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Abstract: Federated learning (FL) provides convenience for cross-domain machine learning appli-
cations and has been widely studied. However, the original FL is still vulnerable to poisoning and
inference attacks, which will hinder the landing application of FL. Therefore, it is essential to design a
trustworthy federation learning (TFL) to eliminate users’ anxiety. In this paper, we aim to provide
a well-researched picture of the security and privacy issues in FL that can bridge the gap to TFL.
Firstly, we define the desired goals and critical requirements of TFL, observe the FL model from the
perspective of the adversaries and extrapolate the roles and capabilities of potential adversaries back-
ward. Subsequently, we summarize the current mainstream attack and defense means and analyze
the characteristics of the different methods. Based on a priori knowledge, we propose directions for
realizing the future of TFL that deserve attention.

Keywords: trustworthy federated learning; machine learning; security and defense; privacy protection

1. Introduction

Artificial intelligence technology represented by machine learning strongly drives the
development of various industries. Machine learning (ML) is a paradigm that learns from
past experience and makes accurate predictions about new problems. ML gives machines
the ability to learn with little or even without human intervention. In recent years, ML
algorithms, represented by deep learning (DL), have achieved great achievement in areas
such as image recognition and natural language processing. However, researchers find
that high-quality predictive models rely on high-quality training data, yet individuals or
groups are often reluctant to contribute data due to privacy concerns, resulting in data silos.
At the same time, sufficient attention has been paid to the misuse of privacy, and privacy
laws have further regulated access to data.

Federated learning (FL) [1] provides an excellent idea for solving these problems.
Unlike distributed machine learning, in federated learning, users update the model rather
than their data to obtain a better global model. It assures that data can be utilized without
leaving the local area, thus dispelling users’ privacy anxiety. Although FL has been partially
applied in practice, such as Google, using it to predict the subsequent input of the user’s
keyboard, we found that the current level of FL is still insufficient to meet its security
requirements. Means such as poisoning attacks, and inference attacks, still affect the
usability of FL, especially in combination with highly sensitive information areas such
as medicine and finance. The large-scale application of FL has been hampered by these
problems, and researchers have had to redesign the model to achieve user trustworthiness.
Therefore, trustworthy federated learning (TFL) [2], in combination with safety solutions,
deserves to be discussed further.

Unlike traditional FL, TFL’s goal is to eliminate users’ concerns about the security
and privacy of the model system and ensure the credibility of the model framework.
Typically, researchers choose to use security algorithms [3] or secure architecture [4,5], such
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as blockchain technology, to achieve TFL. However, the current research lacks a systematic
definition of TFL’s requirements. TFL imposes more stringent safety requirements on FL
systems, which should have the following basic principles:

• High Confidentiality: Confidentiality is reflected in the fact that malicious adversaries
cannot steal sensitive information in FL.

• High Integrity: Integrity is reflected in the fact that private data cannot be maliciously
modified without authorization during training.

• High Availability: The model system is required to provide access by authorized users
and be used on demand. The model also needs to have a usable accuracy rate as well
as efficiency. The cost of trustworthiness cannot be a significant loss of accuracy and a
high rate of loss of efficiency.

• Strong Robustness: In addition to following the information security fundamentals, FL
should have sufficient resistance in the face of complex scenarios or unknown attacks.

• Provable Security: The security protocols and methods must be rigorously secure
based on specific mathematical assumptions.

In response to the above requirements, we survey the current status of FL and look
forward to the next more promising development direction of TFL. Analytical work on
TFL has been partially studied, but we will look at the threats faced by FL from some
new perspectives.

1.1. Contributions

Although similar studies have been conducted to investigate the threat of FL, these
efforts still need to provide a more comprehensive summary of existing technologies
and a clear indication of future research directions. Our work provides a comprehensive
overview of FL, including its definition, threats, and potential future research. This paper
will facilitate the construction of usable TFL paradigms and their rapid application to actual
production. Our main contributions are as follows:

• We thoroughly investigate the development mapping and critical technologies of FL
and meticulously analyze the existing FL research content.

• We assess the threats to FL from an adversary perspective. Furthermore, we sum-
marize mainstream FL-specific attacks from the perspective of security threats and
privacy threats.

• We summarise and abstract the approaches to privacy protection in FL and evaluate
their strengths and weaknesses. Based on this, we provide some valuable prospects
for building TFL.

1.2. Paper Organization

Section 2, we briefly introduce FL and classify the current FL models from different per-
spectives. In Section 3, we list the primary attack methods that threaten the model’s security
and privacy and summarize and compare the defense schemes in Section 4. In Section 5,
we point out the future promising research directions of TFL. Finally, Section 6 gives the
conclusion of our work.

2. Federated Learning

Similar to the traditional distributed machine learning paradigm, FL also utilizes
the assistance of distributed clients for more complex model training. The target of FL’s
communication shifts from data to the model. The optimized global model is obtained
through the aggregation of multiple local models, which ensures the availability of the
global model while making the client’s data visible only to itself, eliminating its distrust
of the server or external attackers, thus allowing better quality data to participate in the
training [6–8]. In addition, FL has likewise been extensively studied for joint learning
of heterogeneous data [9,10], which makes it a good prospect for cross-domain machine
learning. For example, information from different devices (e.g., images and text) can be
used for training at the same time to capture more feature information and provide a
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more valuable output model. The work in Ref. [11] uses FL in 6G networks for resource
recommendation and scheduling-based propagation analysis.

The traditional FL model is composed of a server and a number of clients. The server
aggregates the local model, broadcasts the global model, and ultimately outputs a highly
available predictive model. The client obtains the global model, updates it with local data,
and finally uploads it to the server. However, this structure requires establishing a mutual
trust mechanism between the client and the server, which will pose a severe threat to the
system if the server is hijacked or malicious. We will discuss the details in Section 3.

2.1. Classification of FL

FL is in a rapid state of development, and various techniques and methods are being
used to enhance its applicability of FL. In order to cope with more complex requirements,
FL with different complex morphologies is proposed [7]. Some research works want to
apply machine learning models to more significant distributed scenarios, requiring FL to
consider communication and data aggregation costs. For example, Ref. [12] focuses on
using FL in mobile edge computing. However, some other works require more secure
participation in training, which requires FL to pay more attention to security and privacy
protection. In ref. [13], the authors focus more on security threats and classify FL in terms
of data feature distribution. Other than that, Ref. [14] also classifies FL with technologies
from different perspectives. Therefore, classifying FL according to different perspectives is
an essential first step in understanding and optimizing FL design.

2.1.1. Centralized/Multi-Center/Decentralized FL

Although FL has been implemented for decentralized training, centralized FL still
requires a central server to complete the accusation of aggregation and broadcasting, which
we call centralized FL [1,15–18]. The single-server design ensures that the model’s rights
are centralized in the hands of the server, which helps to manage the whole training process
and avoid errors. For example, Google’s Gboard for Android keyboard is based on this
architecture. However, a centralized server tends to occur a single point of failure, which
might destroy the whole FL system. To release this security dependency, a decentralized FL
was proposed. It attempts to reduce or even eliminate the server’s control over the global
model. As demonstrated in Ref. [19], authors proposed two asynchronous peer-to-peer
algorithms for the novel setting of decentralized collaborative learning of personalized
models. This approach removes the server directly to achieve complete decentralization.
However, the time and communication cost of this approach is often huge. Multi-center
FL does not require a centralized server, but multiple decentralized edge servers need to
manage model updates. This weakens the impact of servers becoming malicious nodes
on the global model while ensuring the utility of the model. To solve the above problems,
Ref. [20] learns multiple global models from the data, simultaneously derives the best
match between users and centers, and proposes an optimization approach, federated SEM,
to eliminate the multi-center FL problem effectively.

2.1.2. Horizontal FL/Vertical FL/Federated Transfer Learning

In addition, facing different application scenarios, it is also a common method to
design FL according to the characteristics of training data. Depending on the degree of
overlap between the feature space and the sample space, FL can be classified into horizontal
federated learning (HFL), vertical federated learning (VFL), and federated transfer learning
(FTL), respectively [8].

First of all, in business-to-consumer (B-C) FL, clients often use data sets with over-
lapping features. For example, different banks can provide similar data training models,
and their data characteristics are highly coincidental. In this situation, the HFL is more
appropriate. The client typically uses stochastic gradient descent (SGD) to minimize losses,
and the server performs a secure aggregation algorithm (such as FedAvg [1], FedPorx [21])
to obtain a global model. According to different applications, we can further refine HFL
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into HFL to businesses (H2B) and HFL to consumers (H2C) [13].
HFL has the advantage of being able to quickly extract features from similar data

and obtain a highly credible global model but tends to be weak for data with a little over-
lap in features. For example, insurance companies rely on banks’ credit data to provide
customized services, and the two have different feature spaces, so they cannot be trained
directly using HFL. Compared with HFL, VFL is relatively more complex but applicable
to a wider range of scenarios and has stronger practical value. However, VFL also faces
some problems, such as low efficiency, and related work has also been studied in this
respect. For example, Zhang et al. [22] designed a new backward updating mechanism and
bilevel asynchronous parallel architecture to solve the problem of low efficiency caused by
synchronous calculation in practical applications.

It is worth noting that the first two perform well for supervised learning but struggle
with weakly supervised or unsupervised data. FTL introduces the idea of migration learn-
ing to cope with the need for tiny overlapping samples. For the data with low correlation,
the direct use of the first two models for training results in poor effectiveness because the
aggregation algorithm is difficult to extract similar effective features. Transfer learning uses
the similarities between the target domain and the source domain so that the migration
model can learn from the data with big differences. Thus, a federated learning model
incorporating transfer learning gains the ability to learn from heterogeneous data [23],
which provides a feasible solution for collaborative modeling.

3. Threats in FL

In this section, we will introduce the mainstream attacks confronted in FL. Before dis-
cussing what threats FL faces, we first introduce a new perspective to analyze where these
threats may originate. In the second and third parts, we analyze the possible attacks on FL
from the point of view of security and privacy, respectively. The analysis of the source of
threats and other sections have been partially studied in previous work [13,14,24–26].

3.1. Adversary Status

To assess the threats to FL, we first need to know what role the adversary can play in
the system model. Unlike traditional machine learning, the identity of the adversary in FL
is relatively complex. Taking the basic FL as the reference object, the participating entities
can be divided into server, clients, and malicious external entities. It is difficult to trace
the source of the threat accurately. Assuming they both make malicious attackers, we can
distinguish them as internal attackers (Server and Client) and external attackers. At the
same time, we cannot ignore the possibility of a collusion attacker.

1. Server: In FL, the server has high privileges. Therefore, once it is malicious, it is an
increased threat to the security and utility of the system. Generally, for example, there
are attacks such as model poisoning attacks or backdoor attacks. The server can easily
break model convergence by poisoning the global gradient. If it is semi-honest, it can
also steal the client’s privacy through inference or model reversal attacks. Since the
server has updated gradient information, membership information can be easily stolen
from the client using a gradient change-based membership inference attack. Therefore,
it is necessary to let the server obtain as little accurate information as possible based
on its duties.

2. Client: On the one hand, the client, as a carrier of private information, is the most
vulnerable object of attack, such as membership inference attacks aimed at stealing
customers’ private information. Homomorphic encryption and differential privacy
can be exploited as promising methods to prevent gradient information from leakage.
Meanwhile, the introduction of a shuffler mechanism can be used further to mask
the user’s ID [27]. On the other hand, a malicious client can have a bad impact on
model training. It can disrupt the availability of the global model by poisoning [15] or
inserting backdoors [28], but unlike the server, the impact of a single malicious client
is limited.
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3. External attackers: An external attacker aiming at sabotage might hijack the server or
bring it down directly, thus completely disrupting the training. External entities that
eavesdrop on server and client communication channels also threaten clients’ privacy
considerably. Homomorphic encryption and differential privacy can limit its access to
accurate information, and the combination of the trusted execution environment’s FL
can shield it from threats.

4. Collusion: Multiple malicious adversaries can collude to launch a joint attack. In prac-
tice, a conspiracy attack requires only a tiny amount of secrecy to be divulged by an
internal adversary to undermine the availability of most security protocols. For ex-
ample, HE and SMC-based security schemes rely on the absolute security of keys.
They synchronize and upload the colluded malicious parameters to the server for
aggregation and perform iterative attacks to disrupt the performance of the model [29].
Furthermore, dishonest clients and servers can conspire to steal confidential infor-
mation (e.g., private keys), posing a threat to the partially privacy-preserving FL
model [12].

In Table 1, we analyze and compare the impact of different malicious entities on the
model. The security concern is determined by whether the model can converge adequately.
We simply divide the threats confronted by our system from low to high. Since the server
has too much information, it is involved in a high threat level of attacks, while the threat to
the client depends on the number of attacks involved. Privacy is measured by the threat to
the client’s private data. Although a single client has limited information and low threat,
collusion with the server threatens other users’ information. The notable exception is
the collusion attack, which is more complex to analyze because of the collusion between
different entities [30]. However, because collusion attacks usually involve servers, we set
the threat level as high.

Table 1. Evaluation of the threat of different attack entities.

Position Malicious Entities Security Treat Privacy Treat Reference

Internal Server high high Poisoning [31] et al.

Internal Client medium low Poisoning [32],
Backdoor [28] et al.

External Attacker medium high Inference [33] et al.

Collusion Server and Client high high Sybil-based Collusion
Attacks [34] et al.

3.2. Security Threats in FL

In this paper, we believe that security attacks aim to disrupt the availability and
robustness of the model. Specifically, a security attack is a possibility of a vulnerability
being exploited by a malicious/curious attacker to affect the security of a system and
violate its privacy policy. Here we list a few mainstream attack patterns and we summarize
the main attacks in Table 2.

3.2.1. Poisoning Attack

Poisoning attacks are one of the most common security attacks in FL. Since each client
can impact the global model, maliciously training data and even model weights can directly
affect the model’s accuracy. A poisoning attack aims at reducing the generalization ability
of the model to destroy its usability. Although there are many means of poisoning attacks
at present, depending on the target of poisoning, they can be roughly classified into data
poisoning and model poisoning. It is worth noting that poisoning attacks can be initiated
by different participants. Especially if the server is malicious, it can efficiently execute both
types of poisoning attacks during the training progress.

Data poisoning can be roughly divided into two categories: dirty-label attacks and
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clean-label attacks. The former tends to misclassify by injecting desired target labels into
training datasets. The typical dirty-label attack is a label-flipping attack [35]; it reverses the
label of a feature-invariant sample, thus forcing the model to recognize it as another class.
In Figure 1, malicious adversaries generate poisonous training samples by label flipping and
eventually mislead the global model to generate incorrect classifications. Unlike dirty-label
attacks, clean-label attacks correctly classify poisoned labels during training. However, the
classification models will classify it into the wrong class. Clean label attacks are more
insidious than the former, as most resistance methods based on distribution differences
have little impact on them.

Figure 1. Poisoning attack and member inference attack in FL.

Unlike data poisoning, model poisoning usually requires sophisticated technical skills
and high computational resources. However, it is also relatively more destructive to
models. Model poisoning aims to make the model misclassify for selective inputs with
high confidence. The work in [36] was carried out by an adversary controlling a small
number of malicious agents to cause the global model to misclassify a set of chosen inputs
with high confidence. It is a common method to misjudge the model by noise. In the work
of [37], noise with different intensities and distributions was used to detect the pixel space
of opposite images.

3.2.2. Backdoor Attack

Whereas a poisoning attack changes the correct decision boundaries through datasets
with different boundaries, a backdoor attack systematically controls the decision boundaries
of the model by implanting triggers. The attacker inserts a hidden backdoor into the model
and triggers the hidden backdoor in the prediction phase to complete the malicious attack.
Specifically, the adversary inserts a backdoor into the data of the specified label and
participates in the training of FL. When the global model classifies the backdoor data,
the backdoor will be triggered, and the classifier will output a specified malicious output.
Since the malicious model has the same accuracy, identification is difficult. In Ref. [38],
the authors demonstrated that by designing backdoor implantation for low-probability or
edge-case samples, it becomes difficult for the system to detect malicious samples.

The benefit of this loophole is that the backdoor attack replaces the original uploaded
local model with a model so that the attacker controls how the model performs on an
attacker-chosen backdoor subtask [28]. This method scales the model weights (γ = n/η)
to retain the backdoor mean. Instead, Ref. [39] found that canonical cropping and weak
differential privacy can mitigate backdoor attacks and tested different attacks on the non-iid
dataset. Backdoor attacks are relatively undetectable and perform superiorly, therefore
representing a serious security risk to FL.

3.2.3. Free-Rider Attack

The free-rider attack is covert and less damaging. A malicious client may participate
in obtaining a joint model without actually contributing any data during the training
process [40,41]. This can discourage participants with high-quality data from getting
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enough revenue and negatively affect FL training. Typically, fewer free riders are less
harmful, but this is unfair to other clients. Currently, the use of FL models based on
contribution value estimation can alleviate this part of the problem.

3.3. Privacy in FL

Attacks against user privacy undermine the confidentiality of the FL model. Al-
though FL needs to share model parameters instead of sharing local data, there are still
ways to steal user local information.

3.3.1. Inference Attack

Member inference attacks [42] assist in generating an attack model to determine
whether the target is a member of the original data by training the shadow model to mimic
the behavior of the target model. Inference attacks can be divided into black-box and
white-box attacks depending on whether the gradient parameters can be stolen.

In a white-box attack, the adversary can save snapshots of FL model parameters
and perform attribute inference by exploiting differences between successive snapshots,
which is equivalent to aggregated updates from all participants minus the adversary [13].
Black box attacks require relatively little knowledge to be gained and are, therefore, more
practical. Generally, an adversary will test the global model using specific inputs and
generate confidence scores based on differences in the distribution, which is used to infer
sensitive information. On this basis, Ref. [43] further introduces a label-only attack that
does not need confidence scores and, simultaneously, no loss of attack efficiency, thus
further reducing the prior knowledge required for an attack.

Against the target of the inference, inference attacks can be classified as a category in-
ference attack (CIA) [44], feature inference attack (FIA) [45], label inference attack (LIA) [46]
and member inference attack (MIA). All of these lead to unintended additional information
leakage to the adversary. Amongst them, MIA has received the most attention. MIA
in FL models aims to infer whether a data record was used to train a target FL model.
In Figure 1, the method of using shadow models to train attack models is the most common.
The shadow model behaves similarly to the target model, such as supervised training
using a verifiable dataset. The attack model uses the shadow model to identify behav-
ioral differences in the target model and uses them to distinguish between members and
non-members of the target model. However, this method relies on stealing intermediate
gradients and is, therefore, still a white-box model. Prior work [47] has developed transfer
attacks and borderline attacks to reduce the knowledge required to attack label-only and
can achieve remarkable performance.

3.3.2. Model Inversion Attack

In contrast to inference attacks, model inversion attacks tend to obtain a certain level
of statistical information. They are used to train inversion models to reconstruct the client’s
original data from the received preliminary information on the model [48–50]. Here, an hon-
est and semi-trusted server is an attacker. The server can reconstruct the user’s original data
from intermediate activations by training the inversion model. For example, Ref. [51] notes
that split federated learning (SFL) is vulnerable to an MI attack. The server can reconstruct
the original numbers of the team doctor client just by the accepted intermediate activations.
MI resistance at the training time is significantly more difficult because the server node can
access any intermediate activation. However, this is not unsolvable. Related work presents
the loss of sensitive data during communication by minimizing the distance correlation
between the original data and the intermediate representation [49] to reduce the usability
of the model inversion model.

3.3.3. GANs

GANs have been hugely successful in the image field. It can generate a large amount
of high-quality fake data through gaming methods. Therefore, it is an enhancement from
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both an offensive and a defensive point of view. On the one hand, techniques based on
GANs can enhance the ability to poison and infer attacks. The fake data generated by
GANs facilitates poisoning attacks. The work in [52] achieves over 80% accuracy in both the
poisoning and the main task by generating data through GAN. The work in [53] considers
the use of GAN to generate enriched attack data for the shadow model, which in turn
improves the accuracy of member inference attacks to 98%. Due to the nature of GANs,
the system cannot predict all possible threats based on them. Therefore, it is more difficult
to prevent attacks based on GANs. On the other hand, mechanisms combined with GAN
can also improve the robustness of the FL model [54]. The work in [55] shares the client’s
generator with the server to aggregate the client’s shared knowledge and thus improve the
performance of each client’s local network.

Table 2. Summary of the main attacks.

Category Attack Description Method Initiators Hazards Ref.

Security

Poisoning
The attacker injects malicious data
to corrupt the output model.

Data Pos,
Model

Pos

Client,
Server

Availability,
Robust-

ness
[35–37]

Backdoor
Prediction by implanting backdoor control
models. Backdoor Client

Integrity,
Robust-

ness
[28]

Free-
rider

The attacker obtains a high-value training
model with low-value data.

Random
weights
attack

Client Availability,
Fairness [40,41]

Privacy

Inference
High confidence sensitive information deduced
by means of attacks.

Member Inf,
Class Inf,
Feature Inf,
Label Inf

Server,
Attacker Confidentiality [35]

Model In-
version

Using leaked information to reverse model analysis to
obtain private information

Map In-
version Client Confidentiality [49]

GANs
The attacker obtains a high-value training
model with low-value data.

Random
weights
attack

Client Confidentiality [52]

4. Defense
4.1. Defense Mechanism

Based on our analysis of security and privacy issues in federated learning above,
two main perspectives are worth considering to improve the security of FL: FL needs to
identify and deal with possible security threats at any stage of training. In addition, FL
should ensure mutual trust between all entities, which helps to attract more quality data to
participate in training.

For the first problem, we usually use some proactive defenses. These methods are
expected to detect and eliminate threats as they arise. This is typically cost-effective, but it
is limited in the number of threats it can handle. For the second problem, the key problem
is to keep sensitive information from being transmitted directly. The usual method is to
encrypt sensitive information or use a secure transmission channel. Such approaches tend
to be reactive, and data are not monitored once processed.

4.1.1. Anomaly Detection

Anomaly detection entails statistical and analytical methods to identify events that
do not conform to expected patterns or behaviors. Target-based detection models can
be roughly divided into anomaly detection for the server and anomaly detection for
clients. On the server side, anomaly detection methods such as parametric threshold-
based, feature-based, and smart contract-based have been proposed for screening poisoned
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clients. By testing the outlier degree of data points, the server can effectively reduce the
damage of poisoned data to the global model, a common means to actively defend against
poisoning attacks. For example, the work in [15] designed an outlier data point detection
mechanism that can effectively eliminate tag reversal and backdoor-based poisoning attacks.
Li et al. [56] use a pre-trained anomaly detection model to test whether users deviate from
the FL training regulations. In addition, by saving incremental updates in the blockchain
distributed ledger, the server can detect and audit the updates of the model [57]. Another
aspect of anomaly detection methods such as BAFFLE [58] on the client side allows the
detection to be decentralized to the client, with the server simply analyzing the results of
the participant’s determination. At the same time, anomaly detection methods based on
participant parameter distributions and energy anomalies can be constructed to cope with
free-rider attacks.

4.1.2. Blockchain

Blockchain is based on a peer-to-peer network. Blockchain ensures secure storage and
data traceability through a combination of chain, tree, and graph structures. In addition,
the blockchain achieves tamper-evident data through the consensus mechanism of proof of
work (POW). Blockchain and FL are complementary to each other. Blockchain is a natural
fit for development alongside FL as an inherently secure distributed system. Combined
with FL, we can make all its data copied, shared, and distributed on multiple servers. As in
Figure 2, FL can build a trusted third party and complete some trusted operations on the
chain, thus reducing the trust anxiety on the server.

Figure 2. Blockchain in VFL.

The blockchain’s decentralization can weaken the server’s authority, while the dis-
tributed ledger provides secure verification for FL [59]. In addition to its verifiable nature,
the blockchain can enhance FL’s fairness. The transparent and verifiable distribution of
incentives can be improved through smart contracts, thereby achieving that all customers
receive incentives that meet their values [60]. Ref. [61] uses blockchain to facilitate transpar-
ent processes and enforce regulations. The server is independent of blockchain computing,
enabling a trust boundary with the user.
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4.1.3. Differential Privacy

Since, in FL, the a priori knowledge of the attack is often gradient information in
transmission, it is important to mask the authenticity of the information. Differential
privacy wishes to obscure the actual query by adding a specified perturbation. Differential
privacy was first used to encrypt database information. Blurring the privacy boundary
between similar data subsets can satisfy both security and unpredictability. At the same
time, DP execution’s time consumption is minimal compared to other methods, making it
outstanding in scenarios with time performance requirements. Ref. [62] applies differential
privacy in deep learning for the first time and can maintain high accuracy guarantees for
the model while introducing privacy moments to measure privacy loss.

The FL model, in combination with DP, can be broadly divided into the curator model,
the local model, and the shuffle model. The curator model (CDP) has high accuracy but
weak security. On the contrary, the local model (LDP) adds perturbation in local training
progress to increase security but sacrifices more accuracy. The shuffle model (SDP) is a
compromise between the two. Therefore, considering privacy, accuracy, and efficiency in
the DP model is a research hotspot. In Figure 3, we tested this on the MNIST dataset and
more intuitively represented the utility loss.

Figure 3. We experimentally compared the performance of different DP-FL schemes on the MNIST
dataset under the same privacy budget.

In combination with DP, FL has been extensively studied in academia. Although DP
inevitably suffers from the loss of accuracy, some ideas are put forward to compensate for
this loss. Renyi differential privacy [63] uses Renyi entropy to define DP more broadly
and further shrink the upper bound of the privacy budget. It blurs the line between
slack DP and strict DP. The newest discrete Gaussian DP [64] is proposed to alleviate the
contradiction between utility and security. In addition, privacy amplification with the help
of a third-party shuffler is also worthy of attention.

4.1.4. Homomorphic Encryption

HE converts the plaintext computation to the ciphertext calculation and decrypts it to
obtain the same result. This solves the trust-building and key-transfer problems faced in
traditional cryptography, as the operator is only concerned with the ciphertext and does
not need to know any decryption information (decryption key K). Therefore, combined
with HE, a secure aggregation of gradient information can be achieved.

A safe homomorphic system should satisfy:

∀m1, m2 ∈ M, Encpk(m1 �M m2)← Encpk(m1)�C Encpk(m2)

Here, M and C denote the plaintext space and ciphertext space, respectively, � denotes
the operator. Operations on ciphertext can be overloaded as addition and multiplication.
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In Paillier [65], addition can be extended to multiplication, and multiplication can be
extended to subdivision operations.

Addition : Decsk(m1 �C m2) = Decsk(m1 + m2)

Scalar multiplication : Decsk(m1 �C m2) = Decsk(m1 ∗m2)

Generally speaking, the functionality of homomorphic encryption is proportional to
its complexity. Based on this, HE can be divided into two categories: semi-homomorphic
encryption and fully homomorphic encryption. The former satisfies finite operations but
is efficient, and the latter satisfies arbitrary operations but is inefficient. Based on this,
Ref. [66] proposed BatchCrypt for Cross-silo federated learning, reducing the communica-
tion and time cost of HE with almost no loss of accuracy. Ref. [67] designed FedML based
on the Paillier homomorphic encryption algorithm to implement the federation matrix
factorization in semi-honest scenarios. HE in FL still has some limitations, mainly high
interaction overhead and loss of accuracy.

4.1.5. Secure Multiparty Computing

Secure multiparty computing (SMC) usually encrypts the communication process and
hides the input information from the output side. Specifically for each party involved,
the output value can only be known based on its input, and no other knowledge is available.
With secure SMC, multiple parties cooperate to compute functions of common interest
without revealing their private inputs to other parties [68]. As multiple clients in FL interact
with the server, secure aggregation is a central concern, and SMC is the most suitable.

SMC can be implemented through three frameworks: secret sharing [69] and inadver-
tent transmission [70], where secret sharing is at the heart of secure multiparty computing.
The work in [71] uses secret sharing to build a lightweight FL framework for the IoT.
Different carefully designed local gradient masks and an additional mask reuse scheme are
used to reduce the overhead of communication. Ref. [72] designed VerifyNet, a verifiable
FL framework that uses a double masking mechanism to secure private information on a
secret sharing mechanism. This approach is also privacy guaranteed for clients that drop
out during training.

4.1.6. Trusted Execution Environments

TEE provides assurance of integrity and confidentiality for handling sensitive code
and data [73] on computers. One of its main design purposes is to solve the problem of
secure remote computing, which is what TFL needs. Taking Intel SGX as an example, it
provides a secure container, which constrains the sensitive information uploaded by remote
users in the container. It ensures the confidentiality of calculation and intermediate data.

Based on this concept, Ref. [74] designed an efficient privacy-preserving federated
learning framework called FLATEE, which can handle malicious parties without pri-
vacy leaks. In FLATEE, TEE generates the symmetric encryption key and the public
key. The client performs the privacy algorithm (DP and encryption) in the secure enclave
TEE, and the server performs privacy aggregation in the aggregator secure enclave TEE.
However, due to resource sharing, SGX still has many attack surfaces, such as page tables,
cache, CPU internal structures, etc. For example, side-channel attacks are common TEE
attacks. Facing these vulnerabilities, Ref. [75] designed a ShuffleFL with TEE, in which a
randomized grouping algorithm is used to dynamically organize all participants into a hi-
erarchical group structure, combined with intra-group gradient segmentation aggregation
against opponents. The specific process can be found in Figure 4.



J. Sens. Actuator Netw. 2023, 12, 13 12 of 18

Figure 4. ShuffleFL with TEE.

4.1.7. Hybrid

On the one hand, in the face of complex security needs, sometimes maintaining data
localization alone often fails to achieve sufficient privacy guarantees. The work in [76]
combined DP and SMC in the database using DP fuzzy secrets and used a secret sharing
mechanism to slice and dice the restructuring of parameters and answers for computational
and output privacy. Inspired by the hybrid methodology, Refs. [76,77] combine it with
FL. In other areas, Ref. [78] introduces a novel strategy that combines differential privacy
methods and homomorphic encryption techniques to achieve the best of both worlds.
Ref. [64] has designed an efficient and secure aggregation scheme and uses distributed DP
for privacy enhancement.

On the other hand, there are inherent limitations to a single-defense approach. For ex-
ample, differential privacy has an inherent loss of accuracy, and HE and SMC perform
poorly in terms of efficiency. In combination with SMC, DP in [77] can achieve a small
increase in noise while guaranteeing a predefined trust rate. This reduces the negative
impact of DP on the utility of the model. However, the underlying security mechanism
of [77] is additive homomorphic encryption and is therefore accompanied by a longer
training time and higher transmission costs. Ref. [79] improved security policy using
function encryption and designed HybridAlpha to achieve shorter time and communica-
tion costs. In Ref. [80], HE and TEE were used jointly to achieve an accurate analysis of
genomic data. This combined solution provided a good compromise regarding efficiency
and computational support for safe statistical analysis.

4.2. Security Evaluation

In Table 3, we compare the aspects of protection capability, model accuracy, scheme
efficiency, model robustness, scalability, and generalization for different methods.

Table 3. The horizontal comparison of security solutions.

Scheme Protection Precision Efficiency Robustness Scalability Generalizability Ref.

Anomaly
Detection medium high high medium high low [15,56,57]

Data
Sanitization medium high medium low high high [81]

Blockchain high high low medium high medium [59,60]

Differential
Privacy high low high high high high [62–64]
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Table 3. Cont.

Homomorphic
Encryption high high low high low high [66]

Secure
Multiparty
Computing

high high medium high low medium [68]

Trusted
Execution En-
vironments

medium high high medium low high [73,75]

Regarding system security protection, AD, TEE, and DS cannot work against internal
malicious nodes. The related means based on perturbation and cryptography hide the in-
termediate variables of the computation with solid theoretical security. Regarding accuracy
impact, DP introduces noise to mask critical information, which affects the final model
convergence accuracy. This loss of accuracy is often unacceptable under LDP. In terms of
efficiency performance, the DP-based FL has the lowest time consumption thanks to its
streamlined algorithm. The intermediate information masking method represented by DP
has good generalization for different types of FL. In contrast, schemes such as AD need to
be designed specifically for different kinds of FL and have certain bureaus.

Homomorphic encryption is usually inefficient in the face of high-dimensional vectors
in FL, which take a lot of time to encrypt and decrypt. AD and DS exhibit weak robustness
to new attacks and need to be dynamically updated on time. The scalability of FL is
reflected in the performance in complex scenarios such as large-scale node distribution and
unexpected user dropouts. The HE and SMC participating nodes are also computational
and heavily burdened with computation and communication. It is worth noting that HE
and SMC are cryptographically provably secure, which is significant for the interpretability
of the construction of TFL. With a large number of level nodes, training efficiency is signifi-
cantly reduced. At the same time, limited local computing resources limit the use of TEE.
However, directly executing the training process in the TEE environment will significantly
decline performance. Take Intel SGX as an example; it only supports CPU operation, which
limits the model’s efficiency (CNN, DNN) and relies on GPU training. At the same time,
when the memory exceeds the limit, it will induce a lot of paging overhead.

5. Future Research

The continuing fire of federal learning research, new forms of attack, and scenario
demands have raised the bar even higher. However, the investigation into TFL is still in its
infancy. In this section, the main existing threats and means of defense in FL are combined
to suggest future directions worthy of attention.

5.1. Security Metrics

There still needs to be a uniform security metric in FL. From a global perspective, re-
searchers need to assess the program’s level of security accurately. Establishing a consistent
metric will facilitate the refinement of the system’s rating metrics and the assessment of
the availability of attacks and defenses. Establishing sound security metrics enables the
selection and optimization of defense technologies.

Relevant research remains limited. The work in [82] presents a method to choose
privacy metrics based on nine questions that help identify the right ones for a given sce-
nario. Ref. [83] presents the need for careful model design for both performance and
cost. For differential privacy [62,63] proposes privacy accounters to measure privacy loss.
From the local perspective, the security assessment of the system needs further refinement,
for example, how to assess the security risk of each entity or parameter. Ref. [17] performs
a fine-grained trust analysis of the different entities involved in the training using trust
separation and trust boundaries. However, there is still a lack of data and parameter sensi-
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tivity analysis. As can be seen, the vast majority of the work is a metric for the refinement
of specific privacy paradigms, but it does measure the means of the global model.

5.2. Model Interpretability

The interpretability of the model is to understand the model’s decision-making from
the perspective of human beings. More specifically, interpretable means that researchers
should clarify the causal relationship between each part and output. As a unique dis-
tributed machine learning, FL’s interpretability can subdivide the explanation of machine
learning and algorithms. The interpretability of machine learning has been widely dis-
cussed in academic circles [84–86], but a specific definition still needs to be provided.
The interpretability of algorithms includes aggregation algorithms and security algorithms.
Ref. [87] demonstrates that heterogeneous data slow down the convergence of the FedAvg
algorithm and proves the need for learning rate decay. The specific security algorithm
should be analyzed in detail; taking DP as an example, Ref. [88] does the first work that
rigorously investigates theoretical and empirical issues regarding the clipping operation in
FL algorithms. The interpretability of FL determines whether users can trust it, which is
necessary for TFL. It also helps to optimize the utility of the model.

5.3. The Tradeoff between Safety, Precision, and Utility

Typically, as the security level of a system increases, it will inevitably increase the
algorithm’s complexity, resulting in additional computational and communication over-
heads. Thus, safety, precision, and efficiency are often mutually constrained. In the case of
DP, which is currently frequently studied, the larger the perturbation added, the safer the
intermediate variables, and conversely, the less accurate the model [89].

Part of the approach has been proposed to balance these three aspects. Recently, FL
models that introduce the Shuffle mechanism have been heavily researched. Ref. [90]
first demonstrates that shuffle can achieve privacy amplification without compromising
accuracy and gives a strict upper boundary for privacy amplification. In terms of commu-
nication efficiency, gradient compression [91] and sparsification [92] are used to reduce the
size of the transmitted information.

5.4. Decentralization

A centralized FL can give the server too much power to create a trust crisis. How-
ever, an utterly decentralized server would also be inconvenient to manage and audit. It
is worth thinking about effectively spreading the risk while ensuring the model can be
handled safely. Blockchain can help decentralize FL [60], where the server no longer acts as
the core of auditing and verification but only performs aggregation algorithms and where
the associated auditing and verification can be achieved through smart contracts on the
blockchain. However, Block-FL suffers from both efficiency and expense problems.

5.5. Trusted Traceability

Current FL cannot backtrack during their lifecycle. When a malicious node launches
an attack, it is difficult for the system to identify the source. Part of the work did preliminary
work to verify the availability of gradient information [72]. The technology combined with
blockchain is worthy of attention in this regard, and the nature of blockchain offers the
possibility of traceability. Prior works [93,94] achieve authentication of user identity with
the help of blockchain.

6. Conclusions

FL facilitates the free flow of data and offers the possibility of machine learning cross-
domain applications. However, it is necessary to remove user trust anxiety and facilitate
the commercial deployment of TFL. However, research on TFL is still in its infancy. In this
article, we clearly define trustworthy federated learning. By summarizing and analyzing
the security and privacy threats faced by FL, we hope to provide new research perspectives
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to community researchers. Finally, we provide some helpful research directions for the
top-level design of TFL. TFL is an enhanced framework designed for market needs, and our
research aims to provide some references for its design.
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