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Abstract: Recent advancements in Single-Image Super-Resolution (SISR) have explored the network
architecture of deep-learning models to achieve a better perceptual quality of super-resolved images.
However, the effect of the objective function, which contributes to improving the performance and
perceptual quality of super-resolved images, has not gained much attention. This paper proposes
a novel super-resolution architecture called Progressive Multi-Residual Fusion Network (PMRF),
which fuses the learning objective functions of L2 and Multi-Scale SSIM in a progressively upsam-
pling framework structure. Specifically, we propose a Residual-in-Residual Dense Blocks (RRDB)
architecture on a progressively upsampling platform that reconstructs the high-resolution image
during intermediate steps in our super-resolution network. Additionally, the Depth-Wise Bottleneck
Projection allows high-frequency information of early network layers to be bypassed through the
upsampling modules of the network. Quantitative and qualitative evaluation of benchmark datasets
demonstrate that the proposed PMRF super-resolution algorithm with novel fusion objective func-
tion (L2 and MS-SSIM) improves our model’s perceptual quality and accuracy compared to other
state-of-the-art models. Moreover, this model demonstrates robustness against noise degradation
and achieves an acceptable trade-off between network efficiency and accuracy.

Keywords: image super-resolution; MS-SSIM objective function; fuse objective functions; progressive
upsampling framework; residual-in-residual dense block

1. Introduction

The image Super-Resolution (SR) problem has been drawing the attention of Internet
of Things (IoT) researchers and artificial intelligence (AI) companies for a decade. Due
to the restriction on capturing high-resolution images in image-based applications such
as the Internet of Things (IoT), the image Super-Resolution (SR) technique is essential
in enhancing the visual quality of low-resolution images. An acquired low-resolution
image (image/video communications and edge IoT sensors) contains some degradation,
such as noise and blur effects. A super-resolution algorithm is required to enlarge the
low-resolution image and reconstruct a high-resolution image while reducing the negative
effects of the degradation [1–3].

Single-Image Super-Resolution (SISR), which considers an ill-posed challenge, is a
process of reconstructing a High-Resolution (HR) image from a Low-Resolution (LR) image
and effectively improving the quality of captured images. Compared to conventional
image-enhancement methods, deep-learning-based image enhancement is used in various
computer vision applications such as haze visibility enhancement [4], environment-aware
imagery [5] and video [6] for IoT services. In recent years, learning-based algorithms
have demonstrated impressive performance compared to conventional SR methods when
learning LR-to-HR mapping. In particular, the Convolution Neural Network (CNN) has
been trained in a supervised manner to learn the abstract feature representation of the
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LR patch and a corresponding HR patch. According to this concept, Dong et al. [7]
demonstrated a Super-Resolution Convolutional Neural Network (SRCNN) architecture
hat learns based on an end-to-end nonlinear mapping from interpolated LR patch to HR
patch in a three-layer network. This CNN model significantly improved the SR results
regarding Peak Signal-to-Noise Ratio (PSNR) compared to conventional SR algorithms.
However, the SRCNN suffered poor perceptual quality, noise amplification effects, and
weakness in reconstructing image detail and recovering high-frequency details (tiny edges
and lines). To modify the deep-learning-based SR algorithm, researchers have proposed
various network architectures and learning strategies such as designing deeper networks,
proposing different network topologies, modifying upsampling frameworks, and adopting
attention mechanisms.

Following the SRCNN concept, the Very Deep SR network (VDSR) [8] and Deeply
Recursive Convolutional Network (DRCN) [9] used pre-upsampling 20-layer network archi-
tectures and obtained superior performances over the previous model. The network archi-
tectures became deeper by improving the capability of CNN models and learning strategies.
Inspired by Residual Net (ResNet) [10], several effective SR architectures [11–15] have used
the residual block strategy. Multi-scale Deep Super-Resolution (MDSR) [16] and Enhanced
Deep Super-Resolution (EDSR) [16] proposed by Lim et al. are two modified versions
of the residual block architecture with a post-upsampling framework that demonstrates
significant improvements in reconstructing HR images. MDSR is a deep network with sim-
plified residual blocks, while EDSR architecture is considered a wide network. Although
residual block architecture has improved the accuracy and quality of images compared to
SRCNN, they suffer some limitations, such as weakness in reconstructing small detail and
inaccurate structure reconstruction due to learning difficulties in mapping features in the
post-upsampling method.

The first progressive upsampling framework SR model is Laplacian Pyramid Super-
Resolution Network (LapSRN) [17]. In this SR model, the HR image is reconstructed using
sub-band residuals of a high-dimensional image in a progressive procedure. Although the
progressive LapSRN reduced the learning difficulty, the network structure is ineffective in
reconstructing high-frequency detail. Weaknesses cause this problem in the projecting of
high-frequency information from the early layer.

To improve the SR model’s high-frequency information and representation ability,
Zhang et al. [18] proposed a very deep Residual Channel Attention Network (RCAN). Due
to the robustness of the residual architecture in the SR field, the RCAN model used deep
(over 400 layers) Residual-in-Residual block (RIR) architecture with short- and long-skip
connections to directly transfer the high-frequency details of the image to the final output.
The Channel Attention (CA) mechanism is also used to re-scale the features across channels.
However, this model’s lack of global information due to convolutions operating across
the local region leads to weakness in reconstructing the sophisticated structure (holes and
lattices texture) similar to the ground-truth image and more enhancement in perceptual
quality [19].

However, designing an image super-resolution algorithm with less network complex-
ity, while maintaining the representation ability of the super-resolution model to reconstruct
the tiny details of the output image, remains a challenge.

Moreover, most of the enhancements only consider the architecture of SR models, and
the effect of the objective function has not gained much attention. In terms of the pixel-wise
objective function in the SR algorithm, early models such as SRCNN [7], Fast Super-
Resolution Convolutional Neural Network (FSRCNN) [20], Memory Network for image-
Restoration purposes (MemNet) [13], and Deep Back-Projection Networks (DBPN) [21]
used the L2 loss function. The later SR models, such as LapSRN [17], EDSR [16], SRFBN [22],
Meta-RDN [23], RCAN [18], and DRLN [24], used the L1 loss function in their models and
improved the model convergence and representation performances.
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Although the trend of network depth from the first model of SRCNN [7] to DRLN [24]
reveals that increasing the depth (network complexity) eventually leads to improving the
network performance, these SR models face some limitations.

(1) The super-resolved images have a weakness in recovering high-frequency infor-
mation. This limitation leads to reconstructing inaccurate SR images and a lack of capa-
bility to produce sophisticated structures such as lines, edges, and tiny shapes. (2) Most
existing CNN-based SR models employ post-upsampling operations. Although the post-
upsampling framework performs the most computations in a low-dimensional space and
reduces the computation complexity, it increases the learning difficulties of the SR model
on larger scale factors. (3) Despite the importance of the loss function in reconstructing the
SR image, the effect of CNN’s loss function on the SR issue has not received considerable
attention. A progressive upsampling architecture with an effective loss function is essential.

A practical way to develop a robust SR network is to use a gradual upsampling frame-
work that contains fewer network layers at low dimensions and then use more convolution
layers after the upsampling modules. Rather than using a very deep architecture with a
post-upsampling framework that applies numerous convolution layers in low-dimensional
space and then suddenly up-sample at the end of the model, we use the progressive upsam-
pling framework. The progressive upsampling concept has been proven to improve the
robustness of the SR model in recovering high-frequency information, reducing learning
difficulties, and producing promising results in multiple degradations [25]. Specifically, we
propose a progressive upsampling framework that stacks effective simplified Residual-in-
Residual Dense Blocks (RRDB) at the low-dimensional space before the first upsampling
module. Then, another RDB is used after the upsampling layer to explore the feature maps
in higher-dimensional space. Additionally, the Depth-Wise (DW) bottleneck projections are
used to easily flow the high-frequency details of the early CNN layers into our network’s
progressively upsampling modules.

Moreover, a fusing approach for the practical loss function that combines L2 and multi-
scale structural similarity indexed measures (MS-SSIM) objective functions is proposed as
the most effective loss function for our SR model.

In summary, our main contributions are listed as follows:
(1) Propose a simplified RRDB structure with depth-wise bottleneck projections to

map the discriminative high-frequency details to each stage of upsampling layers of our
network, which increases the network convergence in the training phase and maintains the
representation ability.

(2) Employ the progressive upsampling framework for our architecture to reduce the
learning difficulties of the model in larger scale factors due to the progressively upsam-
pling procedure.

(3) Introduce a novel fusion objective function by combining L2 and MS-SSIM loss
functions to improve the representative capability of our model.

The remainder of this article is organized as follows. Section 2 briefly reviews the
relevant works related to the proposed method. Section 3 details the proposed model’s ar-
chitecture and fused loss function. The implementation details, datasets, and experimental
results are demonstrated in Section 4, and discuss the relationships between state-of-art
models and our own. Finally, the conclusion is given in Section 5.

2. Related Works

The past decade has witnessed incredible development of SISR using the deep-learning
approach. Among the various aspects of SR developments, the network architecture,
upsampling framework, and learning objective function are considered the essential aspects
of any SR structure that directly contributes to the SR model representation capability [26].

As pioneer research, Dong et al. [7] used the CNN approach to introduce the SR-
CNN model, which could learn mapping from LR image to HR image in an end-to-end
learning-based approach. This first CNN-based model achieved superior performance in
reconstructing HR images from LR images compared to previous conventional SR algo-
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rithms. The SRCNN model consists of a shallow three-layer convolutional network that
uses a pre-upsampling framework. This means the LR image at the first stage is enlarged
by bicubic interpolation, then fed to the network as the input image. This single-path
SR model, without any skip connections, directly learns an end-to-end mapping between
the original HR image and the bicubic interpolated input. The SRCNN model uses the
L2 objective function. Despite improvements to SRCNN compared to classic models, the
resultant SR images are blurry and noisy because of using a very shallow network architec-
ture. In comprehensive research, Dong et al. [20] investigated the effect of depth network
architecture on the SR model. Although the deeper network improved model performance,
the perceptual quality was unsuitable. It required more improvement by modifying the
network architecture, upsampling framework, and objective function.

Here, we review related SR research on the network architecture, and different residual
connections, upsampling frameworks, and objective functions.

2.1. Network Architecture Review

Followed by SRCNN [7], the SR field has witnessed a variety of network architectures
that aim to improve SR model performance and enhance the reconstructed image quality
by designing deeper network architectures. Designing deeper architecture makes gradient
vanishing an issue during the training of the models. Some strategies, such as residual
architectures, are feasible solutions to this limitation. Inspired by the Residual Network
(ResNet) concept [10] for image recognition models, a vast range of SR network architec-
tures used residual learning strategy [9,11,13,14,16,18,21,27–32]. In contrast to single-path
conventional network structures, the residual learning concept uses different variants of
residual connections, such as residual projection, and short- and long-skip connections
in network architecture to prevent gradient-vanishing problems and make it possible to
design an incredibly deep network [10,31].

Since the topology of the residual blocks has a direct effect on the performance of
the networks, several structures of the residual blocks, such as residual blocks in Pix-
elCNN [33], projected convolution (PConv) [31], gated convolution blocks in advanced
PixelCNN [34], and PixelCNN++ [35] were designed and explored in the deep-learning
image-reconstruction models.

Van Oord et al. [34] stacked a three-layer convolutional structure consisting of 1× 1,
3× 3, and 1× 1 convolutions with nonlinear activation function. This residual approach
(bottleneck) improves computational efficiency, but, because of single branch topology, had
a less enhancing effect on model convergence. PixelCNN [33] used two-channel branches to
improve the convergence of the model with sigmoid and hyperbolic tangent operations after
the first 3× 3 convolution layer, then stacked them to a 1× 1 convolution layer. The 1× 1
convolution layer maintains computational efficiency. However, the hyperbolic tangent
technique shows a limitation in mapping various features. Salimans et al. [35] used the
idea of PixelCNN, where the hyperbolic tangent branch was replaced by identity mapping.
Since the size of the features in this model is constant, mapping the high-frequency detail of
the features that improve the reconstruction capability of the SR model is not very effective.
The residual projection connection can enhance this limitation.

Fan et al. proposed a progressive residual network in Balanced Two-stage Residual
Networks [31] (BTSRN). The feature maps of the low-dimensional stage are upsampled and
fed into the higher-dimensional stages with a variant of residual block known as residual
projection connection. The residual projection of this SR model consists of a two-layer
projected convolution (PConv) structure including 1× 1 convolution layer as feature map
projection followed by 3× 3 convolution layer with rectified linear activation function
(ReLU). Despite the robustness of the model to reconstruct the high-frequency detail in
super-resolved images, the high computation cost is an important issue.

Although studies have shown that deeper CNN architectures lead to superior perfor-
mance, the drawback of numerous network layers in too deep architecture is an important
obstacle to converging networks in training mode. Besides the different training strategies
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for deep networks, reducing the network layers and computational cost is a feasible solu-
tion. Based on the residual block architecture in SR models, Lim et al. proposed the EDSR
model [16] by removing unnecessary Batch Normalization (BN) layers of each residual
block and the activation functions outside the residual blocks while expanding the depth of
network architecture. Although the EDSR model [16] reduced network layers, it has many
network parameters and computation costs.

Xiao et al. [36] proposed a lightweight model (LAINet) using a novel residual architec-
ture known as the dual-path residual approach to increase the diversity of the reconstructed
features. Specifically, the LAINet [36] model is split into two branches (dual-path residual),
and the extracted features are produced according to the different homogeneous functions
of each branch. This lightweight model lacks reconstruction capability to recover the edges,
due to limitations in combining the hierarchical features in its architecture.

Motivated by the DenseNet [37] architecture in the image classification field, various
SR models based on the dense connection concept have been proposed. The main advantage
of dense architecture is combining hierarchical features along the entire network to produce
richer feature representations. Tong et al. [38] proposed the SRDenseNet model, which
used the dense connection between SR network layers. These multiple skip connections
improve information flow from low-level features to the high-level layers before final image
reconstruction and avoid vanishing-gradient trouble. The Super-Resolution Feedback
Network [22] (SRFBN) also used the dense skip connection and feedback projection to
enrich the perceptual quality of the SR result.

Followed by the simplified concept of the residual block in the EDSR [16] model
and the dense architecture of SEDenseNet [38], Zhang et al. [27] designed an effective
Residual Dense Network (RDN) by combining the residual skip connections with dense
connections, and proposed a deeper network architecture with a CA mechanism. The
residual connection models in RDN are categorized into global and local skip connections.
At the local connection, the input of each block is forwarded to all RDB layers and added to
the model output. The local fusion approach reduced the dimension by 1× 1 convolution in
each RDB. The global connection combines multiple RDB outputs and, via 1× 1 convolution,
performs global residual learning in the model. These local and global residual connections
improved the results compared to SRDenceNet and helped stabilize the network in training
mode. However, it has a convergence issue in training mode that reduces the capability of
the model to recover acceptable SR images.

Although the simplified version of the residual block in these models partly decreased
the network layers, training such a very deep architecture containing millions of network
parameters remains challenging. Due to the effectiveness of the Residual-in-Residual Dense
Block (RRDB) structure in terms of the training facilitation and maintaining the percep-
tual quality of the reconstructed image, several successful models such as ESRGAN [15],
RCAN [18], Deformable Non-local Network (DNLN) [39], and Densely Residual Laplacian
Network (DRLN) [24] have employed this concept in their networks.

2.2. Upsampling Framework Review

In addition to the network structure, any SR model’s upsampling framework is highly
important in generating reconstructed images [26]. Although the existing SR architectures
differ broadly, the upsampling framework can be categorized into three main types: pre-
upsampling, post-upsampling, and progressive upsampling frameworks, as shown in
Figure 1.

The first and most straightforward upsampling framework is the pre-upsample that
Dong et al. [7,20] first adopted with the SRCNN model. As shown in Figure 1a, the LR
image is enlarged to a coarse HR image by bicubic interpolation. Then, CNN is applied
on coarse HR to refine the reconstructed HR image. However, this predefined up-sample
model significantly reduces learning difficulty, increases the computational cost, and often
produces blurring and noise amplification results [9,11–13,26].
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Figure 1. (a) Pre-upsampling, (b) Post-upsampling, and (c) Progressive upsampling frameworks.

The post-upsampling model is an alternative framework to solve post-upsampling
limitations, and FSRCNN [20] is the pioneer of this framework. As shown in Figure 1b,
the LR image is fed into the network without increasing the resolution, and most com-
putations are performed in low-dimensional space. Then, at the tail of the network, the
up-sample procedure is applied to the image. Using this upsampling approach improves
computational efficiency while reducing the spatial complexity of the SR model. How-
ever, this framework has been considered to be one of the most mainstream upsampling
strategies [14–16,24,29,38,40], and it exceeds the learning difficulty of the SR model. As
a result of performing upsampling only in one stage at the end of architecture, learning
difficulties are increased, especially for larger scaling factors (e.g., 4, 8). Due to the learning
difficulties of this upsampling framework, some models such as RCAN [18], SAN [41], and
DPAN [42] use the channel attention and non-local attention mechanisms for re-scaling
the channel-wise features in low-dimensional space to improve the learning ability of the
model [26].

To address the post-processing drawback, a progressive upsampling strategy was
employed [17,31,43,44]. The topology of the progressive upsampling framework is demon-
strated in Figure 1c.

Specifically, this framework comprises several stages of upsampling based on a cascade
approach, and progressively reconstructs HR images to reduce the learning difficulties at
larger scale factors. To transfer low-level features into the higher-level layers in the other
stages of this framework, the projection connection that considers a variant of residual
connection [10] is used [21,22,31,45].

Laplacian pyramid SR network [17] (LapSRN) and balanced two-stage residual net-
work [31] (BTSRN) are the earlier progressive approaches. Other SR models, such as MS-
LapSRN [43], Progressive SR (ProSR) [44] and Progressive convolutional Super-resolution [25]
(PCSR), also used this framework and achieved higher performance compared to the other
upsampling frameworks. The progressive upsampling framework of both LapSRN and
MS-LapSRN uses the first image upsampled to the subsequent convolutional modules of
the network. At the same time, the ProSR model maintains the main information stream,
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and the individual convolution branches generate intermediate upsampling. Motivated by
the progressive upsampling framework of LapSRN [17], Xiao et al. [25] proposed the PCSR
model by applying the dense architecture under the progressive upsampling framework
(multi-stage upsampling) for the blind SR model and examined the results with multiple
degradations such as blur and noise. PCSR [25] has proven this framework performs
promising results in multiple degradations due to the progressive estimation of images’
high-frequency details according to previous stages’ outputs. As well as these three main
upsampling frameworks, Haris et al. in D-DBPN [21] and Li et al. in SRFBN [22] used
upsampling and downsampling modules in their models, which is supported by deep back-
projection connections. The idea behind this iterative up-and-down upsampling framework
is to use the mutual dependency of LR and HR pairs to improve the learning ability of the
SR model. However, the network complexity in this framework is an important obstacle to
having efficient execution time.

2.3. Objective Function Review

The loss function measures the pixel-wise difference (error) between the HR image and
the corresponding reconstructed image, and consequently guides SR model optimization.
The loss function of the SR model mainly includes L1 loss and L2 loss, which are known as
the mean absolute error (MAE) and mean square error (MSE), respectively [46]. Due to the
high correlation between pixel-wise loss and PSNR definition, L2 loss function becomes the
most broadly used loss function in SR models such as SRCNN [7], DRCN [9], FSRCNN [20],
SRResNet [15], MemNet [13], SRDenseNet [38], and DBPN [23] given by

Ll2(P) =
1
N ∑

p∈P
|x(p)− y(p)|2 (1)

where p shows the pixel’s index and P denotes the patch, and x(p) and y(p) represent
the values of the pixels in the SR patch and the corresponding HR, respectively. Since
the L2 penalizes large errors, it properly preserves the sharp edges of the image while
showing more tolerance to minor errors, regardless of the underlying structure of the
reconstructed image. Although the L2 considers the most broadly applied cost function in
the SR field, it suffers from independent Gaussian noise, especially in the smooth regions
of the image [26,46].

To improve the L2 limitations, EDSR [16], RDN [27], CARN [30], MSRN [47], RCAN [18],
RNAN [48], Meta-RDN [23], SAN [41], SRFBN [22], and DRLN [24] used the L1 loss func-
tion. The L1 can be written as

Ll1(P) =
1
N ∑

p∈P
|x(p)− y(p)| (2)

where p is the pixel’s index, P demonstrates the patch, and x(p) and y(p) denote the values
of the pixels in the SR patch and the corresponding HR, respectively. In contrast to the
L2 loss function, the L1 does not over-penalize the error and provides less independent
noise and a smoother result compared to L2 loss. The weakness of the L1 loss is a relatively
slower convergence speed without the residual block. Ahn et al. [30] mitigated the slower
convergence speed using a ResNet [10] architecture model.

Although the L1 loss function demonstrates outperforming visually pleasing results
over the L2 loss, its result is not optimal. As well as the L1 loss, Lai et al. [17] used a variant
of the L1 loss function known as the Charbonnier loss function, given by

LCharb(P) =
1
N ∑

p∈P
((|x(p)− y(p)|)− r(p)) (3)

where p represents the pixel’s index, P shows the patch and r(p) denotes the residual
image while x(p) and y(p) represent the values of the pixels in the SR patch and the
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corresponding HR, respectively. This variant of the L1 (Charbonnier loss) is not optimal
and shows degradation in the edges area of the image [26].

Despite the importance of loss function in the learning process of neural networks, the
loss function has attracted less attention in the SR field. Using a type of loss function in the
SR model that correlates with the Human Visual System (HVS) improved the reconstructed
quality of the image [49]. Some image-restoration learning-based models use MS-SSIM,
such as underwater image restoration [50]. The image-dehazing model is not optimal,
and successfully increased the performance of their model using this loss function. Since
MS-SSIM loss operates based on HVS (luminance, contrast, and structure), it shows a
noticeable improvement in the perceptual quality of results in image-restoration models.

3. Proposed Method

In this research, we proposed a novel objective function for a Single-Image Super-
Resolution (SISR) model by fusion of MS-SSIM and L2. In addition, we adopt the progres-
sive upsampling strategy for our network architecture. Moreover, based on the effectiveness
of Depth-Wise convolution, we designed a Depth-Wise Bottleneck Projection connection
to bypass the high-frequency details of the early layer through the multi-step prediction
network, and improve the convergence of the model. In the following section, we describe
our model architecture, then explain the details of the proposed fusion objective function to
train our SR model as a combination of L2 loss and Multi-Scale SSIM loss (MS-SSIM + L2).

As demonstrated in Figure 2, our Progressive Multi-Residual Fusion (PMRF) network
consists of the residual dense block (RDB) architecture under a three-stage progressively
upsampling framework. At the end of each stage, the image is enlarged by a scale factor
of two with the upsampling module. The output of each stage contains high-frequency
detail of that stage, and thus it can be propagated to subsequent stages. The progressive
prediction based on this approach that uses the generated image of the previous stage
produces more accurate SR results. As shown in Figure 2, the multi-level residual dense
topology called Residual-in-Residual Dense Blocks (RRDB) is employed in the first stage
of our progressively upsampling framework. By contrast, the other stages use the RDB
architecture and projection approach to transfer details of the early layer to the upsampling
modules at the end of each stage.

Figure 2. Network architecture with progressive upsampling framework.

3.1. Network Architecture

The residual network demonstrates outstanding performance to obtain high-level
features from low-level features, especially in SR problems [11,13,15]. Due to improving
the performance and computation costs of the residual network, a combination of residual
architecture [16] and dense connections [38] under the three-stage progressively upsam-
pling framework is employed. The combination of the multi-level residual network and the
dense connections architecture (RRDB) [15,39] is used in the first stage of our progressive
framework model. The residual dense block architecture [27] is applied in the second
and third stages, while the Batch Normalization (BN) layers are removed [15]. The BN
layer uses the mean and variance for normalizing feature maps during the training and
testing phases of the model. In the training phase, BN operates based on the mean and
variance of every batch, while in the testing phase, BN performs based on the mean and the
variance of the whole training dataset [16]. The problems of unpleasant visual artifacts and
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inconsistent performance have appeared once the statistics of testing and training datasets
are different [51]. The simplified structure of the residual block was introduced to tackle
unpleasant visual artifacts and maintain stable training of the SR model.

The simplified structure of the residual network demonstrated in Figure 3 has proven
to increase the performance of computer vision tasks such as deblurring and dramatically
decreasing the computational complexity and memory usage [15,16,20]. The dense convo-
lutional architecture (DenseNet) [37], aims to connect each layer of the network to every
other layer in a feed-forward manner to increase information flow between layers in the
network, as illustrated in Figure 4.

Figure 3. Simplified residual block by remove batch normalization layer.

Figure 4. The dense block and the simplified residual-in-residual dense block, β = 0.2.

The dense convolutional architecture (DenseNet) [37], aims to connect each layer of
the network to every other layer in a feed-forward manner, to increase information flow
between layers in the network, as illustrated in Figure 4.

This means that the feature maps of all previous layers are used as the inputs in every
single layer. Subsequently, the yielded feature maps of each layer are used as inputs into
all further layers. According to research evidence [13,21,52], using more network layers
and connections led to increasing information flow between layers and, consequently, a
superior performance model. Combining the dense block approach and the simplified
residual block creates the RDB architecture. Figure 4 shows the multi-level residual dense
block network (RRDB) used in the first stage of our upsampling framework. β is the scaling
parameter of the residual architecture from the range 0 to 1. The residual scaling parameter
is multiplied by the residual output before adding to the main block, as demonstrated in
Figures 2 and 4. According to previous studies [15,39], β = 0.2 is the optimum value for
the residual scaling parameter. The pixel shuffle [53] upsampling model is used as the
upsampling module at each stage of our progressive upsampling network. According to
progressive strategy, using the dense block after the upsampling module in the second and
third stages improves our model’s reconstruction capability (multi-step prediction) more
effectively due to the use of prior images across scales. However, increasing the size of
feature maps after upsampling at each stage unavoidably increases the processing time.

In addition, the Depth-Wise Bottleneck Projection approach, which conveys the high-
frequency information of extracted features from the early layer into each upsampling
stage, is explained in the next section.
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3.2. Residual Bottleneck Projection

The residual block concept has been presented in many CNN-based image SR
models [28,30,47,48,53]. The residual concept prevents gradient vanishing in the training
phase and makes it feasible to design deeper network architecture. The residual projection
is considered to be a variant of a residual block, which changes the dimension of the fea-
tures. In our architecture, the feature maps of the early layers at the low-dimensional stage
are upsampled by the Bicubic interpolation method and fed into the higher-dimensional
stages using the residual projection method. Multiple settings of the residual projection
blocks are explored and demonstrated in Figure 5, including Residual Projection, Bottleneck
Projection, and Depth-Wise Bottleneck Projection.

The residual projection architecture [10] consists of two convolutions of size 3× 3, as
demonstrated in Figure 5a, followed by nonlinear activation. The other topology stacks
the 1 × 1, 3 × 3, and 1 × 1 convolution layers are known as the “bottleneck” building
block [10,54] displayed in Figure 5b. The first 1× 1 convolution layer reduces the dimension
of the feature map from 256-dimensional to 64-dimensional. The second convolution layer
of 3 × 3 is used for computation, and ultimately the feature dimension is changed to
256 using the last 1× 1 convolution layer.

Figure 5. (a) Residual Projection, (b) Bottleneck Projection, (c) Depth-wise (DW) Bottleneck Projection.

Our model uses an efficient bottleneck block structure using the Depth-Wise (DW)
convolution layer called a Depth-Wise Bottleneck Projection block. In contrast to normal
convolution in the Bottleneck Projection, the DW convolution disentangles spatial interac-
tions such as height and width from the channel interactions [45]. Then, the convolutions
are computed over each channel separately, and the result of each separated channel is
stacked together [45].

Since projection aims to map the high-frequency information of low-level features to
every stage of our progressive framework, the DW Bottleneck Projection method demon-
strates a more effective result due to the different channel-wise convolution operations [54].
Moreover, the network convergence of the DW Bottleneck Projection approach is improved
compared [55] to the residual projection, and the regular Bottleneck Projection approaches
are demonstrated in the results section. As demonstrated in Figure 5c, the first layer con-
tains a 1× 1 convolution layer to reduce the dimensions of the feature map. The dimension
reduction of feature maps is known as the bottleneck concept. The second layer includes
a 3× 3 Depth-Wise (DW) convolution operation. The main idea behind DW convolution
is to replace a normal convolution with a special convolution that aims to implement
more effective and lighter filtering by employing a single convolutional operation per each
input channel and then stacking them back [45]. The third layer of 1× 1 convolution,
known as a point-wise convolution, intends to construct new features via calculating lin-
ear combinations of the input channels [21,26,54,55]. The projected features increase the
flow of low-level information into progressively upsampling modules and improve the
reconstruction capability of the model.
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3.3. Objective Function

The objective function measures the pixel-wise difference (error) between the recon-
structed patch of the image and the corresponding ground-truth (GT) patch. To compute
an error function [26], the loss for a patch P can be mentioned as (4):

Lε(P) =
1
N ∑

p∈P
ε(p) (4)

where p is the index of pixels and ε(p) denotes the values of the pixels in the error mea-
surement. To obtain a smoother result for the SR model, the L1 loss function perfumes
better than the L2 loss. However, both L1 and L2 losses are correlated inadequately with
image quality as perceived by human observation [46]. Using the loss function that corre-
lated independently with HVS is a feasible solution. The sensitivity of HVS depends on
the reconstructed image’s local contrast, luminance, and structure [46]. To improve the
network learning strategy according to the HVS, which reconstructs the image by attending
to contrast, luminance, and structure qualities, the SSIM loss function is suggested.

Let us assume x(p) and y(p) are two patches of GT and reconstructed SR images,
respectively. Then, let µx and σ2

x be the mean and variance of x, respectively. The covariance
of x and y is assumed to be σxy. Therefore, µx and σ2

x can be shown as estimates of the
luminance and contrast of x, while σxy measures the tendency of x and y to vary together,
and define the structural similarity among x and y. According to [46], the luminance,
contrast, and structure evaluations are demonstrated as follows:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
(5)

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2
(6)

s(x, y) =
σxy + C3

σxσy + C3
(7)

C1, C2 and C3 are small constants defined by:

C1 = (K1L)2, C2 = (K2L)2, C3 = C2/2 (8)

where L denotes the dynamic range of pixel values (L = 255 for 8 bits/pixel images), and
K1 and K2 denote two scalar constants and are set to K1 = 0.01 and K2 = 0.03.

According to [56], the general form of the SSIM between GT and SR patches is de-
scribed as follows:

SSIM(x, y) = [l(x, y)]α · [(x, y)]β · [(x, y)]γ (9)

where α, β and γ are parameters to explain the relative importance of these components
which are considered to be α = β = γ = 1. According to [56] the SSIM index can be written as

SSIM(p) =
(2µxµy + C1)

(µ2
x + µ2

y + C1)
·
(2σxσy + C2)

(σ2
x + σ2

y + C2)
(10)

SSIM(p) = l(p) · cs(p) (11)

where the dependencies of means and standard deviations on pixel p are obtained. The
means and standard deviations are calculated using a Gaussian filter by a standard devia-
tion σG, GσG. Therefore, the SSIM loss function [50] can be mentioned as:

LSSIM(P) =
1
N ∑

p∈P
1− SSIM(p) (12)
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In Equation (10), the SSIM (p) calculation needs to look at pixel (p) neighborhood
as large as GσG can support. According to [46], the computation of LSSIM(P) and its
derivatives in some patch regions is impossible. The derivative computation at (p) for any
other pixel (q) in a patch (P) can be defined as

∂LSSIM

∂x(q)
= − ∂

∂x(q)
SSIM(p) = −

(
∂l(p)
∂x(q)

· cs(p) + l(p) · ∂cs(p)
∂x(q)

)
(13)

where cs(p) and l(p) are the first and second terms of Equation (11) and their derivatives are

∂l(p)
∂x(q)

= 2 · GσG(q− p) ·
(

µy − µx · l(p)
µ2

x + µ2
y + C1

)
(14)

and

∂cs(p)
∂x(q)

=
2

σ2
x + σ2

y + C2
· GσG(q− p) ·

[(
y(q)− µy

)
− cs(q) · (x(q)− µx)

]
(15)

GσG(q− p) demonstrates the Gaussian coefficient correlated with pixel q.
As mentioned above, the quality of the reconstructed image (SR) depends on σG. For

instance, the large value of σG tends to preserve noise at the edge. In contrast, the small
value of σG leads to unpleasant artifacts due to reducing the network’s ability to reconstruct
the image’s local structure. Using the multi-scale structure of SSIM (MS-SSIM), which is
designed according to a dyadic pyramid of M level resolution, is a feasible solution for the
SSIM limitation. Figure 6 illustrates the MS-SSIM diagram. Based on [56] it is defined as

MS-SSIM(p) = lα
M(p).

M

∏
j=1

csβj
j (p) (16)

where lM demonstrates luminance, and csj demonstrates contrast and similarity. As ob-
served in the diagram, the GT and SR patches are taken as inputs. The low-pass filter and
downsample operation by a factor of 2 are applied iteratively on the inputs. The input
patches are indexed as the first scale (scale 1), while the highest-order scale is considered to
scale M obtained after M− 1 iterations.

Figure 6. Block diagram of MS-SSIM.

The diagram and equation show that the luminance comparison is calculated only
at scale M, defined as lM(x, y). By contrast, the structure and contrast comparisons are
computed at the j-th scale and defined as sj(x, y) and cj(x, y), respectively. We set α = β j = 1.
According to [46] the final loss for a patch (P)with its center pixel (p) is defined as

LMS−SSIM(P) = 1−MS-SSIM(p) (17)
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Based on [46] the derivative of the MS-SSIM loss function can be described as(
∂LMS−SSIM(P)

∂x(q)

)
=

(
∂lM(p)

∂x(q)
+ lM(p).

M

∑
i=0

1
csj(p)

∂csj(p)
∂x(q)

)
·

M

∏
j=1

csj(p) (18)

However, The MS-SSIM loss produces a smoother SR image compared to the L2 loss,
and it also preserves the image’s contrast in high-frequency regions better than the L2 loss
function. On the other hand, L2 loss preserves the edges and is very sensitive to indicating
sharp intensity changes. To reconstruct the best result of our SR model, the mix of MS-SSIM
loss and L2 loss function is proposed:

LMix = (1− α)LMS−SSIM + α · (GσM
G .LL2 ) (19)

Point-wise multiplication is applied between GσM
G

and L2. The best performance

of LMix is obtained by setting α as 0.8. Experiments with different α weight in LMix are
demonstrated in the next section.

4. Experiments

The motivation for designing our PMRF model stems from the need to produce the SR
image as similarly as possible to the HR image, which can reconstruct detail such as holes
and minor lines, content sharpness, and texture diversity.

We conducted several examinations to validate the performance of our SR model. First,
we examined the experimental setting of the proposed model. Second, we assessed the
effect of different projection approaches in the training phase. Third, we explored the effect
of several objective functions on the reconstructed images. The comparison of different α in
the mix of MS-SSIM loss and L2 loss function is demonstrated in the fourth section. The
performance comparison of our model with different projection approaches and objective
functions is demonstrated in the fifth section. Moreover, we compared and evaluated our
SR images using several selected representative SR methods and comparative analysis.
Additionally, we compared our model network parameters and execution time with some
selected SR models. Finally, learning difficulty analysis and noise degradation analysis for
different objective functions of the proposed model are represented.

4.1. Experimental Setting

This section explains the experimental settings of the datasets used in the training and
testing phases, the training details, and the evaluation metrics.

4.1.1. Dataset

We used the DIV2K dataset [57] to train our SR model. The DIV2K dataset contains
800 high-quality (2K resolution) images used for training purposes. In the testing phase,
we compared the performance of our model on five benchmark datasets including Set5 [58],
Set14 [59], BSD100 [60], Manga109 [61], and Urban100 [62]. Table 1 represents information
regarding the training and testing benchmark dataset in this research.

Table 1. Benchmark datasets for Single-Image Super-Resolution (SISR).

Name of Dataset Usage Amount of Image Description

DIV2K [57] Train 800 High-quality dataset for CVPR NTIRE competition
Set5 [58] Test 5 Common images

Set14 [59] Test 14 Common images
BSD100 [60] Test 100 Common images

Urban100 [62] Test 100 Images of real-world structures
Manga109 [61] Test 109 Japanese manga
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4.1.2. Training Details

In each training batch of our model, random LR patches in RGB mode with a size
of 48 × 48 are extracted as the inputs with the corresponding HR patches. The ADAM
optimizer [63] with setting of β1 = 0.9, β2 = 0.999, and ε = 10−8 is used for training our
model. Minibatch size set to 16. Python 3.5 programming language under Keras 2.2.4
framework [64] with TensorFlow 1.5 as the back end was used to implement our SR model,
and it was trained on a Titan Xp GPU with 24 GB Memory. The learning rate of our
proposed model is set to 10−4.

4.1.3. Evaluation Metrics

The PSNR and SSIM [56] evaluations are implemented on the Y channel of transformed
YCbCr space to measure the quality of SR results.

4.2. Effects of Projection

The effect of different projection approaches, including Residual Projection, Bottleneck
Projection, and Depth-Wise Bottleneck Projection in the training phase of our model, are
compared in this section.

Figures 7 and 8 demonstrate the graphs of average training loss and PSNR (dB),
respectively, on 800 training epochs under the same training dataset (DIV2K).

Figure 7. Average training loss per epoch for training our model with different projection approaches
on the DIV2K dataset.

As observed in the graphs of Figures 7 and 8, the Bottleneck Projection (blue) and
Depth-Wise Bottleneck Projection (red) represent superior convergence performance over
the residual projection approach (yellow). Although the performances of Bottleneck Pro-
jection and Depth-Wise Bottleneck Projection are almost close together, the Depth-Wise
Bottleneck approach demonstrates smoother and better convergence performances in both
average losses (Figure 7) and average PSNR (dB) (Figure 8) in the training mode.

Figure 8. Average PSNR (dB) per epoch for training our model with different projection approaches
on the DIV2K dataset.
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4.3. Comparison of Different Objective Functions

The effect of different objective functions, including L1 loss, L2 loss, MS-SSIM loss,
L1 + MS-SSIM loss, and L2 + MS-SSIM loss, are compared. The visual compression of our
model with different objective functions is shown in Figures 9 and 10. To better visually
distinguish the results of these objective functions, we used the images with different
textural structures at different scale factors (×4 scale and ×8 scale). The quantitative
comparisons of the benchmark datasets among these objective functions at different scales
are presented in Tables 2–4.

Figure 9. Visual comparison of different objective functions on the “Monarch” image from the Set14
dataset at ×8 scale.

Figure 9 displays the results of our SR model with different objective functions on
the “Monarch” image from the Set14 [59] dataset at ×8 scale. Since the L1 loss function
penalizes the smaller error compared to the L2 loss function, the result of L1 is smoother
and sharper compared to L2 while the high-frequency details and minor features in the
regions connecting the edges vanish. This means that despite the smoothness of the L1
result, it shows weakness in reconstructing the minor details of the image similar to the
original image. Although the MS-SSIM result demonstrates a sharper image compared
to L2, and more details than L1; it shows weakness in reconstructing the edges equal to
the original image. The mix of L2 and MS-SSIM represents more realistic results than the
other loss functions. It represents a sharp image while more minor details are preserved
around the edges. The PSNR (dB) and SSIM evaluations also demonstrate the superior
performance of the proposed loss function.

Figure 10 illustrates the results of our SR model with different objective functions
on “Image-92” from the Urban100 [62] dataset at a ×4 scale. These results compare the
effect of each objective function for reconstructing the vertical and horizontal lines over
a constant surface. As observed in Figure 10, the L2 objective function represents better
performance for reconstructing vertical and horizontal lines than other non-mixed objective
functions. However, the lack of smoothness due to the over-noise amplification (greater
error penalized in L2) makes it a non-pleasing image. The mixed L2 and MS-SSIM loss
function represents the best performance in producing a sharp image, while also detecting
all the lines similar to the original image. The PSNR (dB) and SSIM evaluations also
demonstrate the best performance compared to the other objective functions.

Comparing the generated results of different objective functions in Figures 9 and 10,
the combination of MS-SSIM and L2 demonstrates the best performance in quantitative
evaluations and perceptual quality. The MS-SSIM objective function operates based on visi-
ble structures of the image (luminance, contrast, and structure), and L2 objective function
computes based on more emphasis on the differences between the GT and the SR image.
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Thus, combining them produces better perceptual quality for the human viewer and more
appealing SR results compared to other objective functions.

Figure 10. Visual comparison of different objective functions on Img-092 image from the Urban100
dataset at ×4 scale.

The quantitative performance comparisons include PSNR (dB) and SSIM on the
benchmark datasets of Set5 [58], Set14 [59], BSD100 [60], Urban100 [62] and Manga109 [61]
at ×2, ×4 and ×8 scales, as demonstrated in Tables 2–4. The red numbers indicate the best
performance, and the blue ones show the second best.

Table 2. Quantitative performance comparison among different objective functions at ×2 scale.

Objective Function Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L1 ×2 37.68 0.9598 33.50 0.9157 32.11 0.8964 32.30 0.9204 38.76 0.9758
L2 ×2 37.80 0.9600 33.59 0.9166 31.99 0.8971 32.25 0.9202 38.76 0.9767

MS-SSIM ×2 37.61 0.9601 33.30 0.9159 31.97 0.8964 32.19 0.9210 38.68 0.9770
L1 + MS-SSIM ×2 37.99 0.9602 33.77 0.9182 32.17 0.8991 32.33 0.9213 38.89 0.9770
L2 + MS-SSIM ×2 38.11 0.9604 33.84 0.9196 32.25 0.9002 32.67 0.9332 39.01 0.9775

Table 3. Quantitative performance comparison among different objective functions at ×4 scale.

Objective Function Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L1 ×4 32.49 0.8999 28.35 0.7790 27.58 0.7342 26.30 0.7991 30.54 0.9035
L2 ×4 32.52 0.9002 28.41 0.7753 27.68 0.7330 26.64 0.7931 30.79 0.9098

MS-SSIM ×4 32.35 0.9010 28.11 0.7762 27.35 0.7341 26.31 0.7998 30.12 0.9087
L1 + MS-SSIM ×4 32.64 0.9011 28.92 0.7892 27.71 0.7412 26.89 0.8039 31.11 0.9189
L2 + MS-SSIM ×4 32.70 0.9012 28.98 0.7911 27.80 0.7455 27.01 0.8139 31.55 0.9201

As observed in Tables 2–4 for×2,×4, and×8 scales, the best performances (PSNR and
SSIM) among different objective functions belong to the mixed L2 and MS-SSIM objective
functions. Noticeably, the second best (blue) belonged to another fused objective function
concept (MS-SSIM + L1).
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Table 4. Quantitative performance comparison among different objective functions at ×8 scale.

Objective Function Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

L1 ×8 27.17 0.7837 25.00 0.6436 24.70 0.6000 22.59 0.6299 24.93 0.7984
L2 ×8 27.19 0.7840 25.03 0.6439 24.73 0.6009 22.62 0.6302 25.01 0.7988

MS-SSIM ×8 26.99 0.7803 24.97 0.6415 24.61 0.5997 22.49 0.6300 24.91 0.7983
L1+ MS-SSIM ×8 27.21 0.7847 25.06 0.6478 24.85 0.6015 22.76 0.6313 25.11 0.7984
L2 + MS-SSIM ×8 27.24 0.7852 25.12 0.6484 24.91 0.6023 22.80 0.6324 25.18 0.7992

4.4. Comparison of Different α in Mix of MS-SSIM Loss and L2 Loss Function

The influence of different α weight to fuse of MS-SSIM loss and L2 loss function are
compared in this section. The quantitative performance includes PSNR (dB) and SSIM
with different α weight on the benchmark datasets of Set5 [58], Set14 [59], BSD100 [60],
Urban100 [62] and Manga109 [61] at ×4 and ×8 scales, as shown in Table 5 and Table 6,
respectively.

Table 5. Quantitative performance comparison among different objective functions at ×4 scale.

α Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

α = 0.2 ×4 32.46 0.8991 28.84 0.7891 27.71 0.7407 26.59 0.8131 31.11 0.9198
α = 0.4 ×4 32.67 0.9009 28.93 0.7906 27.79 0.7448 26.95 0.8138 31.43 0.9201
α = 0.6 ×4 32.66 0.9008 28.95 0.7907 27.80 0.7447 27.00 0.8137 31.54 0.9200
α = 0.8 ×4 32.70 0.9012 28.98 0.7911 27.80 0.7455 27.01 0.8139 31.55 0.9201

Table 6. Quantitative performance comparison among different objective functions at ×8 scale.

α Scale
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

α = 0.2 ×8 27.13 0.7847 24.92 0.6473 24.80 0.6021 22.59 0.6386 24.89 0.7969
α = 0.4 ×8 27.16 0.7849 24.98 0.6472 24.79 0.6022 22.69 0.6308 25.06 0.7978
α = 0.6 ×8 27.18 0.7846 25.01 0.6469 24.83 0.6019 22.72 0.6307 25.09 0.7976
α = 0.8 ×8 27.24 0.7852 25.12 0.6484 24.91 0.6023 22.80 0.6324 25.18 0.7992

According to Tables 5 and 6, the best α weight for gaining the highest PSNR and SSIM
is α = 0.8.

4.5. Performance Comparison of Our Model with Different Objective Functions and
Projection Approaches

Table 7 shows the performance investigation of our progressive upsampling SR model
(PSNR value at scale four on the Set5 [58] dataset) using different objective functions and
different projection approaches.

Table 7. Quantitative performance of different objective functions and projection approaches on the
Set5 [58] dataset at ×4 scale.

Projection
Objective Function

L1 L2 MS-SSIM L1 + MS-SSIM L2 + MS-SSIM

Residual Projection 32.40 dB 32.43 dB 31.98 dB 32.51 dB 32.54 dB

Bottleneck Projection 32.49 dB 32.50 dB 32.29 dB 32.59 dB 32.66 dB

DW Bottleneck Projection 32.49 dB 32.52 dB 32.35 dB 32.64 dB 32.70 dB
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The DW Bottleneck Projection performs best in mapping the discriminative high-
frequency details compared to the Residual and Bottleneck Projection approaches in all
objective functions. Additionally, the proposed fused objective function demonstrates
noticeable improvement in accuracy compared to the common objective functions (L1 or
L2) used in SR models. The best PSNR value (32.70 dB) belongs to the L2 + MS-SSIM
objective function and DW Bottleneck Projection.

4.6. Comparison with Other Super-Resolution Methods

Here, we compare our PMRF model method with state-of-the-art SR methods, includ-
ing the visual and quantitative comparisons at ×2, ×4, and ×8 scales.

In visual comparison, we compare the results of SRCNN [7], VDSR [8], LapSRN [17],
MemNet [13], MS-LapSRN [44], EDSR [16] and RCAN [18] models with our model results
at ×4 and ×8 scales on BSD100 [60], Manga109 [61] and Urban100 [62] datasets.

In Figure 11, we show visual comparisons at ×4 scale for image “3096” of the
BSD100 [60] dataset. We observe that the compared SR models show weakness in re-
constructing the sharp image with small details and suffer blurry artifacts. By contrast, our
PMRF model reduces the blurring effect and reconstructs a better perceptual quality image
due to the effectiveness of the proposed objective function.

Figure 11. Visual comparison of image “3096” at ×4 scale on the BSD100 dataset.

In Figure 12, we display visual comparisons at ×4 scale for the image “GakuenNoise”,
which belongs to the Manga109 [61] dataset. Other models show weakness in representing
the lattice’s circular shapes. Some models suffer from blurring artifacts, while in RCAN [18]
and EDSR [16], the reconstructed lattice shapes are not similar to the original HR image. On
the other hand, the result of our PMRF model represents better performance in recovering
the circular lattice details due to using the progressive upsampling framework to reconstruct
the detail progressively.

In Figure 13, we demonstrate visual comparisons at ×4 scale for image “Img-12”,
which belongs to the Urban100 [62] dataset. In contrast to the other SR models, our PMRF
model performs better in reconstructing the parallel lines because of its robustness in
mapping the high-frequency detail (edges and lines).
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Figure 12. Visual comparison of image “GakuenNoise” at ×4 scale on the Manga109 dataset.

Figure 14 compares other SR results on image “302008” of the BSD100 [60] dataset.
Due to the large scale factor, the Bicubic method’s result has lost the HR image’s correct
structure. Reconstructing the wrong structure because of a very large scale factor also
occurs in some other models such as SRCNN [7], VDSR [8] and LapSRN [17]. Our PMRF
model performs better in recovering the original structure of black lines than the other state-
of-the-art models, which lack smoothness, blurring artifacts, and the capability to recover
tiny line connections. Notably, by reducing the learning difficulties in a progressively
upsampling procedure, our model and MS-LapSRN [44] effectively recover the edge detail.

Figure 13. Visual comparison of image “Img-012” at ×4 scale on the Urban100 dataset.
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Figure 14. Visual comparison of image “302008” at ×8 scale on the BSD100 dataset.

Figure 15 shows visual comparisons at ×8 scale for image “Img-096”, which belongs
to the Urban100 [62] dataset. The progressive upsampling framework-based models such
as LapSRN [17] and MS-LapSRN [44] show robustness in reconstructing the parallel lines at
this large scale factor. However, these models demonstrate a lack of smoothness. Although
the RCAN [18] model recovered the parallel lines, it did not produce a sharp result. This
weakness in RCAN [18] is caused by a lack of global information in the CA mechanism that
shows quality degradation on larger scales. The proposed progressive model outperforms
the SR image in recovering parallel lines more effectively without blur and halo effect
around the lines due to the effectiveness of the proposed fused objective function and
multi-stage enlarging.

Figure 15. Visual comparison of image “Img-096” at ×8 scale on the Urban100 dataset.

The quantitative results comparison using PSNR (dB) and SSIM evaluations at ×2,
×4, and ×8 scales on Set5 [58], Set14 [59], BSD100 [60], Manga109 [61], and Urban100 [62]
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datasets are illustrated in Tables 8–10. For the quantitative comparisons, we used 11 state-
of-the-art models including Bicubic, SRCNN [7], FSRCNN [20], VDSR [8], LapSRN [17],
MemNet [13], EDSR [16], SRMDNF [65], D-DBPN [21], PAN [66], LAINet [36], RDN [27]
and SRFBN [22]. The results of other models are cited from their papers. The red numbers
indicate the best performance, and the blue ones demonstrate the second best.

Table 8. Quantitative benchmark test results at ×2 scale. Red indicates the best performance and
blue indicates the second best.

Method Scale Params
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×2 -/- 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339
SRCNN [7] ×2 57 K 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9963

FSRCNN [20] ×2 12 K 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710
VDSR [8] ×2 665 K 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750

LapSRN [17] ×2 813 K 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740
MemNet [13] ×2 677 K 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740

EDSR [16] ×2 4240 K 38.11 0.9602 33.92 0.9195 32.32 0.9015 32.93 0.9351 39.10 0.9773
SRMDNF [65] ×2 1511 K 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761
D-DBPN [21] ×2 1010 K 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

PAN [66] ×2 261 K 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273 38.70 0.9773
LAINet [36] ×2 237 K 37.94 0.9604 33.52 0.9174 32.12 0.8991 31.67 0.9242 -/- -/-
AWSRN [67] ×2 1397 K 38.11 0.9608 33.78 0.9189 32.26 0.9006 32.33 0.9216 38.78 0.9776
MSRN [47] ×2 5930 K 38.04 0.9607 33.70 0.9186 32.23 0.9002 32.29 0.9303 38.69 0.9772
RDN [27] ×2 2210 K 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780

SRFBN-S [22] ×2 483 K 38.18 0.9611 33.90 0.9203 32.34 0.9015 32.80 0.9341 39.28 0.9784
PMRF (Ours) ×2 886 K 38.11 0.9604 33.84 0.9196 32.25 0.9002 32.67 0.9332 39.01 0.9775

Table 9. Quantitative benchmark test results at ×4 scale. Red indicates the best performance and
blue indicates the second best.

Method Scale Params
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×4 -/- 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866
SRCNN [7] ×4 57 K 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555

FSRCNN [20] ×4 12 K 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610
VDSR [8] ×4 665 K 31.35 0.8830 28.02 0.7680 27.29 0.7260 25.18 0.7540 28.83 0.8870

LapSRN [17] ×4 813 K 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900
MemNet [13] ×4 677 K 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942

EDSR [16] ×4 4240 K 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
SRMDNF [65] ×4 1552 K 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024
D-DBPN [21] ×4 1010 K 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

PAN [66] ×4 272 K 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854 30.51 0.9095
LAINet [36] ×4 263 K 32.12 0.8942 28.59 0.7810 27.55 0.7351 25.92 0.7805 -/- -/-
AWSRN [67] ×4 1587 K 32.27 0.8960 28.69 0.7843 27.64 0.7385 26.29 0.7930 30.72 0.9109
MSRN [47] ×4 6078 K 32.26 0.8960 28.63 0.7836 27.61 0.7380 26.22 0.7911 30.57 0.9103
RDN [27] ×4 2210 K 32.57 0.8992 28.85 0.7891 27.74 0.7429 26.71 0.8098 31.09 0.9191

SRFBN-S [22] ×4 483 K 32.56 0.8992 28.87 0.7881 27.77 0.7419 26.73 0.8043 31.40 0.9182
PMRF (Ours) ×4 1002 K 32.70 0.9012 28.98 0.7911 27.80 0.7455 27.01 0.8139 31.55 0.9201

In contrast to ×4 scale in Table 9 and ×8 scale in Table 10, our results at ×2 scale
shown in Table 8 are slightly less than RDN [27] and SRFBN-S [22]. Since our model has
the progressive upsampling framework, scale factor ×2 acts similar to a post-upsampling
framework, although it has less network depth than the other post-upsampling-based
models at this scale.

Compared with other SR models at ×4 and ×8 scales, our PMRF shows the best PSNR
(dB) and SSIM results in all examined datasets. These results indicate that our progressive
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upsampling framework with the proposed fused objective function represents superior
performance over the other SR models at larger scale factors (×4 and×8). The comparisons
of network parameters and the execution time are demonstrated in the following section.

Table 10. Quantitative benchmark test results at ×8 scale. Red indicates the best performance and
blue indicates the second best.

Method Scale Params
Set5 Set14 BSD100 Urban100 Manga109

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic ×8 -/- 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500
SRCNN [7] ×8 57 K 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950

FSRCNN [20] ×8 12 K 25.60 0.6970 24.00 0.5990 24.31 0.5720 21.45 0.5500 22.72 0.6920
VDSR [8] ×8 665 K 25.93 0.7241 24.26 0.6148 24.49 0.5838 21.70 0.5710 23.16 0.7253

LapSRN [17] ×8 813 K 26.15 0.7380 24.35 0.6200 24.54 0.5861 21.81 0.5810 23.39 0.7350
MemNet [13] ×8 677 K 26.16 0.7410 24.38 0.6199 24.58 0.5840 21.89 0.5819 23.56 0.7380

EDSR [16] ×8 4240 K 26.97 0.775 24.94 0.6399 24.80 0.5962 22.47 0.6220 24.56 0.7787
SRMDNF [65] ×8 1572 K 26.34 0.7558 24.57 0.6273 24.65 0.5895 22.06 0.5963 23.90 0.7564

MSRN [47] ×8 6226 K 26.59 0.7254 24.88 0.5961 24.70 0.5610 22.37 0.6077 24.30 0.7701
AWSRN [67] ×8 2348 K 26.97 0.7747 24.96 0.6414 24.80 0.5967 22.45 0.6174 24.69 0.7841
D-DBPN [21] ×8 1010 K 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.60 0.7732

RDN [27] ×8 2210 K 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987
PMRF (Ours) ×8 1213 K 27.24 0.7852 25.12 0.6484 24.91 0.6023 22.80 0.6324 25.18 0.7992

4.7. Comparative Analysis

The performance of the SR model is evaluated using objective measures including
PSNR and SSIM. In comparative analysis, we compare the performance of our proposed
model with different state-of-the-art algorithms, including over five benchmark datasets
(Set5 [58], Set14 [59], BSD100 [60], Manga109 [61], and Urban100 [62]) at ×4 and ×8 scales.

Figures 16 and 17 compare PSNR and SSIM at ×4 scale over five benchmark datasets,
respectively. The proposed model (PMRF) is the most effective SR model regarding the
PSNR and SSIM of the super-resolved images on all benchmark datasets compared to
SRFBN-S [22], RDN [27], SRMDNF [65], EDSR [16], and SRCNN [7]. The best improvements
compared to the other models regarding PSNR and SSIM belong to the performance of
our model on the Urban100 dataset. Compared to the SRFBN-S model, our model (PMRF)
improved by 0.28 dB of PSNR and around 0.01 of the SSIM.

Figures 18 and 19 compare PSNR and SSIM at ×8 scale over five benchmark datasets,
respectively. According to the bar graphs, the most effective SR model on all benchmark
datasets compared to D-DBPN [21], RDN [27], SRMDNF [65], EDSR [16], and SRCNN [7].
Only the PSNR of RDN model on the Set14 dataset is 0.01 dB more than our model.
However, regarding SSIM, our model shows robustness compared to the other models.

Figure 16. PSNRcomparison at ×4 scale.
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Figure 17. SSIM comparison at ×4 scale.

Figure 18. PSNRcomparison at ×8 scale.

Figure 19. SSIMcomparison at ×8 scale.

4.8. Model Size Analysis

We represent comparisons of model size and performance in this section. For these
comparisons, we used nine state-of-the-art models including SRCNN [7], FSRCNN [20],
VDSR [8], LapSRN [17], MemNet [13], EDSR [16], D-DBPN [21], MDSR [16] and RCAN [18].
These models have been implemented on a Titan Xp GPU with 24 GB Memory.

Figure 20 compares the performance and number of parameters on the Set5 [58] dataset
at a scale of ×4.
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Figure 20. Performance and number of parameters evaluated on the Set5 dataset at ×4 scale.

According to this graph, our PMRF model gains the highest PSNR (32.7 dB), and
the number of parameters in our model is less than the RCAN [18] model as the second-
best PSNR on this scale. Our model with a progressive upsampling framework and the
proposed fused objective function archives acceptable trade-offs between accuracy and
parameter efficiency.

Figure 21 compares the performance and the execution time on the Set5 [58] dataset.
According to this graph, our PMRF model gains the highest PSNR (32.7 dB) while its
execution time is faster than EDSR [16], RCAN [18], MDSR [16], and MemNet [13].

Figure 21. Performance and execution time evaluated on the Set5 dataset at ×4 scale.

4.9. Learning Difficulty Analysis

The effect of the upsampling framework on the learning difficulty of the SR model
is demonstrated in this section. Figure 22 shows the average PSNR (dB) per epoch in the
training of our SR model with progressive upsampling and post-upsampling frameworks.
To compare fairly, we trained both models under the same hyperparameters.

As observed in the graphs of Figure 22, the progressive upsampling (blue) represents
superior convergence performance compared to the post-upsampling (red) framework.
According to the figure, the PSNR of the progressive upsampling (blue) graph at the initial
stage of training is higher than the red one and grows rapidly with fewer fluctuations
compared to the red graph.
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Figure 22. Comparison of the convergence of progressive upsampling and post-upsampling frame-
work at ×8 scale.

4.10. Noise Degradation Analysis

The evaluation of different objective functions including L1, L2, MS-SSIM, L1 + MS-
SSIM and L2 + MS-SSIM on the degradation image of the Set14 [59] dataset is shown in
Table 11. The Gaussian degradation with a kernel size of 0.5 and noise level of 15 is used
for this evaluation. The red numbers indicate the best performance, and the blue ones
demonstrate the second best.

Table 11. Quantitative evaluation of different objective functions with noise degradation (kernel
with = 0.5 and noise level = 15) for the Set14 dataset at ×4 scale.

Objective Function Scale
Set14 [59]

PSNR SSIM

L1 ×4 22.91 0.4501
L2 ×4 22.79 0.4483

MS-SSIM ×4 23.59 0.4676
L1 + MS-SSIM ×4 23.69 0.4702
L2 + MS-SSIM ×4 23.62 0.4678

The performance of L1 and L2 objective functions (PSNR and SSIM) are weaker
than MS-SSIM and the combinations of MS-SSIM with L1 and L2. Due to the greater
sensitivity of L2 to noise, it shows the weakest performance. The best performances belong
to the fusion objective function approaches. The highest PSNR and SSIM of MS-SSIM
with L1 demonstrate the robustness of the proposed fusion objective function against
noise degradation.

The list of abbreviations used in this article is tabulated in Table 12.

Table 12. List of abbreviations used in this article.

Full Term Abbreviation

Artificial Intelligence AI
Batch Normalization BN
Channel Attention CA

Convolution Neural Network CNN
Depth-Wise DW

Graphics Processing Unit GPU
Ground Truth GT

High Resolution HR
Human Vision System HVS

Internet of Things IoT
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Table 12. Cont.

Full Term Abbreviation

Low Resolution LR
Mean Absolute Error MAE
Mean Square Error MSE

Multi-Scale MS
Peak Signal-to-Noise Ratio PSNR

Pixel Attention PA
Residual-in-Residual Dense Block RRDB

Single-Image Super-Resolution SISR
Structural Similarity Index Measure SSIM

Super-Resolution SR

5. Conclusions

This research proposes a novel fusion objective function by fusing L2 and Multi-
Scale SSIM loss function for the single-image super-resolution model to improve the
accuracy and perceptual quality of the resultant images. Moreover, we designed a novel
Progressive Multi-Residual architecture (PMRF) that uses Residual-in-Residual Dense
Blocks (RRDB) under the progressive upsampling framework. Additionally, the Depth-
Wise (DW) Bottleneck Projection approach was applied to bypass the high-frequency
components of the early layer features in every stage of the upsampling module, which
led to an increase in the training convergence of our model. Quantitative and qualitative
evaluations were conducted on five benchmark datasets (Set5, Set14, BSD100, Urban100,
and Manga109) at ×2, ×4, and ×8 scales. The proposed fused objective function (L2 and
MS-SSIM) improved perceptual quality and accuracy (PSNR/SSIM). Additionally, the fused
objective function demonstrates noticeable robustness against noise degradation compared
to the conventional objective functions (L1 and L2). The proposed Depth-Wise Bottleneck
Projection improved the convergence of our model by mapping high-frequency detail to
each stage of upsampling. Due to the progressive estimation of high-frequency components
of images based on the outputs of previous stages in our progressive framework, the
learning difficulty of the model is reduced, and the resultant images show effectiveness
in recovering complex textures. Moreover, the experiments into execution time and the
number of parameters reveal an acceptable trade-off between parameter efficiency and
accuracy. The performance of the proposed model at ×2 scale is slightly less than two
other models (RDN and SRFBN-S). At this scale, the progressive framework acts similarly
to a post-upsampling framework, and it has network depth compared to other post-
upsampling models.

In the future, we would like to implement our proposed SR model in the real-time
application of high-definition video and explore the super-resolution model in larger scale
factors in real-time image and video communications in edge IoT devices. The proposed
SR algorithm is helpful in image-based smart IoT ecosystems, and in video and image
communication systems to enhance the perceptual quality of the captured images and
video frames in real-time applications.
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