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Abstract: One of the challenges in securing wireless sensor networks (WSNs) is the key distribution;
that is, a single shared key must first be known to a pair of communicating nodes before they can
proceed with the secure encryption and decryption of the data. In 1984, Blom proposed a scheme
called the symmetric key generation system as one method to solve this problem. Blom’s scheme has
proven to be λ−secure, which means that a coalition of λ + 1 nodes can break the scheme. In 2021, a
novel and intriguing scheme based on Blom’s scheme was proposed. In this scheme, elliptic curves
over a finite field are implemented in Blom’s scheme for the case when λ = 1. However, the security
of this scheme was not discussed. In this paper, we point out a mistake in the algorithm of this novel
scheme and propose a way to fix it. The new fixed scheme is shown to be applicable for arbitrary
λ. The security of the proposed scheme is also discussed. It is proven that the proposed scheme is
also λ−secure with a certain condition. In addition, we also discuss the application of this proposed
scheme in distributed ledger technology (DLT).

Keywords: wireless sensor network (WSN); distributed ledger technology; key distribution scheme;
Blom’s scheme; elliptic curve; security

1. Introduction

A wireless sensor network (WSN) is a network that consists of sensors as nodes, and
these sensors are connected to each other wirelessly. Privacy and security are humongous
challenges in WSNs. It is no doubt important to create security mechanisms that are
customized for WSNs [1].

Cryptography is one security mechanism. However, Gaubatz et al. in [2] mentioned
that public-key cryptography is much more complex, requiring more memory and storage,
and being both slower and a greater drainer of energy. These characteristics make public-
key cryptography unsuitable to be used in most energy-constrained environments, such as
WSNs.

In contrast, symmetric key cryptography methods are said to be more resource-
efficient, and this makes them preferred for use in WSNs [1]. On the other hand, there
are special cases where developers implement the public-key cryptography as a security
mechanism, such as RSA [3] and elliptic curve cryptography [4] in resource-constrained
sensors.

However, symmetric cryptography has a major disadvantage, which is the problem
of key distribution; that is, the shared single key must first be known to the pair of
communicating nodes before they can proceed with the secure encryption and decryption
of the data [1].

The security of WSNs depends on the effective key distribution, which should be
resistant to attacks [5]. Designing an effective key distribution scheme for a WSN is a
challenging task due to the constraints on sensors such as energy, computation capability,
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and memory [6]. If the key distribution scheme is not able to distribute the keys among
sensor nodes in a WSN, then the entire WSN communication may be prone to attacks [7].

Key pre-distribution schemes are suitable to be implemented in WSNs to solve the key
distribution problem [5,8]. In a key pre-distribution scheme, an offline trusted third-party
installs a set of secret information in each node before the deployment of the nodes to their
fields. After the deployment, the sensor nodes use the installed information to compute
their common keys [5,8].

Consistent with this, in 1984, a famous key pre-distribution scheme, known as Blom’s
scheme, was developed [9]. Let λ be any positive integer. Blom’s scheme is shown
in [6] to be λ-secure, i.e., if at most λ nodes are compromised, then the whole network
cannot be compromised and if λ + 1 nodes are compromised, then the whole network
can be compromised. In 2021, Udin et al. [10] developed a novel key pre-distribution
scheme, which implements elliptic curves over a finite field in Blom’s scheme. However,
Udin et al. [10] only presented the algorithm of the case where λ = 1 did not present the
security of this developed scheme.

In addition to being used in WSNs, the concept of key distribution has also been
implemented in the distributed ledger technology (DLT). In general, a DLT is based on
three technologies, which are public key cryptography, distributed peer-to-peer networks,
and consensus mechanisms [11]. Since public key cryptography is involved in DLT, key
management for DLT is also important to securely distribute the keys among the nodes.
Therefore, a novel key pre-distribution scheme is introduced in this paper that can be
implemented in both WSN and DLT.

The objectives: This paper is based on the key pre-distribution scheme proposed
in [10]. The objectives of this paper are listed below:

1. We propose a modified scheme that can be used for any arbitrary λ;
2. We discuss and prove the security of the proposed scheme against the coalition of the

sensor nodes.

Our contribution: In this paper, we propose a novel key pre-distribution scheme.
Specifically, we successfully implement elliptic curves over a prime field by fixing the
proposed scheme in [10], and we show that the fixed scheme is applicable for arbitrary
λ. We also prove that the proposed scheme is λ-secure. Our proposed scheme has full
connectivity, supports the mobility of nodes in the network, has high scalability, and
uses the elliptic curves group law and scalar multiplication in the calculation instead
of just adding and multiplying integers. The comparison of our proposed scheme and
other existing key distribution schemes that are based on Blom’s scheme is discussed in
Section 6.3. The proposed scheme is designed to be implemented in WSNs. In addition,
this scheme can also be implemented in DLT.

The flow of the paper: The remainder of the paper is organized as follows: The
literature review related to the proposed scheme is presented in Section 2. In Section 3, the
preliminaries are covered. The proposed scheme is introduced in Section 4. The security
of the proposed scheme is explained in Section 5. Lastly, Sections 6 and 7 provide the
discussion and conclusion, respectively.

2. Literature Review

In this section, several related works will be described.

2.1. Application of Blom’s Scheme in WSN

Blom [9] developed a famous symmetric matrix–base key pre-distribution scheme,
which is often referred to as Blom’s scheme. In Blom’s scheme, any pair of nodes in a WSN
is able to derive a pairwise secret key. In Blom’s scheme, there are two important matrices
involved, which are (λ + 1)× N matrix C and the (λ + 1)× (λ + 1) symmetric matrix D,
where N is the total number of nodes and λ is a positive integer. Both matrices are defined
to be over a finite field Fq of order q, where q is a prime power and q > N. Blom’s scheme
is briefly shown in Section 4.1.
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Menezes et al. in [12] defined a key distribution scheme as λ-secure if, given a specified
pair of users, any coalition of λ or fewer users (disjoint from the two), pooling their pieces,
can do no better at computing the key shared by the two than a party that guesses the key
without any pieces whatsoever.

By this logic, Blom’s scheme becomes a λ-secure scheme. In other words, in Blom’s
scheme, if λ or less than λ nodes are compromised, then the system cannot be broken.
Otherwise, if more than λ nodes are compromised, any adversaries can compute any
keys of any pairs of other non-compromised nodes in the network. However, in order for
Blom’s scheme to achieve the λ-secure property, every λ + 1 column of matrix C must be
linearly independent [13], where λ + 1 ≤ N. It also makes sense to say that choosing a
larger λ will imply higher security in Blom’s scheme, but a larger λ requires more memory
and computation.

Let N be the total number of nodes. Let Us be the s node where 1 ≤ s ≤ N. Lazos
in [14] explained that the original Blom’s scheme can be translated into polynomial form.
Blom’s scheme was originally proposed by Blom in matrix form, as discussed earlier. How-
ever, the translation of Blom’s scheme into polynomial form is possible. If the polynomial
form of Blom’s scheme described in [14] is translated back into the original matrix form, it
can be seen that matrix C is designed to be a Vandermonde matrix, as shown below.

1 1 . . . 1
rU1 rU2 . . . rUN

(rU1)
2 (rU2)

2 . . . (rUN )
2

...
...

. . .
...

(rU1)
λ (rU2)

λ . . . (rUN )
λ


where rU1 , rU2 , rU3 , · · · , rUN ∈ Zp (p is a prime).

Reddy [15] used Blom’s scheme and proposed a method to generate matrix C. An
N×N non-binary Hadamard matrix over Fp, where p is a prime, is constructed first, where
the entries of this matrix are only 1 and p− 1. The first λ + 1 rows and N columns of this
matrix are selected as the rows and columns of matrix C. Using this type of Hadamard
matrix to generate matrix C is proven to reduce the computation overhead and storage
usage to store the columns of C in sensor nodes.

Khan et al. [16] mentioned that in the original Blom’s scheme, (λ + 1)× N matrix C
is a generator matrix of maximum distance separable (MDS) codes, where N is the total
number of nodes. A modified scheme was proposed in [16], where they used maximum
rank distance (MRD) codes instead of MDS codes. Khan et al. also mentioned that in MDS
codes, the (λ + 1)× N matrix C has λ + 1 linearly independent columns where λ + 1 ≤ N.
In contrast, in MRD codes, (λ + 1) × N matrix C has N linearly independent columns.
Khan et al. stated that this affects the security of the system, since if MDS codes are used,
then an adversary needs to only compromise λ+ 1 nodes in order to compromise the whole
network. However, if MRD codes are used, then an adversary needs to capture nodes equal
to the number of linearly independent columns of matrix C. Hence, using MRD codes
instead of MDS increases the security parameter from λ + 1 to N.

Wang et al. [17] proposed a key pre-distribution scheme based on multiple key spaces,
which combines balanced incomplete block designs (BIBD) and Blom’s scheme. In [17],
Wang et al. let (λ + 1)× N matrix C be a Vandermonde matrix generated by using the
primitive element s ∈ Fq, where q > N, as shown below.

1 1 . . . 1
s s2 . . . sN

(s)2 (s2)2 . . . (sN)2

...
...

. . .
...

(s)λ (s2)λ . . . (sN)λ

.



J. Sens. Actuator Netw. 2023, 12, 15 4 of 18

Wang et al. also mentioned that the base station randomly generates n2 + n + 1 symmetric
matrix D of size (λ + 1)× (λ + 1), where all of these symmetric matrices are called key
spaces. Next, these key spaces are distributed to N nodes using hybrid BIBD designs. By
using all of this information, two nodes establish the pairwise key in the key agreement
algorithm. Wang et al. stated that this proposed scheme is also λ-secure, which is the same
as the original Blom’s scheme.

Hussain and Ibrahem in [18] proposed an efficient pairwise key management scheme
for WSNs based on Blom’s scheme. The alteration made in [18] was in the matrix C. Matrix
C is generated using the circular matrix technique instead of the usual Vandermonde matrix
or Hadamard matrix, as proposed in [15]. In [18], matrix C was designed using a circular
matrix, and it was also proven that this method ensures that every λ+ 1 column of matrix C
is linearly independent where λ + 1 ≤ N. In the circular matrix technique, let the columns
be denoted by i and the rows by j, where 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ λ. Let C(j, i) be the
j row and i column entry in matrix C. Hussain and Ibrahem let C(j, i) = (i− j) (mod N).
Hence, by obtaining matrix C and developing the secret symmetric matrix D as defined
in the original Blom’s scheme, the same Blom’s scheme algorithm is used to calculate the
pairwise keys of any two nodes in the network. It was also shown that this proposed
scheme consumes lower energy as compared with Blom’s scheme.

Belim and Belim [19] implemented simplex channels in Blom’s key pre-distribution
scheme. By referring to the polynomial form of Blom’s scheme, as shown in [14], Belim
and Belim used the function of three variables f (x, y, s) instead of the function with two
variables f (x, y). Here, the variable s can accept two values (1 or −1), and these two values
define the direction of the information stream between two communicating nodes. In the
polynomial Blom scheme, the function f (x, y) must be symmetric, i.e., f (x, y) = f (y, x).
However, for the function f (x, y, s) in this proposed scheme, there are three require-
ments imposed, which are f (x, y, 1) 6= f (y, x, 1), f (x, y,−1) 6= f (y, x,−1), and f (x, y, 1) =
f (y, x,−1). Belim and Belim [19] also proposed f (x, y, s) as a possible function to be used.
This proposed scheme actually refuses the idea of symmetric polynomials in the original
Blom’s scheme. In this scheme, the exchange of information becomes asymmetrical.

Udin et al. [10] proposed a modification of Blom’s scheme, which applied elliptic
curves over a finite field. Instead of using the matrix representation of Blom’s scheme, Udin
et al. used the polynomial representation of Blom’s scheme, as shown in [14]. However,
Udin et al. only applied the proposed scheme for the case where λ = 1, and the security of
this proposed scheme was not discussed.

2.2. Application of Blom’s Scheme in DLT

DLT can be classified into two main categories: permissionless DLT and permissioned
DLT [20]. In permissionless DLT, the nodes can participate without a specific identity and in
contrast, only a set of known or identified nodes can participate in permissioned DLT [20].
Hyperledger [21] and its variation, hyperledger fabric [22] (usually called fabric), are two
examples of permissioned DLT, as mentioned in [20].

In the fabric, there are generally three types of nodes involved, which are the clients,
the endorsing peers, and the orderers [20,23]. A membership service provider (MSP) is
in charge in the fabric for associating the nodes with cryptography identities [20]. For
example, if a node desires to join a network in the fabric, then MSP will give an identity
to the node and allow the node to join the network. In other words, MSP maintains the
permissioned nature of the fabric.

Since the use of cryptography is crucial in maintaining the security of the commu-
nication in the fabric, the keys of the nodes in the fabric have to be properly managed.
Androulaki et al. [20] stated that the tools for key management in the fabric are also part
of the MSP and by default, MSP in the fabric handles standard public key infrastructure
(PKI) methods [20]. Albakri et al. [23] explained that all existing key establishment schemes
or key distribution schemes in DLT networks are based on PKI, which is an interactive
method that requires information to be exchanged and verified between nodes in order to
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establish a key for secure communication. This unfortunately results in a long processing
time for key establishment [23].

Therefore, Albakri et al. [23] proposed a novel key pre-distribution scheme that can be
implemented specifically in the fabric. The proposed scheme in [23] uses Blom’s scheme to
establish the shared keys among the nodes in the fabric. Instead of using the matrix form
of Blom’s scheme, Albakri et al. used the polynomial form of Blom’s scheme, which is the
same as the form that was explained by Lazos in [14].

Since the proposed scheme in [23] is based on Blom’s scheme, the data required by
the nodes for key establishment are preloaded into the nodes by an offline third-party
trusted authority (TA). Hence, if two nodes desire to establish a shared key to secure the
communication between them, the nodes do not have to exchange or verify any information
needed for key establishment, since the information was preloaded into the nodes before
deployment. In other words, the pre-distribution method enables the nodes in the fabric to
non-interactively establish keys with other nodes in the network. As a result, this reduces
the processing time for the keys’ establishment.

In [23], Albakri et al. used three symmetric polynomials, which are fi(x, y) where
i = 1, 2, 3 for key establishment. These polynomials are the same as the polynomial
in Blom’s scheme, as described by Lazos in [14]. f1(x, y) is used for the establishment
of the shared keys between the clients and the endorsing peers, f2(x, y) is used for the
establishment of the shared keys between the clients and the orderers, and f3(x, y) is used
for the establishment of the shared keys between the orderers and the endorsing peers.
Albakri et al. also mentioned that their proposed scheme is the first polynomial-based key
management scheme in DLT since the key management schemes of other DLTs are based
on PKI. As a result, Albakri et al. proved that their proposed scheme is faster in processing
compared with other DLT key management schemes, such as public-key schemes.

The implementation of Blom’s scheme in the fabric or another permissioned DLT is
a good idea since this can reduce and simplify the shared key establishment process, as
proven in [23]. Another reason is that in the permissioned DLT, each node is known and
given an identity before it joins the network. Therefore, the identities of the nodes can
also be defined as pre-distributed information before deployment that can be used for the
establishment process of the shared keys, after deployment using Blom’s scheme.

3. Preliminaries

In this section, the preliminaries are discussed in order to allow us to understand and
derive the next section.

3.1. Greatest Common Divisor

One important property of the greatest common divisor, as described in [24], is

Proposition 1. If gcd (a, b) = 1 and gcd (a, c) = 1, then gcd (a, bc) = 1.

Proposition 1 will later be used in the proofs of Theorems 4 and 5.

3.2. Elliptic Curves

In this section, we define an elliptic curve and describe a few other basic studies related
to elliptic curves, as explained in [25].

Definition 1. Let K be a field with a characteristic other than 2 and 3. An elliptic curve, E, defined
over K, is the graph of an equation of the form

E : y2 = x3 + Ax + B

where A, B ∈ K. The set of points with coordinates in field L, where K ⊆ L on E, is denoted as
E(L) such that

E(L) = {(x, y) ∈ L× L | y2 = x3 + Ax + B} ∪ {O∞}
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where O∞ is a point at infinity to the elliptic curve.

The point at infinity, O∞, is a point sitting at the top or the bottom of the y−axis, and
this point is the identity element in E(L). In this paper, we work with E over a prime
field, Fp, where p is a prime and p > 3 (to avoid characteristics 2 and 3). We also do not
allow E to have multiple roots, i.e., we want to make sure E has three distinct roots. The
discriminant of E is −4A3 − 27B2, and this can be shown easily since E is cubic. Therefore,
it is compulsory to make sure that 4A3 + 27B2 6≡ 0 (mod p) if E is defined over Fp.

Another important idea for elliptic curves over a finite field, E(Fp), is that they form
additive abelian finite groups with O∞ as the identity element, since this satisfies the group
axioms [25]. Therefore, the order of E(Fp) is the number of points on E denoted as |E(Fp)|,
and the order of point P, such that P ∈ E(Fp) is the smallest integer k > 0 such that
kP = O∞.

In Section 4.2, we explore the scalar multiplication on elliptic curves over a finite field.
Theorem 1 below was described in [26] and is essential in proving Theorem 3.

Theorem 1. Let G be a finite group.

1. Let H be any subgroup of G. The order of H divides the order of G;
2. Let g ∈ G. The order of g divides the order of G.

3.3. Lagrange Interpolation Polynomial

In the proof of Theorem 4, we will use the bivariate Lagrange interpolation. Before
that, let us take a look at the Lagrange interpolation polynomial, as explained in [27], in
Theorem 2.

Theorem 2. Let
(x1, f (x1)), (x2, f (x2)), · · · , (xn+1, f (xn+1))

be points, such that xi is distinct for 1 ≤ i ≤ n + 1 and f (xi) is a value corresponding to xi. A
unique polynomial P(x) of degree at most n exists with

P(xi) = f (xi), for each i ∈ {1, 2, · · · , n + 1}.

This polynomial is given by

P(x) =
n+1

∑
i=1

(
f (xi)

n+1

∏
h=1,h 6=i

x− xh

xi − xh

)
.

4. Materials and Methods

In this section, we first briefly present the original Blom scheme and the alteration of
Blom’s scheme made in [10] in Section 4.1. We also present Theorem 3 in Section 4.2, which
plays a crucial role in proving the security of the proposed scheme. The proposed scheme
and an example are shown in Sections 4.3 and 4.4, respectively.

4.1. Blom’s Key Pre-Distribution Scheme

As explained in [9,12,13], Blom’s original scheme is described here. Let N be the total
number of sensor nodes in the WSN. Let λ be a positive integer. λ is also an indicator such
that as long as not more than λ nodes are compromised, the network is perfectly secure
(we call this the λ-secure property).

1. Before the deployment of the sensor nodes, an offline key distribution center will
first construct a (λ + 1)× N matrix C over a finite field Fq of order q, where q is a
prime power and q > N. Matrix C is publicly known, which means any sensors
and adversaries are allowed to know C. Let ci be the ith column of matrix C, where
1 ≤ i ≤ N. Note that ci is a (λ + 1)-tuple over Fq. Column ci is assigned to node Ui.
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2. Then, the key distribution center will create a random (λ + 1)× (λ + 1) symmetric
matrix D over Fq. Matrix D must be kept secret, which means any sensors and
adversaries are not allowed to know D.

3. The key distribution center will compute an N× (λ+ 1)matrix M such that M = (D · C)T,
where (D · C)T is the transpose of (D · C).

4. Let mi be the i row of matrix M, where 1 ≤ i ≤ N. Note that mi is a (λ + 1)-tuple over
Fq. The key distribution center will then give mi to node Ui over a secure channel.

5. Let us say node Ui wants to communicate with node Uj. Both will compute the same
key, as follows:

• Node Ui will compute mi · cj, which we call ki,j. Note that ki,j is a single element
in Fq.

• Node Uj will compute mj · ci, which we call k j,i. Note that k j,i is a single element
in Fq.

Note that ki,j is the (i, j) entry of N × N matrix K where K = M · C and k j,i is the (j, i)
entry of matrix K. Note that K is a symmetric matrix, since

K = M · C = (D · C)T · C = CT · DT · C = CT · D · C = CT ·MT = (M · C)T = KT .

Since K is symmetric, it is clear that ki,j = k j,i. Therefore, node Ui and node Uj have
computed the same key.

Udin et al. [10] proposed a scheme based on Blom’s scheme for the case λ = 1. Let
N be the total number of nodes. Let Us be the s node where 1 ≤ s ≤ N. If the scheme
proposed in [10] is translated back into matrix form, it can be seen that the points of the
elliptic curve over a finite field Fp (or Zp) can be defined as the entries in the symmetric
matrix D, and matrix C was defined as a Vandermonde matrix, as shown below

1 1 1 . . . 1
rU1 rU2 rU3 . . . rUN

(rU1)
2 (rU2)

2 (rU3)
2 . . . (rUN )

2

(rU1)
3 (rU2)

3 (rU3)
3 . . . (rUN )

3

...
...

...
. . .

...
(rU1)

λ (rU2)
λ (rU3)

λ . . . (rUN )
λ


where rU1 , rU2 , rU3 , · · · , rUN ∈ Zp and is distinct where p is the prime used in the prime field
Fp, in which the elliptic curve has been defined. rU1 , rU2 , rU3 , · · · , rUN represent the public
key of node U1, U2, U3, · · · , UN , respectively. In this paper, we studied Blom’s scheme and
the scheme proposed in [10]. We proposed a modified scheme that can be applied to all
positive integers λ, and the security of the scheme for arbitrary λ was also discussed. We
modified the second-row entries in the Vandermonde matrix to be over modulo |E(Fp)|,
which is the number of points in E(Fp) or the order of E(Fp) instead of the integers modulo
p, Zp. This is because in order to prove the security of this proposed scheme, the calculation
over modulo |E(Fp)| has to be made instead of modulo p. The modified scheme was
proposed in polynomial form as shown in [14] instead of in matrix form. In proving the
security of the modified scheme, we used the bivariate Lagrange interpolation polynomial
to calculate the secret polynomial to show that the coalition of λ + 1 nodes can break the
scheme. The univariate Lagrange interpolation polynomial is shown in Theorem 2. Based
on this univariate Lagrange interpolation, we managed to derive the bivariate Lagrange
interpolation that was used in proving Theorem 4.

4.2. Scalar Multiplication on Elliptic Curves over Finite Field

When discussing the security of the proposed scheme, the scalars of points on E can
be reduced to modulo |E(F)|, i.e., the order of E(F). This result comes from Theorem 3.
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Theorem 3. Let E be an elliptic curve over a finite field, Fq, and the order of E(Fq) be n, where n
can be prime or composite. Let P ∈ E(Fq). If a ≡ b (mod n) for integers a and b, then aP = bP.

Proof of Theorem 3. Let m be the order of P. We also know from Theorem 1 that m | n,
and this implies n = km for some integer k. Since a ≡ b (mod n), a ≡ b (mod km), and
this implies a = hkm + b for some integer h. Hence,

aP = (hkm + b)P = hkmP + bP = hkO∞ + bP = bP.

4.3. Proposed Algorithm for Arbitrary λ

The proposed algorithm for arbitrary λ is shown in this section. The notations used
for this scheme are listed in Table 1 below.

Table 1. Notations used in the proposed scheme.

Notation Description

p A prime
Fp Finite field with p elements
N The total number of nodes
λ A positive integer
gcd(a, b) The greatest common divisor of integers a and b
E An elliptic curve defined over field K of form E: y2 = x3 + Ax + B where

A, B ∈ K
E(L) The set of points with coordinates in some field L on E, i.e.,

E(L) = {(x, y) ∈ L× L | y2 = x3 + Ax + B} ∪ {O∞}

where K ⊆ L, and K is the field in which E is defined over∣∣E(Fp)
∣∣ The number of points on E

Z|E(Fp)| Integers modulo
∣∣E(Fp)

∣∣
P A point on E
O∞ Point at infinity on E
f (x, y) A secret symmetric bivariate polynomial known only by the trusted authority
Us The sth node where 1 ≤ s ≤ N
rUs The public key of node Us used in the proposed scheme where 1 ≤ s ≤ N
gUs (x) f (x, rUs ), i.e., secret information given to node Us where 1 ≤ s ≤ N
KUsUt f (rUs , rUt ), i.e., the shared key between node Us and node Ut where 1 ≤ s ≤ N,

1 ≤ t ≤ N and s 6= t

The algorithm of the proposed scheme for arbitrary λ is shown below:

1. Let p be a prime greater than 3, and p is publicly known to all. Let N be the total
number of nodes. Let Us be the s node where 1 ≤ s ≤ N. The trusted authority (TA)
chooses an elliptic curve E over prime field Fp such that

E : y2 = x3 + Ax + B

where A, B ∈ Fp and 4A3 + 27B2 6≡ 0 (mod p). The elliptic curve is known publicly.
Let E(Fp) be the set of points on E such that

E(Fp) = {(x, y) ∈ Fp × Fp | y2 = x3 + Ax + B} ∪ {O∞}

where O∞ is a point at infinity to the elliptic curve. Let |E(Fp)| be the number of
elements in E(Fp), and note that |E(Fp)| can be either a prime or a composite. It is
compulsory to make sure that |E(Fp)| > N, because each node must be given a distinct
public key, where these public keys are elements in the integer modulo |E(Fp)|.
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2. Z|E(Fp)| is the set of integers modulo |E(Fp)|. TA selects an element rUs ∈ Z|E(Fp)| for
node Us, which is also made public such that rUs 6= rUt for s 6= t.

3. Let λ ∈ {1, 2, 3, ...}. For 0 ≤ i, j ≤ λ, the TA chooses random points Pij ∈ E(Fp) where
Pij = (xij, yij) such that Pij = Pji and forms the polynomial

f (x, y) =
λ

∑
i=0

λ

∑
j=0

Pijxiyj.

The chosen Pij and the polynomial f above are privately known only by the TA. The
polynomial f is symmetric, i.e., f (x, y) = f (y, x). The number of points Pij to be
chosen by the TA depends on the value of λ, where

The number of points Pij =
(λ + 1)(λ + 2)

2
.

4. For each node Us, the TA computes

gUs(x) = f (x, rUs).

The TA then privately sends gUs(x) to node Us over a secure channel. Note that
node Us only knows gUs(x) and does not know the coefficients Pij. gUs(x) is privately
known only by the TA and node Us. Note that the scalar of each point can be reduced
to modulo |E(Fp)| based on Theorem 3.

5. If two nodes, U1 and U2, want to communicate with each other, they individually
compute the common key (shared key), KU1U2 (the same as KU2U1), where node U1
computes

KU1U2 = gU1(rU2)

and node U2 computes
KU2U1 = gU2(rU1).

Note that KU1U2 = KU2U1 = f (rU1 , rU2).

4.4. Example for λ = 2

Let N be the total number of nodes. Let Us be the s node where 1 ≤ s ≤ N. Let us say
that there are three nodes, namely U1, U2, and U3.

1. Let p = 11 and p be publicly known to all. TA chooses an elliptic curve E over prime
field F11 such that

E : y2 = x3 + x + 6

where 4(1)3 + 27(6)2 6≡ 0 (mod 11). The elliptic curve is known publicly. Let E(F11)
be the set of points on E.

2. Note that |E(F11)| = 13, which is a prime. TA selects an element rUs ∈ Z|E(Fp)| for
node Us, which is also made public such that rUs 6= rUt for s 6= t, as shown below.

rU1 = 10,

rU2 = 7,

rU3 = 1.

3. Let λ = 2. For 0 ≤ i, j ≤ 2, the TA chooses random points Pij ∈ E(F11) where
Pij = (xij, yij) such that Pij = Pji, as shown below.

P00 = (2, 4), P10 = P01 = (5, 9),

P11 = (8, 3), P12 = P21 = (3, 5),

P22 = (7, 2), P02 = P20 = (10, 9).
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The TA then forms the secret polynomial f (x, y), as shown below.

f (x, y) =
2

∑
i=0

2

∑
j=0

Pijxiyj

= P00x0y0 + P01x0y1 + P02x0y2 + P10x1y0 + P11x1y1 + P12x1y2 + P20x2y0 + P21x2y1 + P22x2y2

= (2, 4) + (5, 9)y + (10, 9)y2 + (5, 9)x + (8, 3)xy + (3, 5)xy2 + (10, 9)x2 + (3, 5)x2y + (7, 2)x2y2.

4. For node U1, the TA computes

gU1(x) = f (x, rU1 = 10)

= P00 + P01(rU1) + P02(rU1)
2 + P10x + P11(rU1)x + P12(rU1)

2x + P20x2 + P21(rU1)x2 + P22(rU1)
2x2

= (3, 5) + (10, 9)x + (10, 9)x2.

For node U2, the TA computes

gU2(x) = f (x, rU2 = 7)

= P00 + P01(rU2) + P02(rU2)
2 + P10x + P11(rU2)x + P12(rU2)

2x + P20x2 + P21(rU2)x2 + P22(rU2)
2x2

= (8, 8) + (3, 5)x + (3, 6)x2.

For node U3, the TA computes

gU3(x) = f (x, rU3 = 1)

= P00 + P01(rU3) + P02(rU3)
2 + P10x + P11(rU3)x + P12(rU3)

2x + P20x2 + P21(rU3)x2 + P22(rU3)
2x2

= (7, 9) + (10, 9)x + (5, 9)x2.

The TA then privately sends gU1(x), gU2(x), and gU3(x) to nodes U1, U2, and U3,
respectively, over a secure channel. Note that the scalar of each point can be reduced
to modulo |E(F11)| based on Theorem 3.

5. If U2 and U3 want to communicate with each other, they individually compute the
common key (shared key), KU2U3 (the same as KU3U2 ), where node U2 computes

KU2U3 = gU2(rU3)

= (8, 8) + (1)(3, 5) + (12)(3, 6)

= (8, 8)

and node U3 computes

KU3U2 = gU3(rU2)

= (7, 9) + (7)(10, 9) + (72)(5, 9)

= (8, 8).

Note that KU2U3 = KU3U2 = f (rU2 , rU3).

Let us say that an adversary wants to attack this scheme. We conjecture that a coalition
of λ + 1 = 3 will break the scheme and the secret polynomial f (x, y) can be obtained by
the adversary. Assume that the adversary has compromised node U1, node U2, and node
U3. By compromising U1, U2, and U3, the adversary obtains

rU1 = 10, gU1(x) = (3, 5) + (10, 9)x + (10, 9)x2,

rU2 = 7, gU2(x) = (8, 8) + (3, 5)x + (3, 6)x2,

rU3 = 1, gU3(x) = (7, 9) + (10, 9)x + (5, 9)x2.

The adversary then uses the bivariate Lagrange interpolation polynomial as shown on the
next page. Note that the scalars can be reduced to modulo |E(F11)| = 13.
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f (x, y) =
λ+1=3

∑
j=1

(
gUj(x)

λ+1=3

∏
h=1,h 6=j

y− rUh

rUj − rUh

)

= gU1(x)
(y− 7)(y− 1)
(10− 7)(10− 1)

+ gU2(x)
(y− 10)(y− 1)
(7− 10)(7− 1)

+ gU3(x)
(y− 10)(y− 7)
(1− 10)(1− 7)

= gU1(x)
y2 − 8y + 7

27
+ gU2(x)

y2 − 11y + 10
−18

+ gU3(x)
y2 − 17y + 70

54

= ((3, 5) + (10, 9)x + (10, 9)x2)(y2 + 5y + 7) + ((8, 8) + (3, 5)x + (3, 6)x2)(5y2 + 10y + 11)

+ ((7, 9) + (10, 9)x + (5, 9)x2)(7y2 + 11y + 9)

= (10, 9)y2 + (5, 9)y + (2, 4) + (3, 5)xy2 + (8, 3)xy + (5, 9)x + (7, 2)x2y2 + (3, 5)x2y + (10, 9)x2,

which is exactly the same as the original f (x, y). Thus, the adversary can compute any keys
of any pairs of nodes by using f (x, y).

5. Results

As we have seen from the examples in the previous section, |E(Fp)| can be either prime
or composite, and this depends on the elliptic curve E chosen. We also restrict the public
key for each user Us, which is denoted by rUs , in that it must be an integers modulo Z|E(Fp)|,
i.e., rUs ∈ Z|E(Fp)|. If an adversary compromises λ + 1 nodes, the adversary can use the
bivariate Lagrange interpolation polynomial to derive the secret polynomial f (x, y). In the
interpolation calculation, the adversary must reduce the scalars of points to modulo |E(Fp)|
in order to obtain the polynomial f (x, y). As we have seen in the example in Section 4.4,
the adversary manages to obtain f (x, y) since |E(F11)| = 13 is a prime. However, for
the case where |E(Fp)| is a composite, some inverses of the scalars of the points modulo
|E(Fp)|might not exist, and an adversary might not able to derive f (x, y) in the bivariate
Lagrange’s interpolation. We provide the theorems in this section to discuss the security of
the proposed scheme.

Theorem 4. Let E be an elliptic curve over a prime field, Fp, chosen for the proposed scheme, where
E(Fp) is the set of all points on the elliptic curve E. Let N be the total number of nodes. Let Us be
the s node where 1 ≤ s ≤ N. Let rUs be the public key of node Us such that no two public keys are
the same. If λ + 1 users, namely U1, U2, · · · , Uλ+1, are compromised, and

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t, then the adversary can derive the secret polynomial f (x, y), and can thus calculate
any pairwise keys of any non-compromised nodes.

Proof of Theorem 4. Assume that λ+ 1 users, namely U1, U2, · · · , Uλ+1, are compromised.
Let rU1 , rU2 , · · · , rUλ+1 be distinct elements in Z|E(Fp)| and gU1(x), gU2(x), · · · , gUλ+1(x) be
polynomials in E(Fp)[x]. These polynomials are of degree at most λ, and not necessarily
distinct. Now, we have a set of λ + 1 data points

(gU1(x), rU1), (gU2(x), rU2), (gU3(x), rU3), · · · , (gUλ+1(x), rUλ+1).

We find a polynomial that satisfies the data points above by using the bivariate Lagrange
interpolation polynomial. Let

f (x, y) =
λ+1

∑
j=1

(
gUj(x)`j(y)

)
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where

`j(y) =
λ+1

∏
h=1,h 6=j

y− rUh

rUj − rUh

for 1 ≤ j ≤ λ + 1.
Note that, given the initial assumption that no two rUs are the same, rUj − rUh 6= 0

when h 6= j and also

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1,

where s 6= t. By Proposition 1, we know that

gcd

(
λ+1

∏
h=1,h 6=j

(rUj − rUh)(mod
∣∣E(Fp)

∣∣), ∣∣E(Fp)
∣∣) = 1

for all 1 ≤ j ≤ λ + 1. Hence, the inverse of

λ+1

∏
h=1,h 6=j

(rUj − rUh) (mod
∣∣E(Fp)

∣∣)
always exists. Therefore, the proposed expression f (x, y) is always well-defined.

In `j(y), there are λ factors in the product, and each factor contains one y. gUj(x) is
a polynomial of degree at most λ in x for all j. Therefore, f (x, y), which is a sum of these
λ-degree polynomials in both x and y, must be a polynomial of degree at most λ in both x
and y.

Now, we want to show that f (x, rUi ) = gUi (x) for 1 ≤ i ≤ λ + 1. Substituting rUi into
`j(x), we obtain

`j(rUi ) =
λ+1

∏
h=1,h 6=j

rUi − rUh

rUj − rUh

.

Since the product omits the term where h = j, if i = j, then all terms that appear are

rUj − rUh

rUj − rUh

= 1.

Furthermore, if i 6= j, then one of the terms (where h = i) in the product will be

rUi − rUi

rUj − rUi

= 0.

This causes the entire product to become zero. Therefore,

`j(rUi ) = δji =

{
1 if j = i
0 if j 6= i

,

where δji is the Kronecker delta. Hence, we may conclude that

f (x, rUi ) =
λ+1

∑
j=1

(
gUj(x)`j(rUi )

)
=

λ+1

∑
j=1

(
gUj(x)δji

)
= gUi (x).

By now, we know that f (x, y) is a polynomial of degree at most λ in both x and y,
where f (x, rUi ) = gUi (x) for 1 ≤ i ≤ λ + 1.

Now, we show that f (x, y) is unique. Note that x is a free variable. Therefore, x can be
any constant. Let x be a constant c. Let there be another interpolating polynomial g(c, y)
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of the degree, at most λ in y, where g(c, rUi ) = gUi (c). Assume that g(c, y) 6= f (c, y). Note
that g(c, rUi ) = f (c, rUi ) for 1 ≤ i ≤ λ + 1.

Let h(c, y) = g(c, y)− f (c, y). It follows that h(c, y) = 0 when y = rUi for 1 ≤ i ≤ λ+ 1.
This implies that h(c, y) has λ + 1 zeros. However, g(c, y)− f (c, y) is of the degree, at most,
λ in y, and by the fundamental theorem of algebra, it can have at most λ zeros. We arrive
at a contradiction. Therefore, g(c, y) = f (c, y). The polynomial f (c, y) is unique. Hence,
the polynomial f (x, y) is unique.

In the proposed scheme, the TA constructs a polynomial f (x, y) of degree at most λ in
both x and y and f (x, rUi ) = gUi (x) for 1 ≤ i ≤ λ + 1. By the uniqueness of the bivariate
Lagrange interpolating polynomial, the interpolating polynomial must be the same as the
polynomial f (x, y) constructed by the TA.

Theorem 5. Let E be an elliptic curve over a prime field, Fp, chosen for the proposed scheme, where
E(Fp) is the set of all points on the elliptic curve E. Let N be the total number of nodes. Let Us be
the s node where 1 ≤ s ≤ N. Let rUs be the public key of node Us such that no two public keys are
the same. If at most λ users, namely U1, U2, · · · , Uk, are compromised, where k ≤ λ and

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t, then the adversary cannot derive the secret polynomial f (x, y) and, hence, any pairwise
keys of any non-compromised nodes cannot be calculated by the adversary.

Proof of Theorem 5. Let k be the number of compromised nodes, where k ≤ λ. Let an
adversary compromise a set of k nodes, namely U1, U2, · · · , Uk. Therefore the adversary
has a set of k points

(gU1(x), rU1), (gU2(x), rU2), · · · , (gUk (x), rUk )

such that
gUi (x) = f (x, rUi )

for 1 ≤ i ≤ k.
Let KUk+1Uk+2 be the real shared key of non-compromised nodes Uk+1 and Uk+2, and

the adversary wants to calculate this key. Let K∗Uk+1Uk+2
be the key conjectured by the

adversary.
The adversary then defines the polynomial f ∗(x, y) as follows

f ∗(x, y) = f (x, y) + (K∗Uk+1Uk+2
− KUk+1Uk+2) ∏

1≤i≤k

(x− rUi )(y− rUi )

(rUk+1 − rUi )(rUk+2 − rUi )
.

Since
gcd

(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t, by Proposition 1, we know that

gcd

(
∏

1≤i≤k
(rUk+1 − rUi )(rUk+2 − rUi )

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1.

Therefore, the inverse of

∏
1≤i≤k

(rUk+1 − rUi )(rUk+2 − rUi ) (mod
∣∣E(Fp)

∣∣)
always exists. Hence, the proposed f ∗(x, y) is well-defined. Note that f ∗(x, y) has the same
properties as f (x, y), as shown below:

1. f ∗ is symmetric, i.e., f ∗(x, y) = f ∗(y, x);
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2. For 1 ≤ i ≤ k, it holds that f ∗(x, rUi ) = f (x, rUi ) = gUi (x);
3. f ∗ has a degree of at most λ in both x and y, since f (x, y) has a degree of at most λ in

both x and y and k ≤ λ.

Note also

f ∗(rUk+1 , rUk+2) = f (rUk+1 , rUk+2) + K∗Uk+1Uk+2
− KUk+1Uk+2 = K∗Uk+1Uk+2

.

Therefore, any values of K∗Uk+1Uk+2
would eventually be consistent with the information

that the adversary holds. For any possible value of the key, K∗Uk+1Uk+2
, there is a symmetric

polynomial f ∗ that satisfies all three properties listed above, which are satisfied by the actual
polynomial f (x, y). Thus, if the adversary compromises at most λ nodes, the adversary
cannot derive the secret polynomial f (x, y).

Theorem 6. Let E be an elliptic curve over a prime field, Fp, chosen for the proposed scheme, where
E(Fp) is the set of all points on the elliptic curve E. Let N be the total number of nodes. Let Us be
the s node where 1 ≤ s ≤ N. Let rUs be the public key of user Us, such that no two public keys are
the same. If

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t, then the proposed scheme is λ-secure.

Proof of Theorem 6. Given that

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t, by Theorems 4 and 5, it is clear that the proposed scheme is λ-secure.

6. Discussion

In this section, we discuss the possibility of applying our proposed scheme in DLT,
acknowledging the pros and cons of the proposed scheme, and provide a comparison of
the proposed scheme with several other related schemes.

6.1. The Application of the Proposed Scheme in Hyperledger Fabric DLT

In Section 2.2, we reviewed the key pre-distribution scheme proposed by Albakri et
al. in [23]. By comparing the scheme proposed in this paper with the scheme proposed by
Albakri et al., the obvious difference between these two can be seen from the coefficients of
the polynomial f (x, y). The coefficients in the three polynomials in the scheme proposed by
Albakri et al. are the usual integers modulo p, where p is a prime, whereas the coefficients
in the polynomial in our proposed scheme are basically points on elliptic curves over a
prime field. In our scheme, it is also possible for us to generate three polynomials f (x, y) by
using a single elliptic curve over a prime field or three different elliptic curves over a prime
field. Therefore, our proposed scheme is also possible to be implemented in the fabric. If
our proposed scheme can be implemented in the fabric, then there exists the possibility
that our scheme can be implemented in other DLT types as well, such as other variations of
Hyperledger, i.e., Burrow, Indy, Sawtooth, and many more.

6.2. The Pros and Cons

All key distribution schemes have their own advantages and weaknesses. In this
section, we discuss the pros and cons of our proposed scheme.
The advantages:

1. The proposed scheme has high connectivity, which means all nodes in the network
are able to compute the shared keys among each other. In other words, the probability
of sharing keys between nodes is 1.

2. The proposed scheme has high scalability, which means our proposed scheme can be
used in networks with a huge number of nodes.
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3. The proposed scheme supports the mobility of a node as long as the identities or the
public keys of the new neighboring nodes are already stored in the moving node.

4. The information needed to establish the shared keys are stored in the nodes before
deployment by an offline TA. Therefore, an adversary cannot attack the TA to obtain
the secret polynomial f (x, y) and the information required to compute the shared keys.

5. Elliptic curves are used in the proposed scheme, which increases the complexity of the
calculation. Scalar multiplication and the group law of elliptic curves are implemented,
instead of just adding and multiplying integers.

6. This scheme can be implemented in WSNs, and also possibly in DLT technology, as
discussed earlier.

The disadvantages:

1. The proposed scheme does not support the flexibility requirement. In other words, if
our proposed scheme is implemented in a network, then new joining nodes cannot
simply join the network, since the identities or the public keys of the new nodes were
not distributed in the existing nodes before deployment.

2. The proposed scheme is not secure against the capture of nodes. However, Albakri et
al. [23] mentioned that there are several security mechanisms that can be utilized to
eliminate this problem, such as tamper-proof mechanisms to protect the information
in the nodes from an attacker, even if the attacker captures the nodes.

6.3. The Comparison of the Proposed Scheme with Other Existing Schemes

Before we proceed to the comparison, let us understand these key management
requirements, shown in Table 2, as stated by Kandi et al. in [28].

Table 2. Key management requirements.

Requirement Description

Resilience Capturing devices must have a minimal impact on the network security
Connectivity The probability of sharing keys between nodes must be maximum
Mobility Moving devices must share keys with their new neighbors
Flexibility Devices must be able to join or leave the network at any time
Scalability Increasing the network size must not degrade performance

Next, in Table 3, we compare our proposed scheme with other key distribution schemes
that are based on Blom’s scheme.

Table 3. Comparison of the proposed scheme with existing work.

Scheme Resilience Connectivity Mobility Flexibility Scalability
Use of
Elliptic
Curves

Value of λ

Blom [9] λ 1 Yes (within
network) No High No Any positive

integer

Lazos [14] λ 1 Yes (within
network) No High No Any positive

integer

Khan et al. [16]
N (total

number of
nodes)

1 Yes (within
network) Yes High No Any positive

integer

Wang et al. [17] λ 1 Yes (within
network) Yes High No Any positive

integer

Udin et al. [10] Unknown 1 Yes (within
network) No High Yes 1

Our scheme λ 1 Yes (within
network) No High Yes Any positive

integer
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7. Conclusions

In this paper, a key pre-distribution scheme is proposed that can be used in WSNs. The
proposed scheme implements elliptic curves over a prime field in Blom’s scheme, and is
also based on the scheme that was introduced by Udin et al. in [10]. The proposed scheme
is shown to be applicable for an arbitrary positive integer λ and is proven to be λ−secure
(the same as the original Blom scheme), with the condition that

gcd
(
(rUs − rUt)(mod

∣∣E(Fp)
∣∣), ∣∣E(Fp)

∣∣) = 1

where s 6= t. However, if |E(Fp)| is a prime, then the condition above is automatically
fulfilled.

In the proposed scheme, the probability of sharing keys between nodes is 1, the
mobility of the nodes is supported as long as the nodes are still in the network, and the
scheme is also applicable for huge networks. Unfortunately, this scheme does not support
the flexibility requirement. In addition, the proposed scheme can also be applied in DLT
technology, such as fabric.

In future research, the proposed scheme can be improved further. To satisfy the
flexibility requirement, our scheme can be combined with a balanced incomplete block
design (BIBD) as implemented by Wang et al. in [17]. Another possibility is that our scheme
can apply the maximum rank distance (MRD) codes instead of the maximum distance
separable (MDS). Furthermore, to protect the information in the captured nodes from the
adversary, we can apply tamper-proof mechanisms in our scheme, as suggested in [23].
Finally, the implementation of our scheme in DLT can be studied further. We showed that
our proposed scheme can be implemented in the fabric, and we believe that the proposed
scheme can also be implemented in other types of DLT. This research should focus on
permissioned DLT instead of permissionless DLT since in our scheme, the identities of the
nodes in the network are important to the generation of the shared keys.
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