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Abstract: The Internet of Things (IoT) has become widely adopted in businesses, organizations, and
daily lives. They are usually characterized by transferring and processing sensitive data. Attackers
have exploited this prospect of IoT devices to compromise user data’s integrity and confidentiality.
Considering the dynamic nature of the attacks, artificial intelligence (AI)-based techniques incorpo-
rating machine learning (ML) are promising techniques for identifying such attacks. However, the
dataset being utilized features engineering techniques, and the kind of classifiers play significant
roles in how accurate AI-based predictions are. Therefore, for the IoT environment, there is a need to
contribute more to this context by evaluating different AI-based techniques on datasets that effec-
tively capture the environment’s properties. In this paper, we evaluated various ML models with the
consideration of both binary and multiclass classification models validated on a new dedicated IoT
dataset. Moreover, we investigated the impact of different features engineering techniques including
correlation analysis and information gain. The experimental work conducted on bagging, k-nearest
neighbor (KNN), J48, random forest (RF), logistic regression (LR), and multi-layer perceptron (MLP)
models revealed that RF achieved the highest performance across all experiment sets, with a receiver
operating characteristic (ROC) of 99.9%.

Keywords: internet of things; machine learning; deep learning; network security

1. Introduction

In recent decades, the Internet of Things (IoT) concept has become widely popular
with numerous fields and organizations implementing and investing in its use. IoT refers
to the billions of devices that can connect to the internet, thus sharing and collecting
vast amounts of data anywhere in the world. This ability of global devices coupled with
communication technologies create a system that connects, exchanges, and analyzes data,
resulting in faster and more efficient decision making. With the dawn of readily available
inexpensive computer chips, and the omnipresence of wireless networks, it has become
possible to transform anything into a part of the IoT [1]. Hence, the number of IoT devices
has skyrocketed over the past years. According to Statistica [2], the global number of IoT
devices has reached 16.4 billion, and by 2025, it is projected to reach more than 30 billion
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devices. However, with the rise in the wide use of IoT devices, vulnerabilities have arisen,
leading to the breach of confidentiality and integrity of users and systems.

Most IoT devices perform operations on sensitive user data. Thus, various fundamen-
tal challenges in designing a secure IoT exist, such as privacy, access control, authentication,
confidentiality, trust, etc. As discussed by Kolias et al. [3], various malware botnets, such
as Mirai, can take control and quickly spread, exploiting the vulnerabilities of IoT devices.
This especially points out that insecure IoT devices can lead to direct risks to all the inter-
connecting devices in their network. Further, attackers often gain access to users’ data and
may cause monetary losses and eavesdropping [4,5]. Particularly, IoT devices are prone
to network attacks such as phishing attacks, data thefts, spoofing, and denial of service
(DoS) attacks. These attacks can cause other cyber security threats, including serious data
breaches and ransomware attacks that can cost organizations a lot of money and effort to
recover from [5].

Denial of service (DoS) attacks in such devices have also become pervasive, preventing
access to services that the user has paid for [6]. Moreover, DoS attacks can negatively affect
the services of small networks such as homes, hospitals, educational institutions, etc. [7,8].
What is more is that such attacks quickly spread, leading to exploiting vulnerabilities of a
plethora of IoT devices. In 2021, Forbes reported that the attacks on IoT devices skyrocketed
and surpassed 300% [9]. Thus, the need to have robust solutions to counter these attacks
and prevent their expansion before it is too late is imminent.

The use of artificial intelligence (AI) techniques, mainly machine learning (ML), has
become very useful due to their ability to learn from past experiences and prevent cyber-
attacks before they spread and affect more and more devices [10]. ML is a field in AI
that uses data and algorithms to mimic how humans learn, improving over time with
experience. Network security, particularly IoT security, is a very challenging field. Utilizing
ML’s power can lead to more robust solutions to protect the confidentiality, integrity, and
availability of IoT networks and users [11,12]. Thus, several research studies focus on attack
detection in IoT environments using AI techniques. Accordingly, this research uses a recent
dataset to apply ML techniques for detecting attacks in IoT environments.

The main contributions of this paper are as follows:

1. Study the effect of different sets of features on building ML models for detecting various
IoT attacks and investigate the models’ performance using features selection techniques;

2. Perform a comparative analysis of binary and multiclass experiments on the dataset
to detect and classify IoT attacks;

3. Achieve better benchmark results on the utilized IoT attacks dataset.

The paper is divided as follows: Section 2 reviews related works in the field. Section 3
outlines the research methodology, which describes the dataset used, the preprocessing
steps carried out, the models applied, and the performance metrics utilized. Section 4
discusses the experimental setup and the results obtained. Finally, Section 5 presents the
conclusion and future work.

2. Related Works

Many researchers worked on detecting cyberattacks in IoT networks as they aimed
to offer more security to people and cities that use IoT systems. Most studies included in
the literature review used the UNSW-NB15 [13] dataset. Following this ideology, Verma
et al. [14] aimed to improve the security of IoT systems against DoS attacks by developing
several ML models, namely, AdaBoost (AB), RF, a gradient boosting machine (GBM),
extreme gradient boosting (XGB), classification and regression trees (CART), extremely
randomized trees (ERT), and multi-layer perceptron (MLP). They used three datasets:
CIDDS-001 [15], UNSW-NB15 [13], and NSL-KDD [16]. The results showed that CART
achieved the best performance with an accuracy level of 96.74%, while XGB resulted in
the best performance at the AUC level of 98.77%. Additionally, Khatib et al. [17] aimed
to build an ML model for intrusion detection to enhance the accuracy of IoT networks
against malicious attacks. For their experiments, the researchers used the UNSW-NB15 [13]
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dataset, which consisted of 49 features and contained 2,540,044 samples, and applied seven
ML classifiers, namely RF, decision trees (DT), AdaBoost, logistic regression (LR), linear
discriminant analysis (LDA), a support vector machine (SVM), and Nystrom-SVM. In
multiclass classification, SVM resulted in the best performance with an accuracy of 93%.
While in binary classification, Nystrom-SVM, RF, and DT resulted in the best performance
with an accuracy level of 95%.

In another study, Rashid et al. [18] proposed ML models for anomaly detection to
enhance the security of IoT in smart cities by using two UNSW-NB15 and CIC-IDS2017,
having 175,341 and 190,774 instances, respectively. The study used an information gain
ratio to select the best 25 features in each dataset for their experiments, and 10-fold cross-
validation was used to train the models: LR, SVM, RF, DT, k-nearest neighbor (KNN),
and artificial neural network (ANN). Ensemble techniques such as bagging, boosting, and
stacking ensemble were also used. CIC-IDS2017 showed better performance among all
the classifiers while stacking ensemble models resulted in the best performance with an
accuracy level of 99.9%. Similarly, Alrashdi et al. [19] proposed AD-IoT, an ML model
for anomaly detection in IoT networks in smart cities using the UNSW-NB15 dataset,
taking 699,934 instances for their experiments. For feature selection, the authors used the
extra trees classifier to select the best features to train the ML model, and only 12 features
were selected to train the model. An RF classifier was used to build the proposed model.
The proposed model was developed for binary classification as normal and attack traffic,
resulting in an accuracy of 99.34%.

On the other hand, some studies used different datasets for the same purpose as
the previous studies. Gad et al. [20] aimed to improve the security of vehicular ad hoc
networks against DoS attacks by developing an ML model for intrusion detection using
the used ToN-IoT [21] dataset containing 44 features. Synthetic minority oversampling
technique (SMOTE) was applied to handle the class imbalance, and the Chi2 algorithm
was used for the features selection process resulting in the 20 best features. This study used
five ML algorithms: LR, naive Bayes (NB), DT, SVM, KNN, RF, AB, and XGB. The XGB
algorithm resulted in the best performance in accuracy levels of 99.1% and 98.3% in both
binary and multiclass classification, respectively. In addition, Verma et al. [22] proposed
an ensemble ML model for anomaly detection to enhance the security of IoT networks
by detecting zero-day attacks using the CSE-CIC-IDS2018-V2 [23] dataset. The SMOTE
oversampling technique was used to handle class imbalance. In addition, the authors used
the random under-sampling technique to the benign class to reduce its number of instances,
and the random search cross-validation algorithm was used to select the best features. To
avoid overfitting, the authors split the dataset using a 70–30 train–test split and trained the
proposed model 10 times using different instances in each set. This way combined both
10-fold cross-validation and the hold-out splitting method. The ensemble model presented
in this study consisted of the RF and GBM classifiers and resulted in an accuracy level
of 98.27%.

Similarly, to assess the systems that automate attack detection in industrial control
systems (ICS), Arora et al. [24] focused on evaluating different ML algorithms, namely,
RF, SVM, DT, ANN, KNN, and NB. The dataset used in their experiment was the SCADA
attacks dataset, containing seven features and the label classifying the data samples as nor-
mal or attack. Further, the dataset underwent an 80–20 train–test split, and the evaluation
metrics utilized were accuracy, false alarm rate (FAR), UN-detection rate (UND), and the
receiver operating characteristic (ROC) curve. The results showed that RF achieved the
highest accuracy of 99.84% and the highest UND of 84.7%. In another study, Mothkuri
et al. [25] proposed a federated learning (FL)-based approach to anomaly detection to
detect intrusions in IoT networks by employing decentralized on-device data. They used
gated recurrent units (GRU) and kept the data intact on only the local IoT devices by
sharing learned rates with the FL. Further, the ML model’s accuracy was optimized by
aggregating updates from multiple sources. The Modbus-based network dataset [26] was
used for building and evaluating the results, and it contained several attack types such as
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man-in-the-middle, distributed denial of service (DDoS), synchronization DDoS, and query
flood attacks. The experiment results demonstrated that the FL-based approach achieved a
better performance average accuracy of 90.286% in successfully detecting attacks than the
non-FL-based approach. Table 1 Summarizes the reviewed papers.

Table 1. Literature review summary.

Ref. Method Dataset Features Results

[14] AB, RF, GBM, XGB, CART, ERT,
and MLP

CIDDS-001, UNSW-NB15, and
NSL-KDD - Accuracy = 96.74% using CART

[17] RF, DT, AdaBoost, LR, LDA,
SVM, and Nystrom-SVM

UNSW-NB15,
2,540,044 samples 49 features

Binary classification:
Accuracy = 95% using

Nystrom-SVM, RF, and DT.
Multiclass classification:

Accuracy = 93% using SVM.

[18]
LR, SVM, RF, DT, KNN, ANN,

bagging, boosting, and
stacking ensemble

UNSW-NB15, 175,341 samples,
and CIC-IDS2017,
190,774 samples.

25 features Accuracy = 99.9% using
stacking ensemble

[19] RF UNSW-NB15, 699,934 samples. 12 features Accuracy = 99.34%

[20] LR, NB, DT, SVM, KNN, RF,
AB, and XGB ToN-IoT 20 features

Binary classification:
Accuracy = 99.1%

Multiclass classification:
Accuracy = 98.3%, both

using XGB.

[22] RF, and GBM CSE-CIC-IDS2018-V2 Accuracy = 98.27%

[24] RF, SVM, DT, ANN, KNN,
and NB SCADA attacks dataset 7 features Accuracy = 99.84% using RF

[25] GRU Modbus-based network dataset - Accuracy = 90.286

Although many studies focused on detecting IoT attacks and achieved high perfor-
mance, a gap and limitations still need to be resolved. From the literature, there is a need
to explore new datasets that contain new attack types. Most of the reviewed papers used
common datasets that contain old attacks, but many new attacks are being created in the
IoT security field. Moreover, most of the datasets used targeted general network attacks.
Using a dataset that targets IoT attacks may improve the detection of these attacks. Most
reviewed studies used many features to train their models. Exploring feature selection and
extracting the most important features will reduce the impact of cure of dimensionality and
the time needed for attack detection.

3. Methodology

The primary purpose of our study is to use ML algorithms to detect and classify IoT
network security attacks. The models used include bagging, KNN, J48, RF, LR, and MLP.
The models were trained using a publicly available dataset from Wheelus and Zhu [27] to
detect and categorize IoT network attacks. The dataset underwent several preprocessing
steps to convert it into the most suitable format for training the models. Furthermore, we
evaluated the performance of these models based on evaluation parameters, including clas-
sification accuracy, F-score, recall, precision, and ROC. Moreover, we implemented 10-fold
cross-validation to build the models and performed two experiments for detection—binary
classification to distinguish between normal and attack sessions—and two experiments
for classification—multiclass classification to categorize normal sessions and three types
of attack, namely, no shared secret (NSS), query cache (QC), and zone transfer (ZT). Fur-
thermore, the experiments were conducted using a subset of the features to emphasize
the significance of the features selection process while maintaining, if not increasing, the
models’ performance. Figure 1 demonstrates the research methodology steps.
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3.1. Dataset Description

The dataset used in this study is a publicly available dataset released by Wheelus and
Zhu [27]. The dataset was collected for nine months, and the raw data underwent several
preprocessing phases and organizing into sessions based on packet commonalities such as
source and destination IP addresses and ports, as well as temporal characteristics. The set of
features included in the dataset is depicted in Table 2. For the binary case, the dataset aims
to classify samples into attack or normal categories. For multiclass classification purposes,
it aims to classify the sample into four categories of unauthorized attacks: normal, query
cache (QC), zone transfer (ZT), and no shared secret (NSS). The QC error occurs when an
unauthorized request for system data is evidenced by the incorrect sequence of requests
made to the remote gate opener (RGO). In a ZT attack, a perpetrator tries to access domain
name system (DNS) zone information to scan the IoT system’s components. The NSS attack
happens when there is an unauthorized attempt to join the IoT network. This attempt is
recognized when the shared secret, exchanged during authorization of RGO, is expired
or invalid. The binary dataset consists of 212,834 samples, where 178,576 are normal and
34,258 are attacks. On the other hand, in the multiclass dataset, there are four classes:
normal, NSS, QC, and ZT, where the number of examples that belong to each class are
178,576, 23,022, 6901, and 4335, respectively.
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Table 2. Description of features present in the dataset.

# Feature Name Description

1 in_rep Session repetition—packet count of packets that are of the most
common packet size2 out_rep

3 in_prdcty Session periodicity—measure of periodicity in a session, given by the
variance of timestamp differences between packets4 out_prdcty

5 in_conv Session convergence—self-similarity of the packets in the session,
determined by examining the variance in the size of the packets6 out_conv

7 invel_pps Packets per second—velocity of the traffic measured in packets
per second8 outvel_pps

9 invel_bps Bits per second—velocity of the traffic measured in bits per second
10 outvel_bps
11 invel_bpp Bytes per packet—velocity of the traffic measured in bytes per packet
12 outvel_bpp

13 riotp RIOT packets—ratio of inbound to outbound traffic measured in
packets (inbound and outbound combined)

14 riotb RIOT bytes—ratio of inbound to outbound traffic measured in bytes
(inbound and outbound combined)

15 duration Duration—the total elapsed time of the session (inbound and
outbound combined)

16 orig_bytes Byte count—session traffic size in bytes
17 resp_bytes
18 orig_packets Packet count—session traffic size in packets
19 resp_packets

3.2. Preprocessing

Preprocessing is performed before using the dataset to ensure the data is in a format ap-
propriate for training and testing the models. This step involves loading, cleaning, treating,
and converting the data into a suitable format for the intended tasks. The dataset originally
contains 212,834 instances, 178,576 of which represent normal traffic. This represents 83.9%
of the dataset, indicating the imbalance in the data as this class is substantially higher
than the others. Considering that the dataset suffers from imbalance and the presence of
missing values in all classes, we worked on treating the missing values differently for each
class depending on the best method for each. Because the normal class was significantly
higher than the others, the method chosen to treat its missing values was deletion for both
experiments. The missing values in the second class representing attacks were imputed
using the mean for the binary classification experiments. This was possible as the features
included missing values corresponding to variance values. Hence, using the mean was
appropriate to impute those missing values. As for the multiclass experiments, the missing
values in the NSS class were deleted as doing so would maintain the number of NSS attack
instances to still be more than the lowest class. In other words, as illustrated in Table 3,
when the missing values of the NSS class are deleted, the number of instances becomes
5597, which is still more than the number of instances of the ZT class—4335. The missing
values in the QC and ZT classes were treated by imputation using the mean because the
number of instances was already low in those two classes. Table 3 shows how the dataset
appears after treating missing values. Moreover, under-sampling was performed due to
the imbalance that remained. In addition, the dataset records were also normalized to the
range of −1:1. How the final dataset instances appear after all these steps is visualized in
Figure 2 for the binary and multiclass classification experiments.
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Table 3. Dataset values before and after missing values treatment.

Exterminate Class
Number of Instances

Before Treating the
Missing Values

After Treating the
Missing Values

Binary classification
Normal 178,576 163,876

Attack 34,258 34,258

Multiclass
classification

Normal 178,576 163,876

NSS 23,022 5597

QC 6901 6901

ZT 4335 4335
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classification.

3.3. Feature Selection

The dataset included 20 features depicting relevant information about the traffic
sessions. We performed four different experiments to obtain the highest performance. The
class attribute takes the values of normal or attack in the case of the binary experiments,
and in the case of multiclass classification, the attack values are further classified into three
types of attacks: NSS, QC, and ZT. The same set of features is used for all four experiments.
Table 4 shows how the dataset appeared after feature selection. As shown in Table 4, the
correlation and information gain of all features were calculated. The top 30% of the features
were selected. Therefore, the seven features with the highest correlations were selected,
and another feature (duration) was added due to its high information gain value. Later, the
correlation among the features was calculated, indicating that the riotb and riotp attributes
had a 100% correlation. Only one was to be used; otherwise, we would have a redundant
feature. According to the higher information gain value of the riotb feature, it was the one
we kept. Hence, we had seven features to use in the four experiments.
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Table 4. Correlation and information gain values for each of the selected features.

Feature Correlation Information Gain

orig_packets 0.6609 0.658

riotp 0.6391 0.82

outvel_bpp 0.6339 0.814

orig_bytes 0.6277 0.87

resp_packets 0.5999 0.623

resp_bytes 0.5275 0.831

duration 0.2827 0.649

3.4. Evaluation Metrics

The aforementioned model is evaluated in terms of accuracy, F1-score, recall, precision,
and ROC. The following are the potential outcomes of attack prediction:

• True positive (TP): TP refers to attack classes that were correctly predicted;
• False positive (FP): FP signifies the normal classes that were incorrectly predicted

as attack;
• True negative (TN): TN reflects the normal classes that were correctly predicted;
• False negative (FN): FN refers to attack classes that were incorrectly predicted as normal.

Accuracy indicates the overall rate of correctly identified instances in the test dataset
compared with the total number of instances, defined as Equation (1):

Accuracy =
TP + TN

TP + FN + FP + TN′
(1)

F1 score measures both the precision and recall at the same time, calculated as Equation (2):

F1− score = 2× P× R
P + R

(2)

Recall indicates how correctly the model predicts the true positives, calculated as the
ratio of the true positives detected to the total actual positive, shown in Equation (3):

Recall (R) =
TP

TP + FN
(3)

Precision indicates the quality of prediction made, calculated as the ratio of true
positives to the total positives (false and true), represented in Equation (4):

Precision (P) =
TP

TP + FP
(4)

The ROC curve indicates the model’s performance at various classification thresholds.
It plots two parameters: the true positive rate and false positive rate.

4. Results and Discussion
4.1. Experimental Setup

Different ML models were used to perform the experiments, including RF, LR, KNN,
J48, bagging ensemble, and MLP. The rationale behind using these algorithms is the
fact that they were successfully used for building classification models in different do-
mains [14,18,20,24]. Further, these algorithms were selected to compare the performance
between single-model and ensemble-based classification algorithms. The dataset used in
these experiments contains 19 features and a target class divided into normal and attack
traffic in the first set of experiments and divided into normal, QC, ZT, and NSS attacks in
the second set of experiments. The number of instances was 212,834, but because of the
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imbalance problem, the dataset needed to be under-sampled to obtain a different number
of instances for each set of experiments. Moreover, two more sets of experiments were
performed with seven features that were chosen after performing feature selection based
on the correlation with the target class.

4.2. Parameter Settings

Parameter settings are optimized to ensure obtaining the best possible results from the
models. After exploring the best range for the most important parameter of each algorithm,
different values were tested within these ranges. The best settings used in the binary and
multiclass classification experiments are shown in Table 5.

Table 5. Parameter optimization settings.

Model Parameter
Optimal Value

Binary Experiments Multiclass Experiments

J48
Binary split False False

Confidence factor 0.25 0.2

LR
Maxlts −1 −1

Ridge 1.0 × 10−8 1.0 × 10−8

RF

Iterations 100 50

Batch Size 100 100

Features 0 0

KNN
K value 3 1

Distance Euclidean Euclidean

Bagging

Classifier REPTree

Iterations 50 50

Bag size percent 100 100

MLP

Hidden layers 3 3

Activation function ReLU ReLU

Optimizer Adam Adam

Epochs 60 60

4.3. Experimental Results
4.3.1. Binary Class Results

The first set of experiments was performed using a binary class of normal and at-
tack traffic with 19 features. The classifiers used for this set of experiments are RF, LR,
KNN, J48, bagging ensemble, and MLP. Table 6 shows binary experiment results before
feature selection.

Table 6. Binary experiment results before feature selection.

Model Precision Recall F1-Score Accuracy ROC

KNN 0.932 0.924 0.924 92.4% 0.924

LR 0.984 0.984 0.984 98.38% 0.994

J84 0.994 0.994 0.994 99.43% 0.996

RF 0.996 0.996 0.996 99.59% 0.999

Bagging 0.995 0.995 0.995 99.46% 0.999

MLP 0.992 0.992 0.992 99.16% 0.993
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As shown in Table 6, RF resulted in the best performance in all the evaluation metrics.
The bagging ensemble model resulted in a ROC area of 0.999. KNN resulted in the lowest
performance among all the classifiers, with an accuracy level of 92.4%. The nature of the
RF classifier is the reason behind its performance. As RF is an ensemble of decision trees, it
simultaneously trains multiple trees and then uses all the trees to make the final prediction.
In addition, it applies feature selection during its learning process, and each of the trees
could use a different set of features. Therefore, by combining all the learned trees, we obtain
a very powerful algorithm with an enhanced prediction performance. The results of the
bagging ensemble support the discussion before, as the strength of ensemble techniques
is important to predicting the type of traffic. The reason behind overperforming the RF
model to the bagging ensemble is the nature of the classifiers included in the bagging
model. The nature of tree classifiers is more suitable to the prediction class of this study, as
RF overperformed the bagging ensemble, and the J48 model overperformed other single
classifiers. As mentioned earlier, the feature selection included in training the tree classifiers
could be the reason why they select the more suitable features for detecting the attack traffic
from normal traffic.

After performing feature selection, more experiments were performed using the best set
of features as mentioned in Section 3.3. Table 7 shows the results after the feature selection.

Table 7. Binary experiment results after features selection.

Model Precision Recall F1-Score Accuracy ROC

KNN 0.993 0.993 0.993 99.28% 0.997

LR 0.978 0.978 0.978 97.83% 0.993

J84 0.993 0.993 0.993 99.31% 0.995

RF 0.995 0.995 0.995 99.59% 0.999

Bagging 0.993 0.993 0.993 99.34% 0.999

MLP 0.991 0.991 0.991 98.94% 0.992

As shown in Table 7, RF resulted in the best performance in all the evaluation metrics.
As before, the bagging ensemble yielded the same ROC area of 0.999. The performance
of the KNN model was significantly improved with an accuracy of 99.28% and beat the
LR model which resulted in an accuracy of 97.83%, the lowest performance among all
the models. The possible reason behind the improvement of the KNN performance could
be that KNN is suited for lower dimensional data. In other words, the KNN model has
benefited from feature selection which reduced the dimensionality of the input feature.

4.3.2. Multiclass Results

The second set of experiments was performed using a multiclass of normal and ZT,
QC, and NSS attacks with 19 features. The classifiers used for this set of experiments are
RF, LR, KNN, J48, bagging ensemble, and MLP. Table 8 shows the multiclass experiment
results before feature selection.

Table 8. Multiclass experiment results before feature selection.

Model Precision Recall F1-Score Accuracy ROC

KNN 0.875 0.795 0.799 79.48% 0.864

LR 0.949 0.948 0.948 94.83% 0.991

J84 0.981 0.981 0.981 98.08% 0.991

RF 0.989 0.989 0.989 98.87% 0.999

Bagging 0.982 0.982 0.982 98.22% 0.999

MLP 0.973 0.973 0.973 96.58% 0.992
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As shown in Table 8, RF resulted in the best performance in all the evaluation metrics
used. The bagging ensemble model resulted in a ROC area of 0.999. KNN resulted in
the lowest performance among all the classifiers with an accuracy level of 79.48%. As
mentioned in Section 4.3.1, the strength of ensemble trees and the feature selection included
in their training could be the reason for resulting in the best performance among all
the classifiers.

Another set of experiments was performed using the best seven features. Table 9
below shows the results after the features selection.

Table 9. Multiclass experiment results after features selection.

Model Precision Recall F1-Score Accuracy ROC

KNN 0.979 0.979 0.979 97.88% 0.990

LR 0.904 0.905 0.904 90.46% 0.982

J84 0.981 0.981 0.981 98.06% 0.993

RF 0.987 0.987 0.987 98.67% 0.999

Bagging 0.981 0.981 0.981 98.06% 0.998

MLP 0.973 0.973 0.973 96.58% 0.990

As shown in Table 9, RF resulted in the best performance in all the evaluation metrics.
The performance of the KNN model was significantly improved to result in an accuracy
of 97.88% and beat the LR model, which resulted in an accuracy of 90.46%, the lowest
performance among all the models.

4.4. Discussion

The experimental results showed that the performance of the models in binary classifi-
cation is better than their performance in multiclass classification. This means the models
can differentiate between normal and attack traffic but face some difficulty distinguishing
between the attack types. The reason for that can be the similarity of the features of the
attack traffic, which made it hard for the classifiers to find unique features for each attack.
In comparison, the highest level of the ROC area was the same in all binary and multiclass
experiments, with a level of 0.999. Because RF combines the strength of the decision trees,
the ensemble techniques, and the feature selection, it achieved the highest performance
among all the experiments. The bagging ensemble was the second model in terms of
performance. This shows that ensemble models resulted in better performance compared
with single classifiers. Moreover, the performance of all models was slightly decreased after
applying feature selection, except in the KNN model, as its performance was significantly
improved after feature selection. Tables 10 and 11 show the confusion matrix of the RF
model in binary and multiclass classifications.

Table 10. Confusion matrix for the binary class case.

Prediction

Normal Attack

Actual
Normal 34,299 29

Attack 237 34,021
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Table 11. Confusion matrix for the multiclass case.

Prediction

Normal ZT NSS QC

Actual

Normal 4301 2 30 2

ZT 0 4333 2 0

NSS 125 1 4208 1

QC 16 0 16 4303

4.5. Comparison with Benchmark Study

This study used different ML models to create models using a well-known dataset for
detecting attacks on IoT devices. The dataset that was used to train the models consists of
212,834 samples and 19 features. The target class is divided into binary classes as normal
and attack traffic, and multiclass as normal, NSS, QC, and ZT attacks. To handle the missing
values, both removing missing values and imputing them using the mean value were used
depending on the number of samples in each class. The dataset suffered from an imbalance
problem, and the randomized under-sampling technique was used to balance the data. In
the end, feature selection was performed to use the best set of seven features and obtain the
same accuracy as when using the whole set of features. It was compared with a benchmark
study to compare the proposed model with the previous studies.

The benchmark study [27] compared with this study used the same dataset but with
multiclass only. Moreover, the benchmark study used four ML algorithms: naive Bayes, J48,
LR, RF, and the MLP algorithm. All the samples with missing values were dropped, and the
random oversampling technique was used to solve the imbalance problem. Moreover, the
entire set of 19 features was used to build the model. In addition, the binary classification
of the dataset was experimented with for the first time in this study. The preprocessing
techniques used in the proposed study have a significant impact on retaining improved
results compared with the benchmark study. In addition, combining the imputing and
removing methods in handling missing values helped save data of minority classes from
being lost. Also, under-sampling techniques could be a better option to avoid overfitting
caused by random oversampling. Lastly, experimenting with feature selection and reducing
the number of the needed features to seven instead of 19 is very important in reducing
the time required for both training ML models and using them for classification. In the
benchmark study, the RF model achieved the best performance with a ROC area of 0.976.
Although the same dataset is used in this study and the previous study, the model proposed
resulted in better performance in all evaluation metrics. Table 12 shows the comparison
in detail.

Table 12. Comparison with benchmark study.

Study Model Precision Recall F1-Score Accuracy ROC

IoT Network Security:
Threats, Risks, and a
Data-Driven Defense

Framework

RF 0.905 0.894 0.891 - 0.976

Proposed tudy
(multiclass) RF 0.989 0.989 0.989 98.87% 0.999

Proposed study
(binary-class) RF 0.996 0.996 0.996 99.59% 0.999

5. Conclusions

With the growing number of IoT devices, the number of cyber threats in IoT networks
has drastically surged. This imminent situation requires instant action as most devices
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share and process sensitive data. Therefore, AI methods have been widely adopted to
counter these threats due to their robustness and efficiency. Many researchers focused on
detecting various attacks in IoT by building ML classifiers. In this study, we have focused
on features engineering and building ML models using a new dataset as it is necessary to
explore new cybersecurity datasets due to the changing nature of cyber threats.

We performed two classes of experiments: one for binary classification into normal
and attack class, and another for multiclass classification into normal, QC (query cache),
ZT (zone transfer), and NSS (no shared secret) classes. In both cases, the dataset underwent
randomized under-sampling to obtain an equal number of classes, followed by normaliza-
tion, and feature selection using correlation and information gain. Then, for each case, two
sets of experiments were performed. One uses all the features, and another uses the best
features only. The 10-fold cross-validation technique was applied to the dataset and the
models applied were bagging, KNN, J48, RF, LR, and MLP. We evaluated their performance
in terms of accuracy, F-score, recall, precision, and ROC. The results of the experiments
showed that RF achieved the highest performance in all the experiment sets, obtaining
a ROC of 99.9%. Furthermore, binary classification experiments gave better results than
multiclass. Additionally, feature selection had little effect in both the experiment sets as
most of the classifier performance remained the same except for the case of KNN, where
its performance significantly increased. As for future work, we suggest building real-time
models capable of identifying attacks in IoT devices and classifying them in real-time to
stop malicious activity before it leaks or destroys sensitive data. Furthermore, this dataset
can be used as an inspiration to build our dataset and generate more attack types to try our
ML models on it.
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