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Abstract: The move towards renewable energy and technological advancements in the generation, dis-
tribution and transmission of electricity have increased the popularity of microgrids. The popularity
of these decentralised applications has coincided with advancements in the field of telecommunica-
tions allowing for the efficient implementation of these applications. This convenience has, however,
also coincided with an increase in the attack surface of these systems, resulting in an increase in
the number of cyber-attacks against them. Preventative network security mechanisms alone are
not enough to protect these systems as a critical design feature is system resilience, so intrusion
detection and prevention system are required. The practical consideration for the implementation of
the proposed schemes in practice is, however, neglected in the literature. This paper attempts to ad-
dress this by generalising these considerations and using the lessons learned from water distribution
systems as a case study. It was found that the considerations are similar irrespective of the application
environment even though context-specific information is a requirement for effective deployment.

Keywords: microgrids; cyber–physical systems; industrial control systems; intrusion detection
systems; machine learning; network security

1. Introduction

Traditional electricity supply systems rely on a central generating facility which feeds
into the transmission and distribution networks [1]. These centralised systems are typically
expensive, inefficient, and rely heavily fossil fuels [2]. The fossil fuels on which these
systems rely are not only a scarce resource, but they also contribute significantly towards
pollution. In recent years, the concept of decentralising the generation capacity of electric-
ity supply system has become increasingly popular [3–5]. These distributed generation
systems are more efficient and rely primarily on renewable energy sources instead of fossil
fuels. Incorporating these distributed generation systems into the traditional electricity
supply systems is challenging. This is because the latter relies on centralised generation
but integration achieved by making use of microgrids [2]. In this setup, the consumer
who traditionally only used power from the grid becomes a prosumer, who can now addi-
tionally add power to the grid [6]. These microgids also leverage Internet of Things (IoT)
technologies [7] to allow for the intelligent monitoring and control of the system. The use of
these technologies can greatly improve the efficiency of the system. The microgrid concept
will thus serve as the most critical component towards the realization of smart cities [8].

The energy sector has been identified as the most important of the 16 critical infras-
tructure sectors identified by the United States (US) Department of Homeland Security [9].
Critical infrastructure systems are those whose operations are paramount to the security
and stability of a nation. The energy sector is regarded as the most critical because all of
the other sectors are either directly or indirectly dependant of this sector. The energy sector
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consistently being ranked the most targeted critical infrastructure sector in the US is further
evidence of this [10]. It is thus a matter of national security for any nation to ensure that
the operation of the electricity supply network is not compromised. This will become in-
creasingly challenging as these critical infrastructure applications employ IoT technologies
to improve system operations. This is because these technologies introduce cyber-threats
which, if successfully carried out, could potentially have devastating economic, social and
environmental consequences [11]. This means that an integral part of developing these
critical infrastructure application is that they should be resilient against all potential threats,
both intentional and unintentional [12].

Considering the critical nature of sector where these microgrids are deployed, it
becomes clear that preventative cyber-security mechanisms alone will not be adequate
to protect them. The resilience requirement identified in the previous paragraph also
required the system to recover even when a threat is realized. When considering cyber-
threats, this can be achieved by making use of intrusion detection and prevention systems
(IDPS) [10]. These systems are deployed because preventative cyber-security mechanisms
will inevitably fail and a resilient system should have measures to recover from these
security failures. IDPSs involve both the detection of attacks and the reaction of the system
once an attack has been detected in order to mitigate the potential damage [13].

A popular categorisation of these IDSs is based on how the information is analysed,
i.e., signature-based or behaviour-based [14]. Table 1 shows a comparative analysis of
each category. When protecting critical infrastructure, the reactive nature of signature-
based methods is not ideal because the consequences of successful cyber-attacks could
be devastating. Attackers are also continuously developing new and innovative ways
to compromise preventative security mechanisms. This is spurred on by the fast pace of
technological development which means that these systems are constantly being upgraded
to meet changing system requirements and adapt to new computing environments. The
evolving nature of today’s technological world thus constantly introduces new security
vulnerabilities which attackers can exploit. The result of this is that no matter how com-
prehensive an attack database is, there will always be exploits that are not accounted for
because they will only exist in later iterations of the system. Evidence of this can be seen
when looking at the attack on the Maroochy water treatment facility [15]. In this case, the
attacker took advantage of vulnerabilities introduced by system upgrades. This resulted in
significant monetary loss and environmental damage. IDSs thus need to be as adaptive
and robust to change as the technological systems they are designed to protect.

Table 1. Behaviour-based vs. Signature-based detection.

Signature-Based Behaviour-Based

Detection Speed Has a fast detection time
due to the use of a lookup

Has a slow detection time
as it has to detect patterns of
abnormal behaviour using
machine learning

Accuracy
Lower false positive rate
but higher false negative rate
than behavour-based methods.

Has a high false positive rate
but lower false negative rate
than signature-based methods

Attack Types Can only detect previously
identified attack signatures.

Can detect both unknown
attacks and system faults.

Prior knowledge
Needs to maintain a large
database of attacks in order
to detect them

Needs prior knowledge of
normal system behaviour
in order to train models.
Can also be trained using
abnormal behaviour.
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The current literature on this topic is fragmented and considers each industrial control
system (ICS) application in isolation. The main contribution of this work is a generalisation
of these concepts to demonstrate that all of these application share similar challenges and
solution. The primary difference between them will be the architecture of the devices and
application specific variables. The core principles will, however, remain the same, both at a
system and device level. This type of analysis is currently missing from the literature and
can provide some meaningful insights into the current body of work. Our contribution in
this survey paper is summarised below.

• We analyse state-of-the-art research and extrapolate the challenges and limitation of
intrusion detection in ICSs in general.

• We use water distribution systems as a case study and generalise the practical consid-
eration for the implementation of these schemes. This is then applied to Microgrids
based on the vulnerabilities identified in the state-of-the-art research.

• We then analyse and discuss the state-of-the-art research of IDPSs in Microgrids taking
the above into consideration with a particular focus on the practical implications.

2. Cyber–Physical Systems

The operation of cyber–physical systems is realised through industrial control systems
(ICS) [16]. The purpose of ICSs is to limit the amount of human interaction required by
automating the control of the devices in the system [17]. The Supervisory Control And
Data Acquisition (SCADA) system monitors and supervises the control-level devices from
a higher level of abstraction. This allows human interactions through a human machine
interface (HMI). The connection between the SCADA and control levels can be direct
via a LAN or remote via a WAN. They can also make use of specialised programmable
logic controllers (PLC) known as remote terminal units (RTU). SCADA systems are not
responsible for the actual control logic or functionality but can set the parameters for
control [18]. These parameters can be adjusted automatically using predetermined system-
wide constraints or directly by a plant manager through an HMI. This means that an
attacker who is able to compromise the SCADA system will have complete control over the
system functionality.

The second function of the SCADA system is data acquisition which allows for the
effective monitoring of the system by giving an overview of the system state from a higher
level of abstraction [19]. This information can be made available in a separate historian
server and used to analyse aspects such as plant efficiency and possible defects. This
information can also be used in real-time to run an IDS to identify malicious behaviour
in the system. An attacker who has taken over the SCADA system would, however,
have superuser privileges which would enable him/her to switch off such protective
functionality. From this discussion, it is clear that considerable resources need to be
allocated towards the protection of SCADA systems. This is because attacks at this layer
would be almost impossible to detect for an IDS running in the ICS. In this case, the network
anomaly detection schemes running on the corporate network would be more ideally suited
to the task. Threats to the SCADA system from malicious internal attackers are, however,
easier to carry out and have more points of entry than their remote counterparts [20].

ICSs rely heavily on the communication between the interconnected devices to realise
system functionality [21]. As a result, it is necessary to define relevant communication
protocols which allow for safe and reliable communication within the system. For many
years, the primary focus has been on the internal communication of the system with
particular focus on the communication between the field and control devices. This group
of protocols are collectively referred to as fieldbus communication protocols [18]. More
recently, as systems move towards the cyber–physical space communication has become a
key component at all levels of the system hierarchy. This incorporates both internal and
external communication networks with Ethernet being the dominant standard. This means
that industrial control networks are now similar conceptually to conventional computer
networks. They, however, remain structurally different owing to the conflicting priorities
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of the two systems. The architecture of industrial control networks is usually much deeper
than conventional IT networks. The major differences between the two network types
are also shown in Table 2. The most notable difference is the reliability and real-time
requirements of ICSs which are not major issues in IT networks. These conflicting priorities
also need to be considered when looking at the security of both systems.

Table 2. Industrial control network vs. conventional IT network.

Industrial Control Network Conventional IT Network

System Reliability Critical Issues tolerated
Real-time Requirements Stringent lax
Determinism Required Not Required
Data Size Small Large
Data Transmission Periodic and aperiodic “best effort”
Time-series Events Yes Not usually

The traditional Microgrid architecture uses a centralised unidirectional hierarchical
network architecture with three layers [22]. Each of these layers have different operational
requirements and thus make use of different communication technologies and standards
to meet the required specifications. For example, at the level of the load controller, the
speed requirement is in the range of milliseconds to minutes. At the Microgrid central
controller and distribution management system, the specification is in the range of minutes
to hours and hours to days respectively. There is currently a trend towards a decentralised
bidirectional architecture that incorporates aspects of the internet architecture to meet the
current demands of Microgrid communication system. Traditional systems make use of
wired technologies such as RS232, Ethernet and power line communication. There has,
however, been trend towards wireless communications in recent years.

The authors in [23] evaluated a number of communication standards and technologies
used in Microgrids. They found that the wireless technologies were better suited for the
application environment than their wired counterparts. In particular, low powered wide
area networks (LPWAN) were found to be quite promising with their low deployment cost
and large communication range. Factors such as spectrum sharing, gateway placement and
network security were identified as key challenges for deployment. Their low data rates
also meant they were not ideal in cases of emergency which could affect the redundancy
requirement of the Microgrids. Cellular networks can also be used to achieve this long
range communication with faster data rates although these have a higher deployment
cost than LPWAN technologies [22]. Irrespective of the link-layer technology used there
is a requirement of the network to have redundancy built into the system to maintain the
resilience requirement of Microgids. The implementation of peer-to-peer networks will
also increasingly be the norm as the architecture becomes more decentralised.

The generic process flow for cyber–physical systems is as follows. Sensors gather
information from the monitored physical environment and transmit the information to the
cyber/digital system. This information is transmitted using the industrial control network
described above, which has both internal and external communication links. In the cyber
layer, the data undergoes digital processing and the system makes a decision based on this
sensed data. This allows the system to alter the physical environment as per the system
requirements. This means that decisions can be made locally, within the SCADA network
or it could be facilitated by an external entity. The decision is implemented by making
use of actuators which allow the system to interact with the physical environment. The
actuators are thus able to manipulate the physical environment in order to achieve system
goals based on data that was sourced from sensor readings.

During a cyber-attack, an attacker could manipulate sensor readings in a coordinated
manner to force the system to malfunction. In water system infrastructure for example, an
attacker could change the tank level reading for a particular tank to manipulate the system
into pumping more and more water into that tank until it overflows. A malfunctioning
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sensor which erroneously reads the tank level as lower than the actual value would also
lead to the same overflow caused by the malicious attack. Even though only one of the
scenarios was intentional, the resultant consequences are identical.

The consequences of malfunctioning sensors and cyber-attacks can be even more
severe than a tank overflow. Consider the Boeing 737 MAX saga which resulted in two
plane crashes and hundreds of people regrettably losing their lives. Although the investi-
gations have not yet been finalised, preliminary results indicate that both plane crashes
were caused by faulty sensor readings which caused the manoeuvring characteristics aug-
mentation system (MCAS) to malfunction [24]. The sensors the MCAS was reliant on were
error-prone which thus resulted in the system causing the plane to nose-dive instead of
stabilising it as intended. The critical nature of that application environment thus required
additional mechanisms to account for these sensor errors. This is because of the disastrous
consequences that could result from a system failure. This emphasises the point that IDSs
and fault detection mechanisms should be developed while taking careful consideration of
the needs of the particular application environment.

An important consideration between fault detection systems and IDSs is that the
system faults will be easier to detect. This is because with the latter, a malicious attacker
will attempt to evade detection by employing stealthy techniques [25]. These stealthy
techniques are usually employed with the sole purpose of circumventing any automated
detection mechanisms. In the case of an unintentional system fault, this will not be the case
and anomalous events are likely to deviate significantly from the norm which would make
detection easier to achieve. This means that while the two concepts are similar, and the
result of their occurrence will likely lead to the same consequence, the resultant algorithms
are different owing to the presence of a potentially stealthy malicious actor.

3. Intrusion Detection Systems

In network security there is a heavy emphasis on preventative security mechanisms
such as firewalls, cryptography and access control [26]. These preventative measures
provide an external security perimeter to prevent an attacker from gaining access to the
system. An intrusion occurs when an attacker bypasses these external security mechanisms
in an attempt to compromise at least one of the three key pillars of network security (confi-
dentiality, integrity and availability) [27]. If an attacker is able to bypass the preventative
measures, intrusion detection and prevention systems can be used to limit the potential
damage. IDPSs involve both the detection of attacks and the reaction of the system once an
attack has been detected in order to mitigate the potential damage [13]. Figure 1 shows the
security mechanisms that protect system resources. In order for an attack to be successful
an attacker first has to bypass the preventative security mechanisms. Once the attacker has
access to the system he/she will have to evade the IDPS in order to gain unfettered access
to the desired system resources.
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Figure 1. Security mechanisms that protect system resources.
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The focus of this work is on the detection of malicious activity which is the cornerstone
of IDPSs. These IDSs can be categorised in a number of different ways with one of the most
popular being the type of information being utilised by the system, i.e., Network-based [28]
or Host-based [29]. Network-based intrusion detection analyses network traffic of an entire
network or subnetwork to determine whether an intrusion has occurred. Host-based
systems utilise operational parameters specific to the host/application and is generally
concerned with the integrity of a specific device. In a typical IT application, each device
would have a dedicated host-based intrusion detector while the network connecting the
devices uses a network anomaly detector. The latter gives an overall view of the entire
system and will thus be effective at detecting contextual anomalies. Using this configuration,
compromised hosts which affect network operations can also be detected but this would
primarily be limited breaches in integrity and availability. The confidentiality of the data
passing through the affected devices cannot be guaranteed unless a host-based detector is
also running on the device. In IoT applications, this is not always possible because of the
resource constraints of the host devices [30].

Figure 2 shows a generic framework for anomaly detection using machine learning.
The first important step is data-preprocessing which involves filtering, data imputation
and feature extraction [31]. This step is paramount in the viability of any machine learning
algorithm in the application environment. It is also important in this step to understand the
data as it relates to the application in order to make appropriate design choices. Once the
features have been extracted, the model needs to be trained using some prior knowledge
about the system/data. This prior knowledge can be in the form of establishing a normal
profile for the data such that outliers can be identified as anomalies. An alternative use
of prior knowledge is making use of data samples of both normal and anomalous states
in order to train the model to distinguish between the two. The challenge with this
alternative approach is the lack of data samples that represent the anomalous states [15].
If not adequately accounted for, this could result in a model that is biased towards the
classification of the normal state. Once the model is trained, it can then be used to classify
unseen data to evaluate how well it works. In this step it is important to also make use of
the data samples that represent the anomalous state, even if they were not used during the
training phase. A challenge with this algorithm evaluation phase is selecting metrics that
are appropriate for the application environment. This is required in order to adequately
analyse the results.

Data 

Processing

Input

Analysis 

and 

Decision

Output

Preprocessing

Training
Prior-

Knowledge

Normal Profile

Score / Label?

Figure 2. Generic Anomaly Detection Framework [15].
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4. Vulnerability assessment

Like all critical infrastructure applications, the resilience of the electrical grid is an im-
portant component when considering deployment. In Microgrids, this has particular been
a central focus as the distributed nature of the systems inherently makes them ideal tools
for a resilient electrical grid. There have thus been many studies assessing how resilient
they are to a variety of external factors [32–35]. The resilience to random yet predictable
events (such as normal weather conditions) can be modelled relatively accurately. It can
also be accounted for such that there is a very low risk they could adversely affect the
system. Anomalous events are, however, a lot more difficult to model and account for
and thus pose a much more significant risk to the system [32]. These events have been the
primary focus of the research into the resilience of Microgrids. These anomalous events can
be both unintentional, as is the case with natural disasters, or intentional, such as malicious
attacks. The focus of this work is on the latter although good IDS should be able to detect
both kinds of anomalous events.

A distinction will now be made between system-level vulnerabilities and device-level
vulnerabilities [36]. The former are application dependent and will differ depending on the
type of critical infrastructure being deployed. An example of this is how a Microgrid appli-
cation operates differently to a water distribution system. This means that the two systems
will be vulnerable to different exploits. The device-level vulnerabilities are mostly indepen-
dent of the specific application and their differences are primarily vendor-specific [37]. This
means that in this case the main consideration is the architecture of the device (which is
vendor-specific) and not the SCADA system (which is application-specific). These types of
vulnerabilities are difficult to protect against because some information is proprietary and
not publicly available. Additionally these devices are resource constrained and operate in
time-critical applications, so there is very little margin to introduce protective measures [38].
A popular example of these device-level vulnerabilities is that the device could download
and run maliciously altered code.

Another important consideration is that microgrids occur at the end points of the smart
grid architecture [39]. This means that these systems directly interact with endpoint devices
so a breach in security has major ramifications for user privacy. User data could not only
reveal sensitive information, but usage patterns could allow an attacker to deduce which
appliances are being used and even when a resident is not home. The prosumer model of
the smart grid, which allows consumers to sell excess electricity back into the grid, requires
real-time and accurate information about the user. This introduces additional challenges
because the anonymity of the user must be maintained in this bidding process due to the
reasons mentioned [40]. From the context of intrusion detection, it is very difficult to detect
breaches of confidentiality because they are passive attacks. The actions of the attacker,
however, can be logged by host-based IDS and if they differ significantly from that of a
legitimate user they can be flagged.

These endpoint devices can also be used as the launching pad for active attacks on the
grid because of the two-way communication line. Researchers have shown, for example,
that should a smart meter be infected with a worm and if that worm were allowed to spread,
then tens of thousands of smart meters could potentially be infected within twenty-four
hours [41]. Depending on the worm payload, this breach could result in all three of the key
network security objectives (confidentiality, integrity and availability) being compromised.
Malicious software has become increasingly stealthy in recent years in an attempt the
shield them from detection from signature-based detectors. The resources constraints of
these endpoint devices also make implementing other types of IDS more challenging in the
application environment.

The introduction of wireless personal area network (WPAN) technologies such as
Zigbee to microgrids also adds significant vulnerabilities to the system [42]. The added
convenience and easier deployment of wireless technologies when compared to their wired
counterparts comes at a cost of an increase in the attack surface of the system. This is
because when using a wireless link, at attacker no longer needs to have physical access to
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the system and can launch an attack remotely. These WPAN technologies are going to be
an integral part of the envisioned smart cities of the future. They are typically deployed
in resource constrained environments in applications that require low data rates because
they are inexpensive to deploy. The characteristics that make them ideal for the application
environment are also the characteristics that make them more vulnerable to attacks. They
are particularly susceptible to denial of service (DoS) because of these characteristics [43].
From an intrusion detection perspective, DoS attacks are easy to detect but difficult to
defend against, especially in a resource constrained devices. What is even more challenging
is that in operational technology, the availability of the system is the most import of the
three key network security objectives.

The challenge in protecting a system against DoS attacks is that the attacker does
not need to cause a complete loss of available. In time critical industrial control systems,
significantly slowing down the system could have devastating consequences [44]. The key
difference in this case is that the security goals of confidentiality and integrity require the
prevention of unauthorized access, which can be assessed on a binary scale. This means an
attacker has either gained unauthorised access to the system resources or they have not.
The security goal of availability ,however, requires the preservation of authorized access.
The analysis of whether or not this has been maintained is more nuanced and can differ
between applications. This is one of the reasons why DoS attacks are easy to detect but
difficult to defend against. A key design feature of Microgrids is that they should have
resilience built into the system to mitigate the impact of such events [12]. The security
protocols of the IDPS would thus need to account for this once an attack has been detected
by the IDS. A potential solution to this is having redundancy built into the system.

The last of the three network security objectives which will be considered is data or
system integrity. From the perspective of the system, there is no difference between a
system fault and a data integrity attack. This is because whether system data have been
altered maliciously or naturally, the result remains the same. One of the most prominent
case studies that demonstrate this is the MCAS malfunction from the Boeing 737 saga
mentioned earlier. The consequences of maliciously altered and faulty data are clearly the
same, but from an intrusion detection perspective the key difference is that a malicious
actor can attempt to evade detection. This means that the systems built-in fault detection
mechanisms may not be adequate because an attacker with an intimate knowledge of the
system can tailor the attack to evade detection.

Data integrity attacks are more serious than confidentiality attacks but usually not
as severe as attacks on system availability in the application environment. The three
computer security objectives are, however, linked because in order for confidentiality to be
compromised, the attacker my need to compromise system or data integrity. This is also the
case for distributed DoS attacks where compromised devices can be turned into Zombies
by making use of Bots [45]. An attack on data or system integrity can also directly lead to
a loss in availability as was the case in the attack of the Iranian nuclear program by the
Stuxnet worm in 2010 [46]. Traditional DoS attacks are typically short term but these types
of data integrity attacks can have devastating long term effects and loss of availability.

In the application environment, data integrity attacks can vary in the severity of impact.
These attacks are, however, the most dangerous because the system relies on reliable data to
make decision. The system interacts with the physical world using actuators, but the nature
of the interaction is dependent on the sensed data. This means that an attacker equipped
with knowledge about the application environment would be able to manipulate the system
into achieving a desired outcome. In microgrids, various attacks have been demonstrated
some of which can affect the system’s energy efficiency [47] and generation costs [48].
The system can also be manipulated for the financial benefit of the attacker [49]. In the
worst case, these data integrity attacks have been shown to result in a voltage collapse [50].
Countermeasures against these types of attacks typically rely on reputation-based models to
determine which datapoints and/or system nodes can be trusted at any given time period.
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Another important consideration is that of the cyber–physical cloud [51]. Figure 3
shows the generic process flow of this configuration. The growing complexity of CPS
applications has meant that the procurement and maintenance of the required computing
resources has become increasingly complex and expensive. By outsourcing some of these
capabilities to cloud providers, the system can be scaled up and down as required to enable a
more efficient use of resources. This can result in the significant reduction in the operational
costs of the system [52]. The drawback of this approach is that it increases the attack surface
of the system and makes the system more vulnerable to external attacks [53]. This approach
does, however, also present an opportunity to provide increased security in the system. This
can be conducted through the use of innovations such as the digital twin model which can
not only aid with the detection, but also the mitigation of cyber-attacks [54]. 

 

 

  

Physical World

Sensor

Cyber System

Actuator

Cloud 
Infrastructure 

Figure 3. Cyber–physical cloud process flow.

Figure 4 summarises the three key network security objectives as discussed in this
section. In conventional IT networks, maintaining the network confidentiality can be
considered the most important of the three network security goals. In microgrids, the
most important goal is that of available as can be seen in the focus on the resilience of the
system. Confidentiality is, however, still important, as discussed, but will typically rely on
indirect mechanisms for detection. DoS attacks in the application environment are not too
dissimilar from those in typical IT networks. This means the mechanisms for detection and
mitigations on availability attacks will have a similar approach. Attacks on system integrity
by an attacker with knowledge about the system will enable the attacker to launch stealthy
attacks which can evade detection. This means that IDSs aimed and integrity attacks will
need to be robust and take more application-specific contexts into account.
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Figure 4. Summary of the three key network security objectives.

5. Microgrid IDPS

There have been a variety of different IDPSs proposed for Microgrids, in this section a
few of them will be discussed. It has been mentioned previously, that a purely rule-based
approach to intrusion detection would be inadequate in identifying previously unseen
attacks. This is especially the case with rapid technological advancements that results in
systems being upgraded with the latest hardware and software over time. The authors
in [55], however, contend that the rule-based approach can be improved by combining it
in stages with a deep learning approach in Microgrid applications. They propose using
an unsupervised deep belief network (DBN) as the first stage. This feeds into rule-based
second stage that determines the output via thresholding. The algorithm was proven to
be effective at detecting both DoS and data injection attacks. It also outperformed more
popular machine learning algorithms such as the convolutional neural network (CNN).

The authors in [56] also primarily focus on data injection attacks, but limit their
analysis to the advanced metering infrastructure (AMI). As discussed previously, the
prosumer model of the microgrid makes the AMI particularly vulnerable because of its
location at the endpoint of the system. The proposed system uses the lower upper bound
estimation (LUBE) method for feedforward neural networks to detect anomalies in the
application environment. The algorithm determines the minimum and maximum values
for data points within the system based on normal operating behaviour. Anything falling
outside of these bounds is classified as an anomaly. Due to the complex nonlinear data of
the application environment, the algorithm is reinforced with a modified version of the
symbiotic organisms search (SOS) algorithm. This is conducted to improve the accuracy
of the system. The proposed scheme was benchmarked against the conventional LUBE
algorithm and one that was reinforced using the conventional SOS algorithm. It was found
to outperform both across a variety of different performance metrics.

Data integrity attacks in the AMI were also considered by the authors in [57] using
a similar approach. Instead of a feed-forward neural network, however, they proposed
an improvement to the system by instead using a generative adversarial network (GAN)
which is a deep learning algorithm. The proposed algorithm was also based on the LUBE
method. To account for the complexity of the data, the authors instead propose reinforcing
the scheme using a modified version of the teaching-learning-based optimization (TLBO)
algorithm. As with the scheme proposed in [56], this algorithm was trained on normal
system data to determine what normal behaviour is (upper and lower bound). Anything
that deviates from this determined norm is classified as an intrusion. The algorithm was
evaluated against a range of data injection attacks with varying severity and was shown to
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be more effective than conventional LUBE algorithm and one that was reinforced using the
conventional TLBO algorithm. The algorithm was also shown to outperform the support
vector machine (SVM) algorithm in the application environment.

The authors in [58] identify these false data injection attacks as the most common type
of attack in the application environment. It is thus no surprise that the bulk of the literature
on this topic focuses on data integrity attacks. They distinguish between two types of data
injection attacks. The first type have a large short term impact of the system but are easier
to detect. The second type are stealthier but have longer term consequences if they go
undetected. The authors propose the use of a deep learning based auto-encoder to detect
both types of attacks in DC microgrids. The preprocessing stage makes use of a combination
of the wavelet transform and singular value decomposition to extract the features required
by the auto-encoders. In the next stage an ensemble of several deep auto-encoders are used
and the result is determined using weighted voting scheme. The proposed algorithm was
compared to a deep neural network and outperformed the algorithm in both classification
accuracy and average detection time.

In [59], it is argued that traditional state vector estimation (SVE) algorithms are ineffec-
tive at detecting stealthy data integrity attacks. The authors demonstrate this by comparing
a standard SVE algorithm with a variety of different machine learning algorithms. The
algorithms were tested on data from a man-in-the-middle attack using the stealthy mea-
surement as a reference (MaR) method. The results of the experiment are shown in Table 3
below and show that the machine learning algorithms significantly outperform the SVE
algorithm. The table also illustrates that the choice of performance metric could affect
the perceived performance of the algorithms. The authors use the accuracy as the main
comparative metric but an analysis of the F1 score shows that the outcome would have
been slightly different. This would have been even more pronounced had the dataset
used reflected the real-world unbalanced data problem discussed previously. The metrics
used to evaluate the algorithms are thus an important consideration and should not be
neglected. A consideration of the application environment and the structure of the data will
be paramount in determining which metrics would most accurately reflect the performance
of the algorithms.

Table 3. SVE vs. machine learning algorithms [59].

Algorithm Accuracy F1

Random Forest 0.97 0.95
Ada Boost 0.96 0.93
KNN 0.96 0.93
Decision Tree 0.95 0.93
SVC polynomial 0.95 0.92
MLP 0.95 0.92
SCV RBF 0.94 0.90
Naïve Bayes 0.83 0.75
SVC Linear 0.8 0.79
SVE 0.53 0.35

Data integrity attacks can take on a variety of different forms and can also result
in DoS attacks if carried out correctly. These types of data integrity attacks, including
stealthy attacks whether the attacker attempts to evade detection, are considered in [60].
The authors proposed a time-sequenced intrusion detection framework that is based on
machine learning for an inverter management system in a microgrid wind farm. Similar to
the model proposed in [57], this scheme attempts to learn the normal system behaviour in
order to identify when a system is exhibiting anomalous behaviour. A cyber-attack model
demonstrating the potential devastating effects of the data integrity attacks in the system at
this level is also developed and used to evaluate the proposed scheme. The scheme was
benchmarked against the auto-encoder and a cluster-based technique and was found to
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outperform both across all attacks. Unsurprisingly, the DoS attack was the easiest to detect
while the replay attack had the lowest detection rate for all of the models.

These replay attacks thus require special attention as they are a specialised form of
data integrity attack. An attacker who has access to authentic system packets would be
able to use these strategically to either gain access to the system or to manipulate the
system into achieve a desired goal. The authors in [61] propose using the hash-based
message authentication code (HMAC) using the message digest algorithm (MD5) as the
cryptographic hash function to prevent replay attacks in isolated smart grids. The system
periodontally generates a random signal to be added to the message before applying the
HMAC algorithm. In this way, once the time period elapses, the generated hash code
would no longer be valid for the message. This, however, means that replay attacks are
possible during the period of validity so the strength of this algorithm rests with the length
of the period. This also shows that preventative mechanism alone would not be adequate
in protecting the system against replay attacks.

The use of a random signal can also be used to improve the detection capabilities of
proposed intrusion detection algorithms. The authors in [62] argue that a random signal
can be used similar to how a watermark is used to prevent the unauthorised distribution of
multimedia applications. The two main requirements for the application of this watermark
are that (1) it should not affect the normal operation of the system and (2) an attacker should
not be able to identify the watermark in the message. The proposed scheme was evaluated
under steady-state conditions where an IDS was not capable of detecting replay attacks. It
was shown that the introduction of the watermark improved the detection capabilities of
the scheme. It was additionally shown that this could be achieved while using a watermark
signal that is undetectable by the attacker as it would be masked by the system noise.

The schemes discussed so far are general purpose algorithms that distinguish between
normal and anomalous data. This means that the schemes do not specifically classify the
type of attack, even though they were tested for effectiveness at detecting the attack of
focus. The authors in [63] argue that it is important to identify the class of attack in order to
maintain the resilience requirement of microgrids. This is because once an attack is detected,
the system is required to have measures in place to recover from this attack. Knowledge of
the class of attack would thus allow more effective response mechanisms. They propose
a framework for intrusion detection focussed on the microgrid central controller using
CNN to both detect attacks and identify the class of attacks. The latter is more challenging
than the former owing to the lack of available training data for each class of attack in
the application environment. However, by separating the detection and classification
components of the system, an attack will always be detected even if the classification of
the attack is not possible. This means that the system will still be capable of detecting
previously unseen attacks.

The ability to recover from an attack is particularly important for DoS attacks because
availability is the most critical of the three network security objectives in the application
environment. As mentioned previously, attacks on system availability, particularly in the
network layer, are easier to detect than data integrity attacks. They are, however, more
challenging to defend against making this a very active research field. More recently,
machine learning has been proposed to mitigate the impact of DoS in microgrids. The
authors in [64] propose a CNN-based multi-agent deep reinforcement learning algorithm
for secondary frequency control and state of charge balancing in battery energy storage
systems under DoS attacks in microgrids. The system uses an event driven approach that
uses the signal-to-interference-plus-noise ratio (SINR) to detect DoS attacks and trigger the
proposed mitigation strategy. The SINR was found to be a useful parameter in identifying
DoS attacks as a higher SINR is directly proportional to packet loss in the network. The
proposed scheme was shown to be effective at reducing the SINR and consequently the
proportion of lost packets during real-time DoS attacks in the network.

Another major consideration in the application of IDSs is that these systems are not
100% accurate and are thus prone to have relatively high false positive rates. The cost of
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not detecting an attack in the application environment is far greater than falsely detecting
normal data as anomalous. The resilience requirement of microgrids, however, requires
automated mitigation strategies once an attack has been detected. This means that these
false positives could negatively affect the normal operation of the system. The authors
in [65] propose a secondary frequency regulator designed to improve the resilience of
Microgrids to DoS attacks. The scheme was proven to be effective even when used with
IDSs which have high false detection rates. It was also shown to be more robust than
schemes that do not consider the possibility of the IDS producing false positives.

The discussion so far has been limited to intrusion detection at a system level and
not at a device level. As stated in the previous section, in order to detect device level
intrusions, a host-based IDS would be required. The authors in [66] propose a scheme
to detect malicious code injection in microgrid inverters. They argue that these inverters
are particularly vulnerable because they are consumer electronics and also not designed
with security in mind. Firmware updates can also be installed remotely, which increases
the likelihood that an attacker would be able to inject malicious code under the guise
of a firmware update. The authors propose using custom built hardware performance
counters (HPC) to generate the features required by machine learning models to detect
malicious code. The system was tested against DoS and data integrity attacks and compared
three popular machine learning algorithms: neural networks, decision trees, and random
forests. The baseline system had mixed results but drastically improved when the data
were balanced and principle component analysis (PCA) was used for feature extraction.
The performances of the different machine learning algorithms varied depending on the
configuration of the input data. This shows that the preprocessing stage of machine learning
algorithms has a direct impact on the performance of the algorithms and should thus be
considered seriously.

The discussion in the previous paragraph highlights three important things for host-
based intrusion detection using machine learning: (1) the algorithms need HPC generated
features, (2) the preprocessing of these HPCs will be paramount in how these algorithms
perform, and (3) the performance of the machine learning algorithms differ as the conditions
change (i.e., there is no one general purpose algorithm that can outperform all others in
all situations). These conclusions were highlighted by the authors in [67], who proposed
a generic framework from hardware malware detectors using machine learning. They
found that the number of HPCs that are available at runtime differ depending on the device
and so proposed schemes should limit the number of HPCs used. Their proposed scheme
uses a standard four HPC features which they found most adequately represented the
performance of the system under normal operating conditions. In order to improve the
results, the second stage of the scheme used four additional features specific to each kind
of malware and an ensemble learning technique using adaptive boosting. This allowed the
algorithm to not only detect malicious code, but also to classify the type of malware that
was detected. Experiments showed that the proposed scheme outperforms state-of-the-art
malware detectors that use a larger number of HPC features, even when compared only to
the first stage of the scheme that only uses four features.

Discussion

Table 4 shows a summary of all of the algorithms discussed in this section. There
are a few key observations that will be discussed briefly here. Firstly, it can be seen that
the bulk of the proposed schemes are intended to detect data integrity attacks. Even the
algorithms that include an evaluation of DoS attacks focus on those that result from data
integrity attacks. This is unsurprising as networked DoS attacks are generally easy to
detect but difficult to defend against. The same detection methods used in convention IT
applications would also be applicable to industrial control networks so research in this
area primarily focuses on the mitigation of attacks once they have been detected. The
second observation is that there is a heavy emphasis on data pre-processing methods across
all of the proposed schemes. Most schemes additionally also made use of deep learning
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algorithms and multi-stage/ensemble techniques to improve the results. This is due to
the complex nonlinear data that is found in the application environment. The choice of
algorithm and preprocessing techniques was thus paramount in the performance of the
proposed schemes as there is no one algorithm that can outperform the rest in all situations.
The last observation is that the host-based techniques favoured hardware-based solutions
over software implementations. This is due the resource constraints of the devices which
would make the software implementations infeasible due to the computational costs. The
same consideration for the system-wide IDSs are also applicable in this case once the
computational costs have been accounted for. A summary of this discussion is shown
in Figure 5.

Table 4. Microgrid IDPS.

Paper Method Attack Detected

Durairaj et al. [55] Hybrid rule-based system using a deep belief network Data injection and DoS

Kavousi-Fard et al. [56] Feed forward neural network using LUBE method and modified SOS
algorithm Data injection attacks in AMI

Tang et al. [57] Generative adversarial network using LUBE method and modified
TLBO algorithm Data injection attacks in AMI

Dehghani et al. [58] Weighted voting ensemble deep auto encoder with wavelet transform
and singular value decomposition Data integrity attacks

Ma et al. [59] Authors compare popular machine learning algorithms to traditional
SVE algorithm

Stealthy data integrity
attacks

Sadi et al. [60] Time sequenced feed forward neural network Stealthy data integrity
attacks and DoS

Gallo et al. [62] Water marking using random signals to improve detection of replay
attacks in IDSs Data integrity attacks

Xi et al. [63] Framework for intrusion detection and attack classification using CNN Data integrity and DOS

Chen et al. [64] Event-triggered CNN-based multi-agent deep reinforcment learning Detection and mitigation of
DoS attacks

Liu et al. [65] Secondary frequency regulator to improve resilience when IDSs have
high false positive rates Mitigation of DoS attacks

Kuruvila et al. [66] Various machine learning models using PCA and custom built HPCs Malicious code injection

Sayadi et al. [67] a Framework for malicious code detection using a limited number of
HPC features with various machine learning models Malicious code injection
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6. Conclusions

This paper considered the practical consideration of intrusion detection using machine
learning in microgrid applications. The discussion focussed on a high level of abstraction
in order to generalise the considerations across a different ICSs. As a case study, previous
work focussing on water distribution systems was introduced and the lessons learned
were generalised for the application of IDSs to cyber–physical ICSs. The vulnerabilities
specifically related to microgrid applications were then discussed with this in mind and
the challenges for implementation were considered. Lastly, the state-of-the-art research
was considered which supported the deductions from the previous sections. This is a
growing and increasingly important field from both a research and an industrial perspec-
tive. Rapid advancements in the field spurred on by the fourth industrial revolution will
require researchers to place a heavier emphasis on the practical considerations of proposed
schemes for these to be viable in practice. Future work will thus need to consider frame-
works for data preprocessing, model implementation, and algorithm evaluation in the
application environment.
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The following abbreviations are used in this manuscript:

AMI Advanced Metering Infrastructure
CNN Convolutional Neural Network
DBN Deep Belief Network
DoS Denial of Service
GAN Generative Adversarial Network
HMI Human-Machine Interface
HPC Hardware Performance Counters
ICS Industrial Control System
IDPS Intrusion Detection and Prevention System
IDS Intrusion Detection System
IoT Internet of Things
LUBE Lower Upper Bound Estimation
MaR Measurement as a Reference
MCAS Manoeuvring Characteristics Augmentation System
PCA Principle Component Analysis
PLC Progammable Logic Controller
RTU Remote Terminal Unit
SCADA Supervisory Control And Data Acquisition
SINR Signal-to-Interference-plus-Noise Ratio
SOS Symbiotic Organisms Search
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SVE State Vector Estimation
SVM Support Vector Machine
TLBO Teaching-Learning-Based Optimization
WPAN Wireless Personal Area Network
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