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Abstract: Remote health monitoring systems play an important role in the healthcare sector. Edge
computing is a key enabler for realizing these systems, where it is required to collect big data
while providing real-time guarantees. In this study, we focus on remote cuff-less blood pressure
(BP) monitoring through electrocardiogram (ECG) as a case study to evaluate the benefits of edge
computing and compression. First, we investigate the state-of-the-art algorithms for BP estimation
and ECG compression. Second, we develop a system to measure the ECG, estimate the BP, and store
the results in the cloud with three different configurations: (i) estimation in the edge, (ii) estimation in
the cloud, and (iii) estimation in the cloud with compressed transmission. Third, we evaluate the three
approaches in terms of application latency, transmitted data volume, and power usage. In experiments
with batches of 64 ECG samples, the edge computing approach has reduced average application
latency by 15%, average power usage by 19%, and total transmitted volume by 85%, confirming that
edge computing improves system performance significantly. Compressed transmission proved to be
an alternative when network bandwidth is limited and edge computing is impractical.

Keywords: health; edge; cloud; compression; blood pressure estimation; cuff-less

1. Introduction

Traditional health diagnostic services are unable to meet the demand for low-cost,
high-quality healthcare due to the growing population. The development of a remote
mobile health monitoring system is now possible because of recent advancements in the
field of mobile devices and communication. Such a system can be used by physicians
to deliver these services at all times, improving the patient’s experience and reducing
the burden on the public health system [1]. The monitoring system sends measurements
to the cloud for processing in a standard sensor-cloud architecture, which is a suitable
approach for low information rates. When this architecture is adopted for high-frequency
measurements, however, it fails to provide the service in terms of performance guarantees.
The communication channel’s capacity is generally limited, and constant data transmission
in high frequency requires a significant amount of energy. Due to these challenges, compu-
tational capability has shifted from the cloud to the edge. Edge computing increases system
efficiency by processing data at a device that is physically closer to the sensor. Despite the
fact that there has been a lot of research performed on this topic, issues associated with
high data volumes need to be further investigated [2]. The advantages of edge computing
include decreased energy consumption for battery operated devices, short response time
and network bandwidth saving [3]. One example of a healthcare use case with big data
is long-term electrocardiogram (ECG) monitoring. The required bandwidth depends on
the sampling rate, resolution, and the number of leads, but a typical ECG recording device
samples at 100–1000 Hz with a resolution of 8–16 bits per data sample. This results in a
data volume of 8.64 MB up to 172.8 MB for one day of single-lead ECG transmission. This
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amount of data requires a significant amount of transmission time, resulting in increased
energy usage [4].

In order to assess the benefits of edge computing for real-time ECG monitoring, we
use an existing algorithm to estimate blood pressure (BP) through ECG monitoring. The
algorithm is integrated in a sensor-edge-cloud system with three variations: (i) edge pro-
cessing, (ii) cloud processing, and (iii) cloud processing with compressed transmission. The
third approach using compression is used as a hybrid approach between edge processing
and cloud compressing in order to understand the results better. These approaches are
then evaluated based on application latency, communication latency and data-volume, and
energy usage. By combining a performance evaluation of edge computing with cuff-less
blood pressure monitoring, researchers in both fields of study can benefit from this study
to make more informed decisions about architectures for real-time monitoring. Section 2
describes the background on cuff-less blood pressure estimation as a use case example in
remote health monitoring with high frequency sampling requirement. It also describes
some of the methods, algorithms and results suitable for such a use case. Section 3 explains
our system model and implementation details. Finally, Section 4 presents the main results
and discussion.

2. Background
2.1. Cuff-Less Blood Pressure Estimation

Traditionally, blood pressure (BP) is measured using an inflating cuff around the arm.
Each measurement consists of systolic blood pressure (SBP), diastolic blood pressure (DBP),
and mean arterial pressure (MAP). This method is reliable and precise but cumbersome
for long-term BP monitoring at home due to the inflation and deflation of the cuff. To
solve this issue, new techniques based on physiological signals such as ECG and photo-
plethysmogram emerged. By applying machine learning (ML) algorithms to this data, it
is possible to estimate BP with great accuracy. Recently, researchers have shown more
interest in ECG-only estimation as devices that measure two signals are more complex and
energy-consuming [5].

The first method for ECG-only BP estimation was reported by Simjanoska et al. [6].
This study has extracted five features from the ECG signal that represent the signal com-
plexity in order to classify the measurement. The classifier consists of seven different
algorithms, where the results are merged with a meta-classifier. The classification result
is merged with the feature vector and fed into three random forest regression models to
estimate SBP, DBP, and MAP. The work by Mousavi et al. [7] derived only one feature
vector from the ECG signal. This feature is the magnitude of the Fast Fourier Transform of
a single peak-to-peak interval, reduced in dimension by the principal component analysis
algorithm. Four different regression algorithms (i.e., decision tree, generalized neural
network, relevance vector, and random forest) were applied on this feature to compare
their estimation accuracy. After training and testing these four algorithms, random forest
regression proved to be the most accurate method. In a follow-up study, Mousavi et al. [8]
used a different approach for feature extraction. For each ECG segment, the McSharry
dynamic ECG model is optimized with the particle swarm optimization (PSO) algorithm
to produce a synthetic ECG segment close to the measured segment. Next, model param-
eters are used as the feature vector for regression with AdaboostR (Adaptive Boosting
Regression combines a large number of weak estimators (e.g., decision tree regression)
into a strong estimator function by taking a weighted sum of their results). This study
used ECG signals from the CVES dataset (Cerebral Vasoregulation in Elderly with Stroke:
https://physionet.org/content/cves/1.0.0/, accessed on 10 March 2022) with randomly
generated BP values. Therefore, their estimation error results may not be accurate.

Later research did not use explicit feature extraction in the estimation algorithms.
Landry et al. [9] fed the ECG signal directly into a nonlinear autoregressive exogenous
(NARX) model with an artificial neural network (ANN). A NARX model calculates output
values based on the previous output values, and the current and past input values using a

https://physionet.org/content/cves/1.0.0/


J. Sens. Actuator Netw. 2023, 12, 2 3 of 13

nonlinear function (e.g., ANN). The output of the model is the continuous BP waveform,
from which SBP and DBP values are derived. MAP was not estimated in this study but
would be straightforward to derive from the BP waveform. Fan et al. [5] was the first to
use long short term memory (LSTM) networks for ECG-only BP estimation. After noise
removal, segmentation, and normalization of the ECG signal, the segments are fed into
a bidirectional LSTM (BiLSTM) network. The result of this LSTM layer is used by three
separate fully connected (FC) networks with an attention layer to estimate SBP, DBP, and
MAP. Fan et al. [10] published a similar method with a BiLSTM shared layer and three
task-specific networks without attention layers that was able to achieve very similar results.
Likewise, Miao et al. [11] used a two-layer LSTM network in parallel with a ResNet-50
network modified for time-series data. The results of both networks are concatenated and
used by a two-layer FC network. The final output is combined with patient-specific BP
baseline values for estimating SBP, DBP, and MAP. Some methods are limited to classifica-
tion of ECG signals into normotension, prehypertension, and hypertension. Liu et al. [12]
proposed a ResNet-18 based method to achieve this goal with an overall accuracy of 87.89%
based on the Cuff-Less Blood Pressure Estimation Data Set.

The datasets and reported results for each of these methods are listed in Table 1. Results
are mostly reported as mean absolute error (MAE) of the estimation, but some studies use
the mean error (ME). The standard deviation of the estimation error was always given.
Studies that used the MIMIC II, MIMIC III or Cuff-Less Blood Pressure Estimation Data Set
can be compared without major issues as MIMIC III is an extension of its precursor MIMIC
II [13]. The Cuff-Less Blood Pressure Estimation Data Set was derived from MIMIC II and
processed to remove noise and corrupted signals [14]. Everything considered the method
developed by Landry et al. [9] will be used throughout this study. Its implementation is
well reported, allowing for a straightforward reproduction.

Table 1. Survey of algorithms for cuff-less blood pressure estimation through ECG measurement.

Reference ECG Lead Feature Extraction Inference Dataset Result Metric Results

[6] I, II or III 3 Stacked ML classifier
Random forest regression

Self recorded MAE SBP: 7.72 ± 10.22 mmHg
DBP: 9.45 ± 10.03 mmHg
MAP: 8.13 ± 8.84 mmHg

[7] II 3 Random forest regression MIMIC II v3.0 MAE SBP: 12.75 ± 12.15 mmHg
DBP: 6.04 ± 6.42 mmHg
MAP: 7.01 ± 7.00 mmHg

[8] V5/V6
or V1/V2

3 AdaBoostR CVES ME SBP: 1.125 ± 3.125 mmHg

[9] Not reported 7 NARX MIMIC II v3.0 ME SBP: −4.0 ± 5.9 mmHg
DBP: 1.13 ± 2.9 mmHg

[5] II 7 BiLSTM MIMIC II v3.0 MAE SBP: 7.16 ± 10.83 mmHg
DBP: 3.89 ± 5.90 mmHg
MAP: 4.24 ± 6.47 mmHg

[11] II 7 Res-LSTM MIMIC III MAE SBP: 7.10 ± 9.99 mmHg
DBP: 4.61 ± 6.29 mmHg
MAP: 4.66 ± 6.36 mmHg

[10] II 7 BiLSTM MIMIC II v3.0 MAE SBP: 7.69 ± 12.3 mmHg
DBP: 4.36 ± 6.88 mmHg
MAP: 4.76 ± 7.52 mmHg

[12] II 7 ResNet-18 Cuff-Less Blood
Pressure Estima-
tion Data Set

87.89% accuracy
(classification)

Note: Methods that used feature extraction are marked with 3. Others are marked with 7.

2.2. Compression Algorithms for ECG Signals

Removing data redundancies in ECG signals reduces transmitted data volume, which
can improve battery lifetime, device size, and portability. Compression algorithms are
classified into two groups: lossless and lossy. Lossless compression algorithms ensure that
decompression results in an exact replica. Lossy algorithms remove more information from
the original signal to increase the ratio between the uncompressed size and the compressed
size (i.e., the compression ratio). Typically, the reconstruction quality of a lossy algorithm is
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sufficient for consumer applications. However, in clinical applications, lossless methods
are highly recommended by medical regulatory boards. Lossy compression could remove
relevant medical information or introduce patterns that seem relevant during automated
analysis [15]. On the other hand, the compression ratio of lossless methods is typically poor
(i.e., 1–2). Lossy compression makes up for its small reconstruction error by a significantly
higher compression ratio [4].

Second, algorithms can be classified by their method of extracting relevant informa-
tion. Direct compression methods predict the next sample based on previous samples
and output the prediction error. The error is generally smaller in magnitude than the
original sample, and thus requiring less storage space. Transform-based methods employ
domain transformations (e.g., Wavelet) to detect relevant information with an improved
compression ratio at the cost of higher computational complexity. These first two tech-
niques are followed by entropy coding such as Huffman coding or Golomb–Rice coding to
replace fixed-size samples with variable-size samples. At last, parameter extraction derives
relevant information than can be analyzed later without decompression or decompressed
by a model of the signal [15]. This can be interpreted as edge computing; in essence, both
approaches extract parameters from the data on the edge device without transforming it to
the original signal on the cloud server.

Tsai and Kuo [16] proposed an efficient lossless ECG compression method suitable for
this study. First, samples are predicted based on the four last samples with an adaptive
linear predictor. The current region of the signal is classified as flat, steep, or peaking,
which defines the predictor function used to predict the next sample. Next, the prediction
error is encoded by a content-adaptive Golomb–Rice code. Inputs are first mapped to
positive integers and divided by 2k. The quotient encoded in unary code and the remainder
encoded in binary code are then concatenated, isolated by a single ‘0’ bit. Error samples are
coded in windows of 40 samples (i.e., the width of the QRS complex), allowing to calculate
the parameter k as the binary logarithm of the average absolute error in that window. At
last, k and 40 coded error samples are placed in a frame for transmission. The first frame
also contains the original value of the first sample to initialize the decompression algorithm.
The study tested the method on the MIT/BIH arrhythmia dataset and reported a mean
compression ratio of 2.84 for lead V1 and 2.77 for lead V2. We chose this compression
algorithm because it was designed for computational efficient compression on embedded
devices and for its compression ratio that is comparable to other compression algorithms
in research. On top of this, its implementation details are described in detail, which is
important for using it in our own application.

3. System and Experiment Design

The system goal is to monitor the BP of a patient through ECG monitoring. Therefore,
it must measure the ECG of that patient, infer the BP, and store the results in the cloud
for later analysis. This problem can be solved using three approaches. The first uses a
traditional cloud approach that transmits all ECG data to the cloud, where BP is calculated
and stored in a database. The second approach uses compression to reduce transmission
volume, while BP is still estimated in the cloud. The third approach use edge devices that
performs the BP estimation and transmits the results to the cloud for storage. In order to
limit the scope of this experiment, we assume that there is only one monitoring device
communicating with the cloud server.

3.1. System Design

The system is developed as shown in Figure 1. The MAX30001 EVSYS board holds a
MAX30001 ECG sensor and a MAX32630FTHR microcontroller as UART to SPI interface.
The controller streams byte frames of 16 samples with a sample rate of 128 Hz to an
Nvidia Jetson Nano that acts as an edge device, responsible for the collection, processing,
and transmission of data. In this study, we assume that both the sensor device and the
edge device are mobile and battery powered. E.g., a smart watch with ECG sensor and a
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smartphone for processing, or a single monitoring device. When we mention the mobile
device further on, the sensor device and edge device can be abstracted as a single mobile
system. These tasks are realized by two threads with a synchronized queue to pass data.
The sense thread parses incoming byte frames and batches ECG samples in segments of
an adjustable size. When a segment is ready, it is passed to the second thread, processed,
and transmitted to the cloud server with an HTTP POST request. Messages between edge
and cloud are serialized as Protocol Buffers for their low overhead. The cloud consists of
two containers: an HTTP server and an InfluxDB time-series database. The HTTP server is
instantiated on start-up and creates a new thread for each incoming request. This thread
processes the received information and stores the BP estimations in the database. All
functionalities on edge and cloud were implemented using Python.

MAX30001 EVSYS Nvidia Jetson Nano

Azure Container Instances

USB

SPI
WiFi

Figure 1. The sensor-edge-cloud architecture is composed of a MAX30001 EVSYS as ECG sensor, an
Nvidia Jetson Nano as the edge device, and an HTTP server with InfluxDB database deployed to
Azure Cloud Instances.

3.2. Bloodpressure Estimator

Blood pressure is inferred from the ECG signal with a NARX model with an ANN.
The ANN in the model is a multilayer perceptron with 100 current and past ECG inputs
and 2 delayed BP inputs as shown in Figure 2. The hidden layer consists of 10 neurons with
a hyperbolic tangent activation function, while the output layer has only 1 neuron with a
linear activation function. The number of ECG inputs (i.e., 100) was chosen to ensure that
the ECG peak is still in the input values while predicting the BP peak. As those peaks are
typically less than 0.8 s apart, 100 samples at 125 Hz is sufficient to realize this [9]. Since
the MAX30001 samples the ECG at 128 Hz, the margin is slightly reduced to 0.78 s which
is still sufficient. Therefore, no modifications were made to the original network for this
application.

As stated, the NARX model derives the BP waveform from the ECG signal. However,
we are only interested in the SBP and DBP waveforms. Assuming that the BP waveform
has a maximum period of 1 s, the SBP and DBP can be derived by keeping a buffer of
128 past samples (i.e., 1 s) of the BP waveform. Every second, the SBP and DBP can be
extracted from the buffer as the maximum and minimum values respectively. Consequently,
the sample rate of the information is reduced to 1 Hz thus reducing the data volume by
a factor of 128. Training and testing of the model are performed in Matlab as described
by Landry et al. [9] on the Cuff-Less Blood Pressure Estimation Data Set [14]. Trained
parameters are exported from Matlab and used by a Pytorch implementation of the NARX
model to allow for integration with the other software components. The estimation accuracy
is not within the scope of this work. The proposed algorithm is deterministic and its
performance does not rely on its training parameters, and thus it will not affect overall
system performance. Therefore, training time was limited for convenience.
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Figure 2. The NARX model for BP estimation is a multilayer perceptron with one hidden layer that
feeds back its output to the input of the network. The hidden layer has a hyperbolic tangent activation
function and the output layer has a linear activation function.

3.3. Metric Definitions

The main metrics for the performance evaluation are application latency, communica-
tion latency and volume, and power usage. Application latency (Figure 3c) is defined as
the time required to compute and store the BP values starting at the time the segment is
placed in the queue. Communication latency (Figure 3a) is the time required to transmit a
segment of data to the cloud and send confirmation back. This includes the time required
to ingest the network packets before they are processed, as Cooke and Fahmy [17] have
done in their study. The communication volume is measured as the number of bytes per
message sent to the cloud, without HTTP headers. Power usage is the overall power usage
of the edge device. In order to acquire more insight into the latency metrics, additional time
measurements of significant steps as shown in Figure 3 are collected during the process.
Each time measurement is measured with nanosecond precision relative to a single system
clock, therefore no clock synchronization between edge and cloud is required. Clock rate
differences could have a small effect on the measurements, but these effects are negligible
compared to other effects such as network latency and thread scheduling.

Communication latency

Edge

Cloud

Batch ECG Queue

Estimate BP

Serialize Post BP

Deserialize Store BP Con�rm

(a) Cloud processing

QueueEdge

Cloud

Batch ECG

Estimate BP

Ser.Compress

Decompr.

Post BP

Deser. Store BP Con�rm

(b) Cloud processing with compression

Edge

Computation
latency

Cloud

Batch ECG Estimate BP Serialize Post BP

Deserialize Store BP Con�rm

Application latency

Queue

(c) Edge processing

Figure 3. An overview of time-related metrics annotated on timelines that show the most significant
steps in the application for the three different approaches.
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3.4. Experiments

A total of 20 tests of 10 minutes each are performed for the three approaches with
batch sizes 32, 64, 128, 256, and 512. The edge processing approach was tested with and
without GPU acceleration. Each test is executed for 10 minutes such that randomness can
be averaged out. During the tests, the cloud containers were deployed to Azure Container
Instances in the closest available data center, of which the HTTP server responsible for
estimation received 1 CPU core and 1 GB of memory. The edge device (i.e., Nvidia Jetson
Nano with ARM Cortex-A57 MPCore processor and 4 GB of memory) was connected to
the Internet through a WiFi connection to a 4G modem. For these experiments it would be
impractical to have the ECG sensor attached to a person. Therefore, we used the test mode
of the MAX30001, which connects the on-board ADC to an internal oscillator producing an
ECG-like signal. This test signal is then processed and transmitted to the edge device just
like a real signal. On the edge device, the received samples are replaced by pre-recorded
samples from the Cuff-Less Blood Pressure Estimation Data Set [14].

4. Results and Discussion

This section explains the results of real world experiments. The power usage of the
edge device confirms that an edge-enabled system consumes less power, as stated in the
introduction. As Figure 4 shows, the edge approach requires significantly less power
than the other approaches. Because fewer data have to be transmitted to the cloud, the
transmission time is reduced, thus reducing the power consumption. This reduction
is significantly greater than the additional power required to do the estimation locally.
However, when edge computing is performed with GPU acceleration, the power consumed
by the edge device is even greater than the cloud approaches. By using the GPU for
accelerating the estimation algorithm, the GPU on the device is activated increasing the
overall power usage. As power consumption seems to be unaffected by compression, it is
plausible that increased efforts to compress the data in the cloud cancels out the benefit of
reduced transmission times.

32 64 128 256 512

Batch size

0

500

1000

1500

2000

2500

P
ow

er
u
sa

ge
[m

W
]

Edge

Edge (GPU)

Cloud

Cloud (compr.)

Figure 4. The mean power consumption of the edge device for different approaches and batch sizes
confirms that edge computing is beneficial for reducing power usage.

Figure 5 presents the mean application latency of each experiment. The test with cloud
computing, compressed transmission, and a batch size of 32 samples has been excluded
as the application latency diverged to infinity. In that test, the application latency was
longer than the batch period, causing the queue to be filled and the application latency
to increase over time. A mild form of this effect can be seen for cloud computing with
32-sample batches. In this case (Figure 6), the queue fills up after each random spike of the
communication latency, but the system is able to catch up when communication latency
is low. These observations suggest that the batch size must be large enough such that
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the application latency is shorter than the batch period, but should still be kept small to
avoid unnecessary application latency. Additionally, a larger batch will introduce more
latency not included in these measurements as the age of the first sample in the batch
increases. Overall, application latency is optimal for edge computing with a small batch
size of 32 samples of BP data. For the cloud approach, the optimal batch is larger and
contains 128 samples of ECG data.

32 64 128 256 512

Batch size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
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p
li
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ti

on
la
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n

cy
[s

]

Edge (CPU)

Cloud

Cloud (compr.)

Figure 5. The mean application latency shows the mean time required to estimate BP from a batch of
ECG samples and store the result in the cloud.
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Figure 6. When peaks in the communication latency occur, the application latency tends to increase
quickly right after. Consequently, we can state that the variability in application latency is mostly
dependent on the connectivity between the edge device and the cloud.

Application latency is a complex measurement, including multiple data operations that
affect the measurement differently. In order to understand the results better, it is interesting
to break the measurement down as shown in Table 2 for batch size 128. For these, the
cloud computing approach resulted in the lowest latency, mainly due to lower computation
time. Compression does not reduce application latency; it introduces additional operations
and increases the latency of existing operations. The communication latency for the edge
approach is slightly higher in this case, probably due to network indeterminism. The
network between the mobile device and the cloud node is used by millions of other
devices, which causes the network performace to be time-variant. In this case, the network
performance was degraded due to more traffic caused by other devices. In order to



J. Sens. Actuator Netw. 2023, 12, 2 9 of 13

understand these results, both communication and computation latency are isolated and
discussed on their own.

Table 2. Mean latencies in milliseconds of three experiments with batch size 128.

Method Edge Cloud Cloud (Compr.)

Queue 14.118 1.118 3.703
Computation 81.808 11.591 14.445
Communication 72.09 67.585 130.546
Compression - - 55.513
Decompression - - 16.612

Application 240.673 156.918 304.981

Naturally, message size increases with the number of samples in that message. With
edge computing, the message consists of BP values at a significantly lower sample rate
than the ECG signal, reducing the size. Applying compression to the ECG data limits the
message size, but only when the batch size is large enough. Due to the introduced overhead
during compression, data size is only reduced for batches with more than 128 samples. As
batch size increases, the compression ratio increases to 2.04 for 512 samples. Compared to
the reported ratio of Tsai and Kuo [16] (i.e., 2.77), the lower compression ratio we achieved
could be attributed to shorter signals and differences in test data. Although message size
increases with batch size, the total transmitted volume over 10 min decreases with batch
size as there is less overhead in the message. The edge computing approach with batch size
512 is the most efficient regarding transmission volume, transmitting only 11.31 Kb over
10 min (see Figure 7).

27
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Batch size
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]
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Cloud

Cloud (compr.)

Figure 7. The mean communication latency compared to the volume of transmitted data shows no
relationship between them for edge computing and cloud computing without compression.

Surprisingly, communication latency does not reflect the increase in message size.
When the size of the messages is increased, more data need to be transmitted which
should increase the time required to transmit it, and thus also the latency. Because this
increase is not visible in the data, we can assume that the transmission time is negligible
compared to the network latency between edge and cloud. Additionally, while messages
with compression are smaller in size, meaning that transmitting them should be faster, their
communication latency is higher. This effect can be explained with a separate test: if data
segments with increasing size are not processed in the cloud, the round trip time (RTT) of
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the HTTP requests is nearly constant. This was tested by transmitting 1500 data packets
varying in size from 0 bytes to 213 bytes and measuring the average RTT for each size; RTT
showed no clear trend and varied within a range of just 8.1 ms. This may be explained
by the fact that the transmission time of packets (with size in this order of magnitude) is
negligible compared to the latency introduced by the internet. Consequently, the observed
increase in communication latency for cloud computing with compression should be caused
by another factor. Its cause could be explained by looking at the CPU scheduling on the
cloud server. The CPU used by the cloud node is shared with other cloud nodes that run
on the same host, thus every node is preempted at regular intervals to allow every node to
execute its applications and enforce the reserved CPU time. As message size increases, the
decompression stage takes longer to decompress the message, using more of the CPU time
allowed for the node. This causes new packets to be in the receive buffer for a longer time
before they are processed, increasing the communication latency.

The computation latency, the time required to estimate BP from ECG, presented in
Figure 8, clearly shows a computational complexity of O(n). As the algorithm processes
ECG data sample by sample, this was to be expected. Naturally, the latency is higher when
computation is performed on the edge device, as the cloud server is more powerful. The
use of compression causes a slight increase in computation time, which could also be a
consequence of thread scheduling.
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Figure 8. The mean computation latency is higher for edge computing than for cloud computing. As
expected, enabling compression does not affect computation latency.

The most striking result to emerge from the data is that GPU acceleration does not
decrease but increase the computation time. A separate experiment was performed to
study this effect in detail. A fully connected network with 102 inputs, a variable number of
hidden neurons, and one output neuron was constructed, similar to the one that is used
in the BP estimation. The average calculation time was then measured for an increasing
number of hidden neurons with 500 random input vectors per iteration, both with and
without GPU acceleration. As can be seen in Figure 9, calculation with GPU acceleration
is only faster for networks with more than 211 hidden neurons. The calculations to be
performed on the GPU are defined by CUDA kernels. Launching a kernel and transferring
data between CPU and GPU causes significant overhead on the calculations if the amount
of work performed by the kernel is too small [18]. As the network in this study has just
10 hidden neurons and the use of the GPU increases power usage, the GPU should not be
used for this application. Optimizing the GPU acceleration can be performed using several
techniques such as increasing the amount of work per kernel call, but these optimizations
exceed the scope of this study.
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Figure 9. The average computation time of a fully connected network with 102 input neurons, a
variable amount of hidden neurons, and one output neuron is only lower with GPU acceleration if
the hidden layer has more than 211 hidden neurons.

In summary, these results confirm that edge computing is beneficial for reducing power
usage, data transmission, and application latency. Additionally, results are immediately
available on the edge device for local use. Yet, these findings cannot be extrapolated to
all remote monitoring applications that extract information from an ECG signal. Both the
data reduction and computation latency are affected by the estimation algorithm. If an
algorithm does not reduce the data enough or is too complex for a mobile device, it may
not be beneficial to use an edge-based approach. Specifically for the estimation in this
study, it was shown that GPU acceleration does not reduce computation times, which is
important to consider if an edge-enabled system would be developed using this method.
In an effort to generalize this experiment, multiple estimation algorithms could be inserted
in the same setup. However, this would not only require the performance to be compared
but also the estimation accuracy. With only a single estimation method comparing the
accuracy of estimations is not required as the method is deterministic and transmission or
lossless compression does not alter the data. Cloud computing with ECG compression only
shows an improvement in transmitted volume compared to regular cloud computing but
is still worse than edge computing. The compression is not efficient and effective enough
to improve power usage and application latency. Despite these poor results, compression
could still be good if ECG data should be stored in the cloud as well. In that case, it could
still reduce transmission volumes. Although measures were taken to improve experiment
validity (e.g., 10-min tests), results should still be interpreted with caution as essential
features such as privacy and security were not accounted for and network characteristics
can have a large effect on the system.

5. Conclusions

This work focused on developing a system for wireless IoT health monitoring, such
as remote cuff-less BP monitoring, on which we evaluated the benefits of edge computing
and compressed transmission. The information on the development of such a system and
the performance of this specific case study, can help other researchers make decisions
during the development of health monitoring systems. Although this study focused on BP
monitoring, the findings may be relevant for big data applications in general. Our results
confirmed that edge computing reduces application latency by 15%, total transmitted data
volume by 85%, and power usage by 19% with a batch size of 64 ECG samples. This reduces
network congestion and increases battery life of the mobile device. We also proved that the
method proposed by Landry et al. [9] does not benefit from GPU acceleration in any way.
Experiments also showed that compressed transmission is a reasonable solution to reduce
network congestion when edge computing is impractical. Although this disturbance factor
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is also present in a real system, one source of weakness in this study that could have affected
the time measurements is thread scheduling, which could be solved by using dedicated
hardware. An effort to optimize the GPU acceleration could improve the benefits of edge
computing even further for this use case. More broadly, further research can explore how
other methods that extract information from ECG fit into the edge computing paradigm.

Author Contributions: This paper was written as part of the Master’s thesis of W.G., H.F. and J.D.
acted as academic supervisors and mainly provided support with writing. D.S. and D.M. acted as
external supervisors and provided the thesis subject and assistance in executing the study itself which
included planning, conceptualization, resources, and investigation. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Swedish Research Council (Vetenskapsrådet) through the
MobiFog starting grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets with electrocardiogram and blood pressure
measurements were analyzed in this study. These are available in the Physionet repository [13] and
in the UCI Machine Learning repository [14].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
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