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Abstract: Technology plays a crucial role in the management of natural resources in agricultural
production. Free and open-source software and sensor technology solutions have the potential to
promote more sustainable agricultural production. The goal of this rapid review is to find exclusively
free and open-source software for precision agriculture, available in different electronic databases,
with emphasis on their characteristics and application formats, aiming at promoting sustainable
agricultural production. A thorough search of the Google Scholar, GitHub, and GitLab electronic
databases was performed for this purpose. Studies reporting and/or repositories containing up-to-
date software were considered for this review. The various software packages were evaluated based
on their characteristics and application formats. The search identified a total of 21 free and open-source
software packages designed specifically for precision agriculture. Most of the identified software
was shown to be extensible and customizable, while taking into account factors such as transparency,
speed, and security, although some limitations were observed in terms of repository management and
source control. This rapid review suggests that free and open-source software and sensor technology
solutions play an important role in the management of natural resources in sustainable agricultural
production, and highlights the main technological approaches towards this goal. Finally, while this
review performs a preliminary assessment of existing free and open source solutions, additional
research is needed to evaluate their effectiveness and usability in different scenarios, as well as their
relevance in terms of environmental and economic impact on agricultural production.

Keywords: software evaluation; low-cost solutions; automation; iot; monitoring

1. Introduction

Free and open-source applications for precision agriculture are becoming increasingly
popular as they offer an affordable and accessible alternative to proprietary systems. These
applications—which are freely licensed to use, copy, study, modify and/or improve [1]—
provide farmers with access to data and tools that can help them make informed decisions
about their crops and land management. Free and open-source applications for precision
agriculture can also help farmers to better monitor and manage their resources, as well
as to increase their yields and reduce their environmental impact. Additionally, these
applications can independently be built upon to develop innovative solutions to address
specific challenges in the agricultural sector [2], something which would be difficult or
even impossible with proprietary solutions [3]. These innovative technologies have been
improved by incorporating software, hardware, and data [4].
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Precision agriculture is a technological or agricultural management approach that
uses various sources of data and information from sensors, satellite images, global posi-
tioning systems, and specific software to make more accurate and personalized decisions
at all stages of the agricultural production process [5]. Through the application of these
technologies, it is possible to identify issues and better explore these cultures, while being
able to monitor weather conditions, analyze soil and plants, and apply inputs more effi-
ciently [6]. Precision agriculture can be seen as a subsection of precision practices facilitated
by technological advances [7]. Precision practices occur in four main stages: data collection,
planning, implementation, and culture management [6].

Increasingly, agricultural production has been benefiting from open source techno-
logical applications for precision practices, leveraging their cost-reduction potential to
promote agricultural sustainability [8,9]. Information and communication technology (ICT)
solutions, such as artificial intelligence (AI), machine learning, and the Internet of Things
(IoT), are being used to improve the efficiency and accuracy of agricultural processes. AI
can be used to monitor crop health, detect pests, and predict crop yields. Machine learning
can be used to analyze large datasets and identify patterns in agricultural data. IoT can
be used to connect different devices and sensors in the field to provide real-time data and
insights into crop health, soil conditions, and weather patterns [10].

There are several options in terms of free and open-source technologies and software
for precision agriculture, and selecting a context-appropriate technological tool from among
those available can be crucial in obtaining good results [11]. Therefore, technology transfers
of open-source software can be an essential and transformative activity for precision
agriculture, bridging the gap between theory and reality [12].

The selection of free and open-source software for agricultural purposes is based on a
number of factors, such as its technical features, maintenance burden (and its associated
cost), ease of use, documentation, security, and compatibility with existing systems [13,14].
In essence, it is crucial to ensure that the software is able to meet the requirements of the
agricultural sector and is able to handle the data and tasks efficiently.

According to De Oca and Flores [15], the development of open-source software aimed
at precision agriculture has grown thanks to the involvement of three main technologies:
computer vision, drones, and AI. Recently, a series of studies also propose using sensors
to monitor production, improving the quality and quantity of crop data, and allowing,
together with the appropriate software, to provide information, reminders and alerts to
farmers [16].

In order to ensure the success of these initiatives, it is important to understand the
needs of the farmers, the existing infrastructure, and the available technologies. Addi-
tionally, it is essential to identify the most suitable and cost-effective solutions to meet the
requirements of the farmers and to ensure that the data collected is accurate, secure, and
reliable. Finally, it is necessary to develop strategies to ensure that the data collected is used
to improve the efficiency of the agricultural production process [17].

Faced with this scenario, we carried out a rapid review [18] with the goal of identi-
fying free and open-source software capable of solving real-world problems in precision
agriculture. For this purpose, we simplified the PRISMA extension for scoping reviews [19],
adapting it to the topic under investigation [20] in the context of a rapid review [18].
Searches were carried out in electronic databases, drawing attention to current field-wise
demands—as well as their interrelationships—and highlighting the programming lan-
guages used in their development and integration. The purpose of this investigation is to
understand the tools and technological solutions available to meet the specific requirements
of precision agriculture, thus providing a decision support document to stakeholders [21]
of this increasingly popular approach.

This paper is organized as follows. Section 2 presents the methods used in this
review, namely, information sources, search strategy, eligibility criteria, and selection
procedures, and data items extracted from each selected work. Section 3 presents the results,
summarizing the selected works and extracted data, and offering a narrative synthesis of
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the applications found. Section 4 provides a discussion and critical analysis of this research,
as well as of its limitations. Finally, Section 5 puts forward our final considerations.

2. Methods
2.1. Information Sources

For the purpose of this rapid review, we used Google Scholar, GitHub, and GitLab as
electronic data sources, as shown in Table 1, together with the respective URLs. The most
recent search was carried out in October 2022.

Table 1. Information sources used in this review and their respective URLs.

Source URL

Google Scholar https://scholar.google.com
GitHub https://github.com
GitLab https://gitlab.com

Google Scholar is a free and accessible search engine that organizes a variety of
scientific scholarly publication formats, and is currently the most comprehensive database
of scientific articles [22]. In turn, GitHub and GitLab are publicly available and searchable
open-source software repositories. In particular, GitHub is by far the most used code
repository in general [23] (with GitLab comfortably in second position [23]), and in scholarly
publications in particular [24].

2.2. Search Strategy

The works discussed in this review were identified by the following search string:

(“open-source software” and “precision agriculture”)

After defining the search string and the data sources to be searched, the key terms
corresponding to each of the information sources were also created. Key terms are defined
junctions within the search string and separated by quotes. Table 2 presents the information
source and the respective search strings. Some tweaks within the search strings column
are also presented. In the Google Scholar database row, exclusion attributes are added,
and, in the GitHub and GitLab database rows, search strings were defined and carried out
by topic.

Table 2. Search strings used for each information source.

Source Search Strings

Google Scholar “open-source software” and “precision agriculture”
-simulators-games-“farming simulator”

GitHub “precision agriculture”
GitLab “precision agriculture”

Searches were conducted by the first author, with results revised by the second
author over multiple iterations according to the selection procedure discussed in the
following subsection.

2.3. Eligibility Criteria and Selection Procedure

After defining the search string for each information source, it was necessary to define
the inclusion and exclusion criteria. If a specific work is eligible according to these criteria,
it is automatically selected. Care is taken so that possible duplicate entries are merged.

The following inclusion criteria were considered for this review:

• Works focused on precision agriculture;

https://scholar.google.com
https://github.com
https://gitlab.com
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• Works consisting of free and open-source software with full source code publicly
available, preferably in a software repository such as GitHub, GitLab, or equivalent;

• Works published between 2012 and 2022;
• Source code must have been updated at least once in the last 3 years (counting down

from October 2022);
• Works only in the English language.

The rationale for selecting works published since 2012 is based on the availability
and cost of unmanned aerial systems (UAS) and 4G technologies, essential for precision
agriculture, and which started to become mainstream around that year [25,26]. With
respect to works with code updated in the last 3 years, this was an empirically selected
time interval to exclude deprecated or abandoned software, a common occurrence in open
source projects [27].

In turn, three exclusion criteria were defined, namely:

• Applications not directly related to precision agriculture;
• Farming simulator applications, farm simulator games;
• Other games.

2.4. Data Items

For each selected work, we extracted six data items, namely:

• Source code repository;
• Year of publication;
• Programming language(s);
• User interface(s);
• Category;
• Keywords.

The source code repositories for the selected works are either found directly from the
searches performed on GitHub and GitLab, or from the associated research paper found
on Google Scholar (if there is such a paper, and if mentions the repository). The year of
publication is taken from the publication date of the research article, or in case the work
does not have an associated paper, the year of the first commitment on the respective source
code repository.

The programming language in which an application is developed—although mainly
of interest to developers—is especially important in free and open-source software, which
can be freely modified, improved and extended. Developers or technically-oriented users
should preferably consider software developed in a language they are familiar with, specif-
ically if they intend to modify the source code and/or implement new features. Software
can be developed in more than one language, and this should also be factored in the
selection process, as it can increase development complexity. For the purpose of this review,
programming languages were determined from the GitHub’s “Languages” feature, which
details the languages used in a project by percentage, or, if this information was insufficient
or nonexistent, by manually browsing the source code. We only consider languages that are
used for developing the projects, ignoring languages used exclusively for documentation
(e.g., HTML or Markdown) or for the build process (for example, Bash scripts or Makefiles).

The user interface defines the way that the end user interacts with the software in
question. It can be a frontend interface, such as a graphical or text interface, or a backend
interface, namely working as a library or as a plugin for another tool. The user interface may
narrow the type of end users of a given package. For example, text interfaces—which allow
a tool to be controlled via the command line—as well as libraries, are typically more suited
to developers and/or technically-minded users. Several tools offer more than one type of
interface, therefore broadening their scope of potential users.

Technology and software applications were grouped according to the following categories:

A Crop and climate protection and diagnosis;
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B Nutrition and fertilization of crops;
C Crop irrigation;
D Soil management, planting, growing and harvesting crops;
E Production management, machinery and equipment.

Some applications, due to their varied number of features, fall into more than one
category. In this case, they were placed in the category corresponding to their main
functionality and purpose. However, since predefined categories may limit a broader
understanding of the underlying topics, we additionally derived five keywords for each of
the selected works. Keywords were agreed upon by the first and second authors, and were
obtained from one or more of the following sources, ordered by relevance: explicit keywords
in referenced article, if available; extracted from the abstract; extracted from the full article;
and/or, obtained from the README file in the respective code repository. Keywords with
similar meanings or different capitalizations were merged together as lowercase concepts.
For example, “UAV”, “UAS”, “unmanned aerial vehicle”, or “drone” were merged into
“uas”. Keywords directly pertaining to the research topic were explicitly ignored, namely
“precision agriculture”, “open source”, “free and open source”, “software”, as well as
possible combinations, as we expect these to be representative of all the selected works,
and therefore would not provide a deeper understanding of the fundamental themes under
discussion. Programming language names, such as Python or Java, were also ignored,
as these are analyzed separately.

3. Results
3.1. Selection of Works

Table 3 presents the quantification of the works found in their respective electronic
databases. A total of 249 articles were identified on Google Scholar and 59 projects were
found in the GitHub and GitLab repositories, with a grand total of 308 works recognized
using the search strings described in Section 2.2. After applying the filtering criteria,
234 papers from the Google Scholar database and 53 packages from GitHub and GitLab
were excluded, in a total of 287 excluded works. The works included are then presented,
of which 15 are from Google Scholar and 6 are from GitHub. Therefore, a new scenario is
presented with 21 works, corresponding to the proposal defined in the research objectives.

Table 3. Number of works identified with the search strings for each information source, as well as
number of works excluded and included after the filtering criteria has been applied. Value in bold
corresponds to the number of works selected for this review.

Info. Source Identified Excluded Included

Google Scholar 249 234 15
GitHub 54 48 6
GitLab 5 5 0

Totals 308 287 21

3.2. Characteristics of Selected Works

The characteristics of selected works are detailed in Table 4, namely the bibliographic
reference, information source, short name, user interface(s), category, programming lan-
guage(s), and link to source code repository. The keywords derived for each work are
provided in Table A1 in the Appendix A.
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Table 4. Selected works, together with their bibliographic reference, information source, short name,
user interface(s), category, programming language(s), and link to source code repository (all links last
accessed on 12 March 2023). Categories include: (A) crop and climate protection and diagnosis; (B)
nutrition and fertilization of crops; (C) crop irrigation; (D) soil management, planting, growing and
harvesting crops; and (E) production management, machinery, and equipment.

No. Ref. Source(s) Short Name Interfaces Cat. Language(s) Repository

1 [28] Scholar Agri-robot Text, Graphic D Python github.com/Harry-Rogers/PiCar
2 [29] Scholar MeteoMex Text A C/C++ github.com/robert-winkler/MeteoMex
3 [30] Scholar OWL Graphic D Python github.com/geezacoleman/OpenWeedLocator

4 [31] Scholar AgriQ Text, Graphic D Python github.com/LAPyR/NDVI-with-modified-Mobius-
cameras

5 [32] Scholar EasyIDP Text, Graphic, B Python github.com/UTokyo-FieldPhenomics-Lab/EasyIDP
Library

6 [33] Scholar AGRO IoT Text A C/C++, github.com/ajayarunachalam/RPA
Python

7 [34] Scholar HydroTi Graphic C Java, github.com/AnthonyFTL
JavaScript

8 [35] Scholar GeoFIS Graphic, Plugin E Java, C/C++, www.geofis.org
R

9 [36] Scholar SoftwarePilot Text A Java, Python github.com/boubinjg/softwarepilot
10 [37] Scholar DAGAPy Text, Graphic D Python github.com/LabDig/DAGAPy

Library
11 [38] Scholar EVAPO Graphic C Java github.com/waltermaldonado/EVAPO
12 [15] Scholar UAS Thermal Text, Graphic, C MATLAB, github.com/LAPyR/Thermal-imaging-workflow-code

Imaging Library Python
13 [39] Scholar ITALLIC Library A Python github.com/getiria-onsongo/itallic
14 [40] Scholar Ag-YOLO Text A C/C++ github.com/rossqin/RQNet
15 [41] Scholar VICAL Graphic D JavaScript github.com/CenidRaspaRiego/VICAL
16 [42] GitHub MapFilter 2.0 Graphic A Java github.com/LeonardoAgricola/MapFilter2.0
17 [43] GitHub AI Agro Library E Python github.com/RentadroneCL/AI-Agro
18 [44] GitHub BovHEAT Text E Python github.com/bovheat/bovheat

19 [45] GitHub Adaptive Text C Python, github.com/SoothingMist/Embeddable-Software-for-
Irrigation-Control

Irrigation C/C++
20 [46] GitHub Deepway Library E Python github.com/fsalv/DeepWay
21 [47] GitHub RQGIS Plugin, Library E R, Python github.com/r-spatial/RQGIS3

3.3. Description of Selected Works

Individual works are described in the following Sections 3.3.1–3.3.5, where applica-
tions are grouped according to the categories defined in Section 2.4. For each software,
a brief description is presented, highlighting its main characteristics and functionalities,
while its potential of use is framed and contextualized within the various categories of
precision agriculture.

3.3.1. A—Crop and Climate Protection and Diagnosis

Winkler [29] presents the MeteoMex project (Table 4, item 2), which aims to integrate
current IoT platforms for community-oriented environmental monitoring. This monitor-
ing helps to protect natural resources such as water and energy, as well as detect timely
health risks and improve the quality of food production. The use of low-cost mini-boards
connected to environmental sensors from the Things Board open-source platform is demon-
strated. Programmed in Arduino C with WiFi capability, MeteoMex can be deployed for
monitoring air and soil quality. The authors also discuss a prototype to monitor efflu-
ent treatment. It uses a PostgreSQL database with the goal of simplifying the process of
data mining. It is considered highly scalable and cost-effective, and may be suitable for
deployment in precision agriculture, industry contexts, and public areas. As examples
of concrete cases, the following are described: monitoring ambient air at the national
institute of respiratory diseases in Mexico, monitoring greenhouses (air and soil), moni-
toring air conditioning in a high-performance computer room, and monitoring domestic
wastewater stations.

Arunachalam and Andreasson [33] propose a continuous crop monitoring system
called smart AGRO IoT (Table 4, item 6). The system automates the deployment of sensors

https://github.com/Harry-Rogers/PiCar
https://github.com/robert-winkler/MeteoMex
https://github.com/geezacoleman/OpenWeedLocator
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https://github.com/waltermaldonado/EVAPO
https://github.com/LAPyR/Thermal-imaging-workflow-code
https://github.com/getiria-onsongo/itallic
https://github.com/rossqin/RQNet
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https://github.com/SoothingMist/Embeddable-Software-for-Irrigation-Control
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and storage, providing an elegant dashboard for visualizing the continuous stream of
real-time data. The system has a sensor data acquisition mechanism, collecting data in
a continuous fashion, and is easy to implement in growth chambers and greenhouses.
The system can be extended to farms with specific configurations, while its instances are
heterogeneous in terms of configuration and installation. The proposed solution, based on
Raspberry Pi or Arduino hardware, is scalable and provides stability in monitoring any
environment. The system is functional in x, y and z axes along the rails with transverse
slides. Soil loosening, digging, and seeding can be performed with a robot arm by providing
x and y coordinates as location points via the program’s interface. Once the coordinates are
specified, the robot arm is moved to the location point and sowing starts with the digging
operation, after which the seeds are sown.

Boubin and Stewart [36] present the SoftwarePilot middleware, (Table 4, item 9),
used in fully autonomous precision agriculture applications. The system provides data
detection and flight control utilities, allowing users to customize machine learning models
for pathfinding, object detection, and data analysis. The work discusses the subcomponents
of the SoftwarePilot microservices design, namely the routines and drivers, and how they
can be used to control UAV flights autonomously and in data sensing. An interactive
coding session is also featured, teaching how to develop a simple application. Finally,
the authors report that the system has been used to process thousands of images captured
autonomously in agricultural missions.

Onsongo et al. [39] developed the Integrated Tool for AgData Lat Long Imputation and
Cleaning (ITALLIC) system (Table 4, item 13), which detects and corrects errors in location
data by imputing missing values to location-dependent data. An open source API is used
to geocode the location. The system, developed in Python, includes a visualization tool
that facilitates the validation of results by the user by plotting the original and corrected
locations on a map.

Qin et al. [40] propose Ag-YOLO (Table 4, item 14), a low-cost real-time detector
for pulverization applied to case studies with palm trees. The software developed and
presented in this study is adapted for use in embedded RGB camera systems. With the
increasing availability of drones that can spray pesticides, the included algorithm can
contribute to selective pulverization. The system receives as input the images acquired by
an on-board camera and sends the instructions to the flight management unit in real time,
achieving better levels of accuracy and representation power, both in terms of computation
cost and memory usage. This seeks to save and reduce the environmental impact and
economic costs to the farmer. According to the author, the technology is low-cost and
necessary for the widespread use of target-oriented selective spraying.

Maldaner et al. [42] present the MapFilter 2.0 software (Table 4, item 16), developed to
analyze and remove inconsistent data in high-density agricultural datasets. The authors
claim that the software is easy to install and has a friendly interface, helping users to
generate reliable maps of the areas of cultivation based on the optimization of data quality.
The project, developed in the Java language, performs a visual analysis of the data and
reapplies the global and local filtering with other input values. All statistical analyses were
performed in the R software [48] using the gstat library [49]. The developed application
demonstrated the potential for practical use of spatial data filtering and received Brazilian
patent No. BR512019002014-6.

3.3.2. B—Crop Nutrition and Fertilization

Wang et al. [32] present EasyIDP (Table 4, item 5), an open-source software package,
developed with the aim of reducing the workload in processing raw image data obtained
from UAVs. The focus of the package is on agricultural applications, since drone photom-
etry techniques are widely used for phenotyping high-yielding plants. Six field datasets
with different crop characteristics were selected to develop and test the performance of the
proposed package. The tool has considerable potential in reducing the computational load
in data annotations for machine learning applications. According to the authors, results
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showed that the tool works as expected, both in cropping and reversing tasks tested on a
variety of crops.

3.3.3. C—Crop Irrigation

Irrigation management can achieve better ways of using water resources in the context
of precision agriculture, and is one of the most important and complex steps in plantation
environments [50]. In this sense, with precision irrigation, farmers seek to address drought
situations, minimizing the use of water without devaluing the crop. It is possible to
estimate the water needs for a crop through a set of equations extracted from the physics of
evapotranspiration [45]. Other irrigation systems use intelligent approaches for different
crops in greenhouses, allowing, for example, to autonomously activate or deactivate the
water supply system depending on the environmental conditions and soil moisture [51].

An application for Android smartphones called EVAPO is presented by Júnior et al. [38]
(Table 4, item 11), the objective of which is to estimate evapotranspiration in real time,
anywhere in the world, increasing water conservation and seeking more efficient irrigation.
It uses climate data from conventional surface weather stations. The app is available for
free on the Play Store. The results presented in this study conclude that the data can be
used reliably, estimating evapotranspiration and enabling its applicability to smartphones.
The performance of the proposed method was evaluated, comparing the evapotranspira-
tion power, estimated by EVAPO using climate data from conventional surface stations in
various locations around the world. The agrometeorological data used from these stations
were average, maximum and minimum air temperature, relative humidity, insolation, and
wind speed.

Carrillo-Pasiche et al. [34] present an irrigation system for urban areas based on IoT
(Table 4, item 7). The system analyzes important factors for an effective irrigation process,
considering the use of water in an economical and viable way. In this sense, a prototype was
developed with Arduino Uno, connected to sensors and driven by a web application called
HydroTi, capable of determining when to irrigate and how much water to use. The solution
was evaluated by comparing the different types of irrigation in order to determine the
water consumption and validating its effectiveness.

Raeth [45] presents a system (Table 4, item 19) that calculates irrigation needs in crops
based on information specific to the crop, soil, terrain and climatic conditions. The system
allows the development of the irrigation schedule for different management conditions and
the calculation of the water supply scheme for different cultivation patterns. Furthermore,
the system can also be used to evaluate farmers’ irrigation practices and estimate crop
performance under irrigation conditions. The software uses meteorological data and
evapotranspiration equations to demonstrate an approach to limiting the amount of water
withdrawn for irrigation. The software is written in Python and C++, and can be embedded
in human-supervised but fully automated irrigation controllers.

De Oca and Flores [15] present the development of an unmanned aerial system to
capture and process vegetation index thermal images (Table 4, item 12). This index is used
to determine water stress and evaluate the irrigation process. An interface based on the
Raspberry Pi was also designed, collecting the necessary images by means of a thermal
camera. The entire image correction process has a significant impact in increasing the
quality of the orthomosaic. To generate the orthomosaic from the aerial images, the We-
bODM software was used. Temperature calibration works by applying a linear model
for temperature estimation and the vegetation index is calculated from the corrected and
calibrated images. The authors, based on the experimental results, state that the proposed
system works well for its intended purposes.

3.3.4. D—Soil Management, Planting, Growing, and Harvesting the Crop

De Freitas Coelho et al. [37] present an embedded system to perform an analysis of
spatial variability data shortly after its acquisition in the field (Table 4, item 10). Sampling
strategies typically happen manually and make the analysis process difficult. To avoid
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these problems, the proposed software solution performs the analysis immediately after
collection. Hardware with sensor communication ports and good processing power is
suggested. The system was developed in Python, and, according to the authors, proved to
be efficient with tests in soybean planting, while the comparison of the generated maps
demonstrated the importance of filtering the data before analyzing it.

De Oca and Flores [31] propose the AgriQ system (Table 4, item 4), an unmanned aerial
system (UAS) for precision agriculture. The design, which includes both hardware and
software, allows for a flexible, low-cost approach. The experiments carried out took place
in two different vegetation areas with eight vegetation indices. Qualitative and quantitative
comparisons were made to assess the quality of the system versus a commercial application.
The main advantage found was the smaller amount of images required to reconstruct a
map, resulting in a reduction of computational load and processing time.

Rogers and Fox [28] present a terrestrial robot designed to move autonomously, being
able to store the geospatial location of each seed with precision (Table 4, item 1). The robot
platform was designed to plant seeds with greater precision, within the georeferenced line.
The system can plan and control an efficient point-to-point route, including accelerating on
long straight lines and slowing down on corners. Through a geospatial location module,
the robot stores the coordinates of each planted seed so that it can return to it. According to
the performed experiments, the authors claim that the differential location accuracy is such
that driving the robot to revisit specific plants is possible for seed spacings up to 139 mm.

Coleman [30] developed the OpenWeedLocator (OWL) project with the aim of maxi-
mizing crop yield potential in agricultural environments with limited humidity and a focus
on weed removal (Table 4, item 3). The system integrates weed detection on a Raspberry Pi
with a relay control board that mounts on robots and vehicles for timely spraying. Four
color-based algorithms that exploited the green color levels of weeds for detecting them
were used to validate the hardware. All image processing software was written in Python,
making use of OpenCV [52] and NumPy [53], as well as several other libraries.

Jiménez-Jiménez et al. [41] present the VICAL system (Table 4, item 15), an open
source tool to calculate maps used in agricultural applications, as well as time series of any
agricultural area in the world, leveraging data from the Landsat and Sentinel-2 satellites.
The system was implemented in JavaScript and developed on the free Google Earth Engine
platform. The tool can be beneficial for users with poor access to satellite data or lack of
computing infrastructure to handle large volumes of data. To evaluate the performance
of the VICAL system, individual images were downloaded from agricultural stations in
two irrigation districts in Mexico, located in the north of Sinaloa state and in the Lagunera
region, respectively. According to the authors, this system can save time and prevent
error-prone repetitive and trivial procedures, associated with manual calculations.

3.3.5. E—Management of Production, Animals, Machinery and Equipment

Plenio et al. [44] present an application called the bovine heat detection and analysis
tool (BovHEAT), an open-source analysis tool to process data from automated systems
and activity monitoring in dairy cattle (Table 4, item 18). Activity data is collected by an
accelerometer attached to the animal’s neck, which is now widely used in the dairy industry.
Developed with the Python programming language, BovHEAT offers fully automatic and
scalable processing, and is able to output data in various formats. The advantages of this
tool are in obtaining a better understanding of the physiology and behavior of dairy cows
and in supporting decision-making in optimizing reproductive management. Two different
data sets of eight farms were used: one farm in Canada and seven farms in Germany.
Its validation was carried out independently by three researchers involved in the project.
Activity data from 60 cows were used, representing a total number of 600 observations per
cow, with results indicating that the system requires less user interaction and speeds up
data processing.

Leroux et al. [35] present the GeoFIS software (Table 4, item 8). The purpose of this
tool is to support the entire process of precision agriculture, from spatial data to spatial
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information and decision support. It was designed with a user-friendly interface with the
intention of supporting users with no programming skills. Experiments were carried out
in three types of crops: banana, wheat, and vineyards. These were chosen to highlight
the diversity of applications and data characteristics that can be handled with GeoFIS.
The analysis of the three types of crops was an opportunity to also assess the limits of the
algorithms and propose new areas for future developments within the tool itself.

Muenchow et al. [47] present RQGIS (Table 4, item 21), an integration of R with the
open source QGIS system for statistical geocomputing and geographic information systems
(QGIS Development Team, 2022). The proposal extends the statistical resources of R with
numerous geoprocessing and data manipulation tools available in a geographic information
system (GIS). The combination of R and GIS software creates a powerful environment for
geocomputing and advanced statistics. RQGIS supports R named data, seamless exchange
of spatial data types, and quick access to a broad suite of geoalgorithms for solving many
GIS problems, among which the authors highlight those related with precision agriculture.
However, continuous development of QGIS led to a number of unsolvable issues in RQGIS,
which has since been deprecated according to its repository. The qgisprocess package seems
to be the natural successor for the functionality previously offered by RQGIS, but is, at time
of writing, in an experimental stage.

Mazzia et al. [46] present a model capable of managing and globally estimating a path
with a series of points that an autonomous vehicle, both land and air, can follow (Table 4,
item 20). A deep learning model capable of predicting the position of the main paths
from the destination was designed and trained. Extensive experimentation, with synthetic
datasets and real satellite-derived images of different scenarios, used in vineyard and
orchard plantations, demonstrates the effectiveness and feasibility of the methodology as a
completely autonomous approach to end-to-end global path planning.

Finally, Rentadrone [43] proposes AI Agro, a set of machine learning algorithms for
determining the health of various types of crops (Table 4, item 17). The provided solu-
tions integrate data obtained from temporal, mosaic, multispectral, and thermal imaging,
yielding outputs such as thermal maps and normalized vegetation index maps, which
allow the identification of stress zones. The solutions can generate local calculations and
plant-by-plant mapping of vegetation indices by processing images obtained by drones.
According to the authors, the included algorithms can perform batch processing of photo
files, JPG and TIFF images, and are capable of mapping the health status of different types
of crops visible in multispectral photographs taken with drones. Thus, the software is also
capable of calculating the main types of vegetation index.

3.4. Summary of Results

Results are summarized by the years of publication of the selected works, as well as
by several of the respective extracted data items—defined in Section 2.4—namely, user
interface, category, programming language, and keywords.

With respect to the years of publication, Figure 1 shows the number of works published
yearly between January 2017 and October 2022. The upwards publication trend is high-
lighted with a dashed line, computed using a simple ordinary least-squares linear regression.

In turn, Figure 2 synthesizes the programming languages used in the development of
the selected works. In particular, the prevalence of each language is shown in Figure 2a,
and the number of different languages used in each work is displayed in Figure 2b. Note
that, for the percentages shown in Figure 2a, it was defined that packages that use mul-
tiple languages contribute less to the total use of each language. For example, the OWL
software [30] exclusively uses Python, and therefore contributes +1 to Python’s total usage.
SoftwarePilot [36], in turn, is developed with Java and Python; consequently, it contributes
+0.5 to Python’s total usage, and +0.5 to Java’s total usage. We found that this approach
represented the prevalence of programming languages more fairly.
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Figure 1. Number of works published each year between January 2017 and October 2022. The dashed
line shows the trend, obtained with an ordinary least squares linear regression.

For summarizing the implemented user interfaces, a similar approach to the one used
for the programming languages was used, as shown in Figure 3. The percentage of interface
implementations, displayed in Figure 3a, was determined proportionally—similarly to the
programming languages—i.e., packages having more than one interface contribute less
for the totals of each interface. The number of different interfaces used in the surveyed
software is highlighted in Figure 3b.

Figure 4 presents the percentage of works by category, while Figure 5 highlights
the most frequent keywords found in the selected works using a word cloud—a visual
representation of words arranged in a random and scattered way, with the size of each
word being proportional to its frequency or importance.

The code and data used for summarizing results and creating Figures 1–4 are available
at Zenodo [54].

Python

54.8%

C/C++

15.9%

Java

15.9% JavaScript

7.1%
R

4.0%
MATLAB2.4%

(a)

1

66.7%

2

28.6%

3
4.8%

(b)

Figure 2. Programming languages used in the development of the selected software packages: (a) by
percentage; and (b) by number of languages used for development of a single package. Regarding (a),
it was defined that, when a package is developed in n > 1 languages, each language contributes 1/n
to its total usage for all packages. Percentages do not exactly add up to 100% due to round-off errors.
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Figure 3. User interfaces implemented in the selected software packages: (a) by percentage; and
(b) by number of interfaces used in a single package. Regarding (a), it was defined that, when a
package implements n > 1 interfaces, each interface contributes 1/n to its total usage for all packages.
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Figure 4. Representation of works divided by categories or application area, namely: A—crop and
climate protection and diagnosis; B—nutrition and fertilization of crops; C—crop irrigation; D—soil
management, planting, growing and harvesting crops; and, E—production management, machinery
and equipment.

Figure 5. Word cloud highlighting the most frequent keywords found in the selected works (see
Table A1).
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4. Discussion

A total of 21 projects were presented and summarized in the previous section. The in-
formation reported in this discussion is necessary to understand the standards and guide-
lines that free and open-source software aimed at precision agriculture point to, outlining
the results obtained in this research. Figure 1 displays a growth trend of works published
on the theme of this research. This increasing trend suggests that free and open-source
software will continue to have a significant impact on precision agriculture in the near
future. Although this trend shows some clear advances in the provision of open codes
in free repositories, making them available to academic communities, there are still some
issues. For example, many of the repositories are poorly managed, with commits uploaded
directly to GitHub, repositories containing ZIPs and executables instead of pure code,
as well as incomplete documentation. Items 6, 12, 13, 16, and 19 in Table 4 are a case
in point.

The prevalence of specific programming languages in precision agriculture software
can provide valuable insights into the tools, resources, and skills that are important in
the field, as well as emerging trends and job opportunities. While the programming
language in which a specific application is developed may not be relevant for farmers
following precision agriculture practices, it is nonetheless an important consideration for the
development community—programmers, developers, and tinkerers. As noted in Figure 2a,
the surveyed works are mostly developed in Python, and, at some distance, C/C++ and
Java share the second position. While these results reflect the TIOBE index (which measures
the popularity of programming languages on a monthly basis) for the period in which
this review was conducted [55], it should be highlighted that Python and C/C++ in
particular are very common choices for IoT solutions with Arduino and Raspberry Pi [56,57],
as implemented in several of the works present in this review. Additionally, Figure 2b
highlights that experience in multiple programming languages may be a factor in being
involved with several open-source projects for precision agriculture.

The distribution of interfaces which end users can interact with is shown in Figure 3.
As discussed in Section 2.4, four types of user interface were defined in this research: text,
graphic, library, and plugin, and software packages can expose several of them
simultaneously—indeed, approximately 33% of the surveyed works offer more than one
interface, as highlighted in Figure 3b. Observing Figure 3a, it appears that there is a balance
between the different interfaces available, namely text, graphical and library—plugins are
the exception, accounting for less than 5% of the total. This data suggests that there are
different types of end users with different aims, technical capabilities, and support require-
ments. Users who prefer graphical interfaces may be less technically proficient and/or seek
applications for direct practical use in the (literal) field, while those who use text-based
interfaces or libraries may be more technically apt, require more control or customization
options, and/or are simply part of precision agriculture development community.

The application context by category is presented in Figure 4, in which we observe
that the category of soil management, planting, growing and harvesting (category D)
corresponds to 23.8% of the works presented, while the protection, diagnosis of cultivation,
and climate (category A) appears with 28.6% of the tools found. In turn, the management
of production, machinery and equipment (category E) is—similarly to category D—being
represented by 23.8% of the tools found. The irrigation of crops (category C) appears
represented with 19%, and crop nutrition and fertilization (category B) with 5%. There is
an almost homogeneous distribution between most of the categories, with the exception of
category B, indicating a growth space to be explored by future projects.

The word cloud displayed in Figure 5 highlights some of the core concepts underlying
the selected works. Themes such as automation, monitoring, and UAS clearly stand out,
and are the main focus in most of the surveyed software packages. The importance of
hardware such as the Raspberry Pi and Arduino, and the focus on low-cost and/or IoT
solutions—possibly involving GIS—is also emphasized in several of the selected works.
Although this is a more subjective discussion, this keyword analysis is also notable due to
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some important concepts which do not seem to be addressed or considered in the selected
works, therefore pointing to opportunities for future research into open source precision
agriculture, as is the case of security [58], interoperability [59], quality assurance [60],
and the use of open data [61].

While we analyzed and discussed several data items of interest, spanning a number of
free and open source projects for precision agriculture, there are some limitations to consider.
Rapid literature reviews, such as the one presented in this paper, provide a quick overview
of the current state of knowledge on a particular topic. These can be useful for gaining a
general understanding of a subject, but have a number of limitations, namely: (1) limited
depth when compared with comprehensive scoping and systematic reviews; (2) risk of
bias, since the search was carried out by the first author and non-methodologically revised
by the second author, which may have lead to the exclusion of relevant studies, or a lack of
rigor in the selection and appraisal of included studies; and (3) quality of evidence, since
limiting the search to the sources mentioned in Section 2.1 may have excluded relevant
works, including unpublished or gray literature. Overall, we believe this paper will be a
useful tool for quickly assessing the use of free and open source technologies on precision
agriculture, but these limitations should be carefully considered before drawing conclusions
or making decisions based on the presented findings.

5. Conclusions

In this article, a rapid review of the literature on free and open-source technologies
and software for precision agriculture was carried out. The works were selected, mapped,
and presented by their information source, source code repository, year of publication,
programming language(s) used in development, offered user interface(s), category within
precision agriculture, and relevant keywords. A total of 21 works were found, and the
associated references argued for their effectiveness in precision agriculture, especially
in situations where there is more than one success case for each software and when the
existence of libraries and open-source software leads to the creation of even more and
better solutions. The reviewed literature shows that the use of free and open-source
software can lead to excellent results in the area, and that its use is expected to grow
in the future, with hopefully more software available in public repositories, fostering
testing and improvements by the community involved. Analysis of the extracted data
showed that Python is currently the most used programming language in these works,
and that their most common themes include automation, monitoring, IoT, and low-cost
solutions, highlighting technologies such as UAS and GIS in general, and the Raspberry Pi
and Arduino in particular. Free and open-source software can be used to leverage these
technologies, creating precision farming systems. It is freely available and can be modified
and redistributed, making it an attractive option for farmers who want to customize their
precision farming systems to their specific needs. Additionally, open-source software can
be used to create tools that allow farmers to cost-effectively collect, analyze, and visualize
data. The review carried out in this article—although having some limitations due to its
rapid nature—contributes to the understanding of open-source software aimed at precision
agriculture and its availability.
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Abbreviations
The following abbreviations are used in this manuscript:
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IoT Internet of Things
ITALLIC Integrated Tool for AgData Lat Long Imputation and Cleaning
UAS Unmanned Aerial System
OWL OpenWeedLocator
BovHEAT Bovine Heat Detection and Analysis Tool

Appendix A. Keywords for Selected Works

Table A1. Five keywords for each of the works listed in Table 4. Keywords were agreed upon by
the first and second authors, and obtained from one or more of the following sources, ordered by
relevance: explicit keywords in referenced article, if available; extracted from abstract; extracted from
full article; and/or, README file in code repository.

No. Ref. Keywords

1 [28] gnss; raspberry pi; autonomous robot; seed planting; low-cost.
2 [29] automation; arduino; air quality; iot; monitoring.
3 [30] crop yield; low-cost; weed detection; herbicide application; image analysis.
4 [31] low-cost; multispectral imaging; uas; embedded electronics; optimization.
5 [32] photogrammetry; phenotyping; uas; gis; orthomosaic.
6 [33] automation; arduino; monitoring; raspberry pi; plant growth.
7 [34] arduino; iot; irrigation; water use; automation.
8 [35] decision support; geostatistics; spatial analysis; gis; temporal data.
9 [36] uas; autonomous photography; faas; machine learning; edge computing.

10 [37] automation; ordinary kriging; clustering analysis; yield map; data filtering.
11 [38] iot; meteorological data; irrigation; water use; android.
12 [15] thermal imaging; uas; vegetation index; image processing; raspberry pi.
13 [39] data-driven plant breeding; data processing; data visualization; location

data; big data.
14 [40] object detection; crop spraying; energy-efficient; uas; computer vision.
15 [41] automation; geovisualization; time series; vegetation index; satellite images.
16 [42] spatial data; local analysis; map accuracy; outliers; data filtering.
17 [43] decision support; vegetation index; monitoring; multispectral imaging; uas.
18 [44] monitoring; dairy cow; data processing; automation; heat analysis.
19 [45] irrigation; distributed systems; meteorological data; automation; water use.
20 [46] deep learning; unmanned ground vehicles; monitoring; path planning;

automation.
21 [47] gis; geoprocessing; spatial analysis; geocomputing; path planning.
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