Sensors

Smart meters and sensing systems are core ICT solutions that enable advanced water
management. The automated systems mainly work as communication media for the
total solution of sustainable water management framework, which typically helps to
identify infrastructure failures and facilitates real-time controlled waterflow monitoring
to prevent water losses. Moreover, the smart system measures the consumption and
abstraction of water and automatically communicates the acquired information for tracking
and billing purposes. This type of technological advancement helps to minimize water
consumption, aid in improving outdated water infrastructure, and expand access and
delivery of data acquisition to increase the returns-on-investments on account of reliability
and transparency [14]. In addition, more viable benefits endured through these smart
meters and sensing system include optimized process operations, precise planning and
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decision making, reduced staffing, improved safety protection, and quality information [12].
Figure 2 illustrates the benefits of an intelligent water management system, which consists
of smart sensors’ networks and has the ability to detect, communicate, and optimize water
solutions in real time. The illustration is adopted from an event report published by the
Asian Development Bank that focused on PPPs and high-technology water solutions [15].
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1.3. Simulation Modeling in Water Industry

For the water-reliant process industry, computer-based simulation modeling technol-
ogy is widely used as the decision support tool that provides long-term, cost-effective, and
sustainable water solutions to large-scale and complex operational problems. Typically, it is
a modeling technique used to imitate and evaluate the dynamic behavior of a real system
in discrete time steps, which are represented via mathematical expressions and logical
procedures in a programming environment that gives water managers and decision makers
a clear path to recognize troubling trends, evaluate the underlying causes, and choose the
best course of action for any proposed water handling system before it is put into practice.
Traditional water management simulations are generally complex and dynamic models,
with adjustments being made to essential parameters based on the system operational
requirements needed to achieve optimal results.

Though applications of simulation modeling evolved over the years, the technique
was first practiced dynamically with water resource management and its agricultural use
in the late-1970s [16]. Since then, the technology gained much global recognition among
research scholars, with more research studies being conducted by academics to solve
complex water-related operational problems using computer simulation tools.

For example, [17] developed a dynamic simulation model using computer-programmed
algorithms and STELLA modeling software tool to control the operation of supply pumps
for water distribution in storage tanks. The created model simulated the fluctuating water
levels of reservoirs in a water supply system and successfully estimated the cost of pumping
operation in regular and emergency situations.

In [18], the authors conducted a scenario-based study using the system dynamics
simulation approach (SDSA) to analyze the interaction of various functions in a multi-
purpose reservoir operation system. The functions, which were investigated for their
interactive effects in a reservoir, were hydropower production, environmental impacts,
and landslide stability. The developed simulation model successfully demonstrated the
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reservoir’s characteristics of handling dynamic situations in an environmentally friendly
operating condition.

In [19], the authors performed a periodic sensitivity analysis of an industrial wastewa-
ter treatment plant (WWTP) using process simulation on a STOAT modeling software. The
simulation study helped in identifying the contaminants removal efficiency of the plant
and the most critical parameter affecting its performance.

In [20], the authors revealed the interdependency of a multistage medium-scale reverse
osmosis (RO) desalination plant performance on membrane type, configurations, and plant
operating conditions. The study used a simulation model to investigate different brands of
membranes to find the most suitable one that can achieve maximum plant performance
with minimum energy consumption, and successfully proposed the Filmtec BW30LE-
440 membrane type as the best fit to implement at the pilot plant for more efficient and
sustainable operation.

1.4. Sustainable Water Management Situation in Pakistan

Pakistan is one of the nations most at risk from the negative effects of climate change [21].
Pakistan’s rainfall patterns could be significantly impacted by the rising global temperature,
posing a substantial threat in the form of more frequent and severe floods and extended
droughts. [22].

By 2030, there will likely be a water shortage in the country, which has a population of
over 220 million people and rising water demand [23]. By 2025, water demand is expected
to increase by 10% annually, potentially reaching 338 billion cubic meters. However, the
amount of water available per person in the whole country has decreased from 1700 cubic
meters in 1992 to 1090 cubic meters in 2012 [24]. Pakistan ranks quite low among the
122 countries assessed in terms of the quality of their drinking water, coming in at number
80 [25]. Moreover, as a developing state, the country has limited financial capacity and
insufficient funds allocated for the development of sustainable water infrastructure to
meet their national targets [26]. Traditionally, sustainable water management was closely
associated with economic growth and poverty mitigation. However, it is unfortunate that
the country’s overall performance is rather poor in terms of the water economy.

Owing to the depressive water management situation in Pakistan, it is crucial to
integrate and analyze the country’s regulatory system and technological infrastructure for
a holistic sustainable water development. In order to foster conservation, efficiency, pro-
duction, and disaster relief, effective water management requires a strategy that integrates
institutions, policies, skills, and technology.

1.5. Case Study: Pharmaceutical Water Treatment Plant

To carry out this research, a pilot-study method was used to empirically quantify
and validate the measured operational data, while the pilot plant was operating at regular
production efficiency. The study plant was based in Karachi, the capital city of Sindh state,
Pakistan, which employs discrete sensors to carry out staged water treatment operations,
water flow control, and quality monitoring. Therefore, to improve the plant’s operational
efficiency, a mathematical modelling and simulation approach was employed.

The main underground reservoir of the pilot water purification plant (Figure 3) had a
total storage capacity of 60,000 gallons, while its production capacity was 2800 LPH. The
plant used 35,000 gallons of city lake water each day, of which approximately 30,000 gallons
were treated and used each day to produce a variety of medical goods, namely syrups
and pills, and in the sanitization of machine apparatus. Table 1 presents the plant’s
operational capacity.
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Table 1. Daily Consumptions and Plant capacity.

Total storage capacity 60,000 Gallons
Production capacity 2800 LPH
Water intake per day 35,000 GPD
Total discharge per day 0.65 m3 or 171.71 GPD

2. Simulation Modeling and Results Analysis

This section exhibits the overall findings and analysis of the simulation modeling
performed using MATLAB-Simulink on a pilot water treatment plant owned by a pharma-
ceutical manufacturing company. In particular, the pilot plant is equipped with traditional
infrastructure used to maintain quality standards and satisfy production goals. Through
applying a linear mathematical approach [27] to key sub-systems, fundamental purifica-
tion techniques were rigorously examined in the study. The reverse osmosis section, in
particular, underwent empirical testing to examine the process and interdependencies of
crucial parameters. Thus, through means of various plant sensors employed at the facility,
performance of key parameters was closely observed to evaluate the treatment process via
comparing the real measured data with the findings of the simulation model, which served
as a system validation and process optimization.

2.1. RO Plant Schematic

The simulation model for the RO section of a complete pilot water treatment plant is
illustrated conceptually in Figure 4 and examined in this section for process analysis and
control optimization. The first tank model in the figure aims to simulate the operation of an
overhead tank with a total capacity of 40,000 gallons and projected inflows and outflows
of 100 gpm and 18 gpm, respectively, to the feed side of the membrane. An analogue
electrode level sensor is programmed to automatically control the water level in the OH
tank employed from the top of the reservoir, transmitting the signal through the controller
to the main centrifugal pump to turn the motor supply on or off at the pre-defined liquid
levels in the tank: 8000 Gallons (low-level) and 32,000 Gallons (high-level), respectively.
Figure 4 contains the developed simulation model of the overhead tank level system.
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2.2. Simulation Modeling of Analogue Electrode Level Sensor in OH Tank

Figure 5 presents two simultaneous output graphs obtained from the designed simula-
tion model of the overhead tank level control system. In the graph, the upper plot presents
the turning on/off of the main centrifugal pump connected with a controller that transmits
the incoming water stream to the overhead tank system with an estimated inflow rate (Q1in)
of 100 gpm, while the lower plot represents the continuous change in the water volume of
the OH tank.
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As illustrated, when the liquid volume in the tank hits the minimum level
(0.8 × 104 Gallons), the supply stream to the tank starts with an inflow rate (Q1in) of
100 gpm. While the tank volume reaches to maximum level (3.2 × 104 Gallons), the supply
stream from the centrifugal pump stops until it again reaches the minimum level. Here,
it is important to note that the outflow (Q1out) is discharging at a rate of 18 gpm to the
feed stream of RO unit. Since the total tank volume (Vt), volumetric inflow, and outflow
rates are known parameters, the estimated time duration to completely fill the tank to
maximum level is calculated as 4 h, while the system took 22 h to fully drain the tank and
reach the minimum level. In general, this is a real-time continuous process designed and
programmed using computer simulation modeling tool.

Furthermore, the system’s second tank model was designed to imitate the operation
of the RO holding reservoir, which has a 3000 Gallon total capacity. This tank stores the
purified water after RO treatment for additional post-treatment procedures. Thus, the
rate of inflow to the RO tank is the permeate flowrate of the RO membrane, measured as
10 gpm approximately. In the same way, the analogue electrode level sensor is employed
from the top to actively monitor and control the liquid level in the reservoir. Thus, the flow
control supply valve is opened or closed with a delay to the hp-pump motor positioned
before the RO membrane after the level sensor delivers a signal to the controller based on
the pre-defined liquid levels, i.e., 900 Gallons (low-level) and 2700 Gallons (high-level).
Figure 6 presents the developed simulation model of the RO holding tank level system.
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2.3. Simulation Modeling of Analogue Electrode Level Sensor in RO Holding Tank

Figure 6 presents two continuous concurrent output graphs obtained from the de-
signed simulation model of the RO holding tank level control system. In the graph, the
upper plot presents the turning on/off of the RO flux inflow to the holding tank. In this
tank, the liquid level sensor controls the solenoid supply valve with a delay to the hp-pump
motor implemented before the RO membrane to control the feed pressure. Thus, the vary-
ing permeate flowrate (Fp) of RO membrane is the flux inflow rate (Q2in) to the RO holding
tank, which is measured as 6.00–14.00 gpm.

However, the lower plot represents the continuous liquid levels in the RO tank. There-
fore, when the tank volume reaches the low level (900 Gallons), it quickly starts to fill
up with an inflow rate equivalent to the RO permeate flowrate. In the simulation, (Q2in)
is measured as 10.82 gpm. As the tank becomes completely filled with RO flux and hits
the high level (2700 G), the incoming RO stream stops until it again drains to the low
level. Practically, the outflow discharge rate (Q2out) from the RO tank is taken as 1–5 gpm
to transmit the product stream to further post-treatment sections in the plant, such as
the deionization column. Table 2 presents the operational parameters obtained from the
running pilot plant.

Table 2. Measured operational parameters.

Change in Pressures Volumetric Flowrate Dissolved Concentrations

Pressure switch, pressure transducer Turbine flow transmitter TDS sensor

Psi gpm mol/L

Pf ∆P ∆π Ff Fp Fr Cf Cp Cr

18.00 11.505 8.4151 18.03 13.9998 4.0000 0.012 0.0003 0.0529
20.40 12.724 9.0193 17.80 12.3997 5.4026 0.012 0.0003 0.0416
22.49 13.943 9.6235 17.60 10.7997 6.8052 0.013 0.0004 0.0350
25.11 15.162 10.227 17.40 9.19979 8.2077 0.014 0.0004 0.0306
27.88 16.381 10.831 17.21 7.59979 9.6103 0.015 0.0005 0.0275
30.19 17.600 11.436 17.01 5.99979 11.012 0.016 0.0006 0.0251

Temperature 25 ± 3 ◦C (PT-100 Sensor)

2.4. RO Transport Simulation Model

The semipermeable TFC RO membrane, for which the operational parameters and
their functional capacities in the system are assessed, serves as the central component
of the plant simulation model. The three waterflow pathways on the membrane are
feed, permeate, and retentate. The volumetric flowrate (Fp) across the membrane was
continuously monitored in the model using a flow transmitter placed at the permeate
side of the membrane. As such, this turbine-type flow sensor delivers a signal to the
controller based on the permeate flowrate, which controls the speed of the hp-pump motor
at the feed side of the membrane. The durability and efficacy of membrane performance
are significantly driven via this automated adjustment of operational parameters. The
concentrated solute, on the other hand, is rejected using the membrane’s retentate cycle
and returned to the overhead tank. TDS sensors are used at membrane outputs to monitor
the concentration of dissolved salts. As a result, Figure 7 presents the simulation model
that imitates the membrane transport process. The simulation results of the RO treatment
section were examined based on the developed model for process analysis and performance
enhancement via analyzing the proportionality of system’s operational parameters.
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2.5. Simulation Results of Flow Transmitter at RO Permeation

The results from the flow transmitter used at RO permeation in the model (see Figure 2)
that calculates the pressure on feed stream to RO membrane for an efficient and long-lasting
process of filtration are shown in Figure 8. According to the graph, the volumetric flowrate
at the permeate end of membrane (Fp) drastically decreased with time, while the feed
pressure (Pf) somewhat increased. The continual slow passage of grains and molecules,
which frequently clog TFC membrane surface pores, is the primary cause of this operational
shift in flowrate over membrane permeation. A small performance degradation is observed
as the TFC membrane element continues filtering out the brine particles. This operational
parameter tendency at the RO section is consistent with the research performed on the
post-treatment operations of water plants [28].
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Figure 8. Volumetric flowrate at RO permeation (Fp) vs. feed pressure (Pf).

The feed pressure (Pf) to the RO unit is initially 18.005 Psi; this pressure occurs when
the highest flowrate (Fp) at membrane permeation is observed as 13.9998 gpm. In order
to sustain the effective treatment operation of the RO unit, this feed pressure continues to
rise in opposition to the declining volumetric flowrate through the membrane. As such,
due to the extremely slow flowrate of 5.9997 gpm on permeation, the last value in the plot
indicates the highest feed pressure of 30.191 Psi.
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2.6. Simulation Results of TDS Sensor at RO Permeation

The results of the employed TDS sensor at the permeate end of the RO membrane for
continuous monitoring of disseminated particles within the stream are shown in Figure 9.
According to the graph, a minor rise in feed pressure (Pf) over time caused a progressive
increase in the volume of solute concentration at permeation (Cp). The practical reason for
this result is that while rejected solutes continue to accumulate on the membrane’s surface,
the concentration and pressure in the feed stream gradually increase and the flowrates
over the membrane decrease. This process, known as “Concentration Polarization,” has a
negative impact on the RO system’s overall operational efficiency [29].
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At the operational start, the pressure on the feed stream (Pf) was measured as 18.005 Psi,
while the concentration at permeation (Cp) was minimal (3 × 10−4 mol/L). However, with
the rise in concentration polarization, the diffused brine across membrane surface reaches a
slight increase in volume (Cp = 6 × 10−4 mol/L), and, thus, the pressure on the feed stream
also increases (Pf = 30.1910 Psi), significantly aiding the maintenance of the effective RO
treatment operation. The results are consistent with investigations that used a high-pressure
pump to control the membrane’s decreasing flowrates with increasing concentrations [30].

2.7. Simulation Results of TDS Sensor at RO Retention

Figure 10 shows the results of decreasing concentration of dissolved salts at RO
retention in opposition to the rising feed pressure. Figure 10 illustrates how the rise in feed
pressure (Pf) caused a progressive decrease in the level of brine concentration at retentate
(Cr). The brine content was maximum through the retentate cycle (Cr = 0.05295 mol/L) at
the initial feed pressure (Pf = 18.005 Psi). However, concentration polarization developed
as the process continued to treat raw water, which resulted in a gradual decrease in system
efficiency. As can be seen, the initial high brine rejection through retention significantly
decreased (Cr = 0.02516 mol/L), creating high pressure in the feed stream (Pf = 30.1910 Psi).
This increased brine diffusion at permeation was the primary cause of slow flowrates
through the RO membrane. It is clear from the results, which are consistent with the mole
balance concept, that the overall applied pressure to the feed (Pf) distributed impact on
both sides of the impermeable membrane, leading to substantial variations in flowrates
and concentrations throughout the treatment process [31].
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2.8. Simulation Results of Osmotic Pressure at RO Feed stream

The results of the simulation in Figure 11 reveal the linear relationship among the
osmotic pressure (∆π) and the concentration of solutes in stream (Cf) that is fed to the
RO unit. As such, ∆π is the required pressure applied to limit the solvent transport over
membrane element and reduce the rejection of dissolved salts. In the study, the required
pressure is calculated with the help of Van’t Hoff model: ∆π = iRT(C f − Cp). The results of
this test reveal that both parameters operate proportionally and develop gradually during
the testing period. As can be seen from the graph, during the low solute concentration
on feed side (Cf = 0.0120 mol/L), the osmotic pressure is almost half the transmembrane
pressure (∆π = 8.4151 Psi). Therefore, in order to prevent solvent from passing through
the surface of the spiral wound semipermeable membrane, the osmotic pressure rises in
tandem with the feed stream concentration. Similarly, an increase in osmotic pressure is
observed (∆π = 11.4360 Psi) at maximum solute concentration (Cf = 0.0165 mol/L). Thus, it
can be inferred that a higher salt content streaming through the feed allows the osmotic
pressure to climb to a level required for effective desalination and, thus, function as a flux
inducer across the membrane. The results are consistent with research that shows that
osmotic pressure rises as the molar concentration of solute particles increases [32].
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2.9. Simulation Results of Transmembrane Pressure (∆P)

Figure 12 illustrates the drop-in flowrate at permeation (Fp) while the transmembrane
pressure (∆P) rises. Here, ∆P is the change in pressure required to force the incoming flux
through to membrane pores, which can be estimated via measuring the applied pressures on

both sides of membrane and plugging them into the following formula: (∆P =
Pf +Pr

2 − Pp).
The obtained simulation results make it clear that both parameters in the system have
an inverse correlation. Thus, the volumetric flowrate through the membrane decreased
significantly as a result of a small rise in differential pressure. Here, it is vital to keep in
mind that low transmembrane pressure indicates a clean and effective desalination process,
whereas greater values signify degradation in membrane filtration. Correspondingly,
minimum transmembrane pressure was recorded (∆P = 11.5056 Psi) at a much greater
flowrate across permeation (Fp = 13.9998 gpm); however, it increases to 17.6003 Psi with a
significant drop in volumetric flowrate of 5.9997 gpm across permeation. These results are
consistent with a study that exhibits an overall reduction in membrane permeability with a
growth in transmembrane pressure [33,34].
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3. ICT Implications and Future Work Suggestions

Rising global water scarcity has hit almost every sector in the water industry. Most
prominently, the water-reliant process industry faced serious pressures in recent time to
sustainably manage efficient and capable water treatment systems utilizing advanced
ICTs in their plant facility operations. Through these systems, a company can realize
potential cost savings and generate higher revenues through actively working on reducing
wastewater and procuring energy consumption.

However, a water treatment plant with inefficient operating procedures related to
having older pumping mechanisms and filtering equipment, combined with outdated water
management practices, can be extremely costly, especially for a healthcare manufacturing
firm as it requires consistent high-quality water for producing medicines and healthcare
goods. Thus, ensuring the implementation of the most efficient equipment and technology
for sustainable water plant operations is the scope of this study.

Therefore, based on the study simulation model developed as the abstraction and close
imitation of a portion of the real pilot system, in which performance-deriving parameters
were studied to analyze and understand the dynamic behavior of a water treatment plant
in continuous operational environment, the following implications are proposed.

3.1. Deploy Advanced Metering Technology

It can be deduced from obtained results that the pilot plant operates mainly on con-
ventional procedures and does not employ smart metering technology in their facility
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operations. Therefore, the case study company should consider implementing advanced
ICT solutions in the form of “Advanced Metering Infrastructure” (AMI), such as “Au-
tomated Meter Reading” (AMR), which would serve as a major optimization in plant
infrastructure and operational procedures.

Applications of smart aqueous sensors and meters, coupled with advanced metering
and management technology, would befittingly enable automatic data gathering of plant
consumptions at critical points, streamlining and improving the daily production efficiency
via actively tracking and handling water usage and abnormal consumption patterns. There-
fore, based on the accuracy of acquired data, equipment performance will be assessed
and decisions can be taken in near-real time, leveraging a two-way communication net-
work between smart sensory equipment and master base station without much human
involvement.

3.2. Retrofit VFDs for Centrifugal Pumps

Simulation results reveal that the pilot plant employs large applications of centrifugal
pumps at various feeding points to maintain maximum flowrates and system efficiency. It
is true that centrifugal pumps are typically sized to operate at a fixed pace of full pressure in
order to maintain flowrates and efficient operation. However, in practice, the pilot system
demands peak flowrates only for a very short period of cycle, while, most of the time, the
pumps operate on reduced efficiencies, coupled with associated flow control valves that
determine flowrates and create variable pressures in the system, which, as a result, lead to
extra water consumption and energy waste.

For this reason, plant managers should consider retrofitting their oversized on-off
mode centrifugal pumps with variable frequency drives (VFDs) as a solution to procure
and maintain the varying speed pump operation close to the pump’s maximum efficiency
point, which can essentially reduce tight friction head in the system due to high measure of
back pressure created using flow control valves, pipe elbows, and other resisting elements.

Therefore, deployment of VFDs not only significantly reduces the plant’s overall
water and energy consumption, but the managers can also save on maintenance cost. For
instance, a plant operating at controlled pressure would result in a longer pump seal
lifecycle, less impeller wear, and a reduction in noisy system vibrations. To realize such
potential gains of VFDs, various types of energy losses-procuring VFDs are available on
the market. Thus, plant managers should carefully consider selecting the most efficient
VFD that is appropriate to the required application.

3.3. Use Data Analytics with Essential Parameters

The present study closely evaluated the functional behavior of essential parameters
involved in efficient plants operation. Although, in this study, operational data was trans-
acted using real plant measurements and hands-on experience, computer-based simulation
was used as an advanced ICT tool for process analysis and performance evaluation.

However, utilizing big data analytics with essential plant parameters leveraging smart
sensors network would enable wider access to evaluate infrastructure performance and
more accurate identification of system improvements needed with the current operational
procedures. Thus, it is crucial for plant managers to ensure that the right operational
parameters are being evaluated for improvement considerations. For instance, essential
efficiency parameters are those that determine abnormal consumption patterns, such as
leakages in pipe fittings, flowrates, and backwash rates tied to filters outlet; smart VFDs that
transduce the right pressure, measurement of water quality, and procurement in reservoirs;
and more similar sustainable and innovative controlled facility applications.

3.4. Implement Sanitize/Start/Stop Approach

The pilot manufacturer has a standby backup train plant in place, which enables
continuous production operation without a delay or downtime in the case of maintenance
or any service adjustment being made on the main water treatment plant. Typically, the
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backup plant is always kept running on standby mode for immediate need of operation,
which requires continuous water recirculation in its pipes distribution network during
periods of non-use to ensure that rust-free and high-quality water is being used in pro-
ducing medicines. Therefore, conventional operating strategies consume excessive and
unnecessary amounts of water and energy, prematurely wearing parts and components
while operating in standby mode.

However, recent ICT advancements for pharmaceuticals water plants can hinder the
use of continuous water recirculation in their distribution network. Likewise, a relatively
new technology called S3 process, which was developed and patented by Siemens Water
Technologies, provides the sanitize/start/stop approach that consumes considerably less
water and energy and creates significantly less wastewater while delivering advanced
microbial control.

Implementation of S3 approach will eliminate the need for continuous water recircu-
lation through standby piping network, and allow the system to turn on only for a brief
period to receive pre-determined short heat sanitization pulses during no operation. Thus,
a typical S3 sanitization cycle of 30–45 min, together with chemical cleaning, provides a
superior microbial control within piping network, while significantly decreasing the cost
on energy, water, and system consumables.

The system can be configured with two different operating modes, as per the produc-
tion demand, such as sanitization pulses generated at a pre-determined time of the day
or after a certain period of system being dormant. This operational strategy will ensure a
freshly sanitized water treatment plant is ready to perform quality operations. Eventually,
through implementing the S3 technology, plant managers can drastically save on their an-
nual water and energy capital while being environmentally responsible in meeting quality
and production demands.

4. Conclusions

The current work presents a scientific contribution to the advancement of ICT sens-
ing applications in the area of process engineering, utilizing mathematical modeling and
simulation approach to validate the key performance parameters for efficient water treat-
ment operations. For this reason, a computer-based simulation model was developed
with the help of MATLAB-Simulink software, making use of measured operational data,
mathematical modeling, and a plant schematic.

The study’s findings reveal that the performance and lifecycle of the reverse osmo-
sis section are primarily determined through the structured pre-treatment procedures
involving operational parameters such as volumetric-flowrate, solute-concentrations, and
differential pressure across the membrane module. These key parameters are also found
critical in increasing plant production rate and improving equipment efficiency. However,
the developed model can be investigated further with more functional parameters and
extended treatment methods to improve on equipment accuracy and plant performance.

Eventually, this study proposed fundamental cost-effective ICT improvements for
the plant managers through which organization can substantially save on annual water
and energy consumptions. As such, the step-by-step development of plant schematic,
coupled with simulation modeling, provided a unique opportunity to identify operational
inefficiencies and improvement opportunities in the pilot plant, such as a lack of actuating
sensors at critical points, resulting in unaccounted daily consumptions, and operator
involvement was proposed a replacement with adaptable AMR solution to enable automatic
data gathering and handling of stream-flow.

Similarly, operation of large-size centrifugal pumps, coupled with flow-control valves
at feeding points, was found to be inefficient and can be optimized with the application of
smart VFDs to maintain the pump-speed close to the optimal efficiency point and reduce
the friction head in the system created through back pressures of the actuating valves.
Moreover, the standby train plant’s need for continuous water circulation and chemical
sanitization to produce high-quality medicines was identified as an inefficient strategy
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by the pilot company, which can be improvised via implementing a sanitize/start/stop
(S3) approach. This strategy would allow the backup plant to pre-set turning the system
on/off, and receive periodic heat sanitization pulses within the piping network to control
the microbial growth and reduce water–energy consumption while improving flux quality.
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