
Citation: Phuttharak, J.; Loke, S.W.

An Event-Driven Architectural

Model for Integrating Heterogeneous

Data and Developing Smart City

Applications. J. Sens. Actuator Netw.

2023, 12, 12. https://doi.org/

10.3390/jsan12010012

Academic Editors: Giovanni Pau and

Fabio Arena

Received: 26 December 2022

Revised: 19 January 2023

Accepted: 29 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Actuator Networks
Sensor and

Article

An Event-Driven Architectural Model for Integrating
Heterogeneous Data and Developing Smart City Applications
Jurairat Phuttharak 1,* and Seng W. Loke 2

1 Department of Digital Business, Prince of Songkla University, Trang Campus, Trang 92000, Thailand
2 School of Information Technology, Deakin University, Burwood Campus, Melbourne, VIC 3125, Australia
* Correspondence: jurairat.b@psu.ac.th

Abstract: Currently, many governments are gearing up to promote the development of smart cities
in their countries. A smart city is an urban area using different types of sensors to collect data,
which will then be used to manage assets and resources efficiently. Through smart technology, the
quality of living and performance of urban services are enhanced. Recent works addressed a set
of platforms aimed to support the development of smart city applications. It seems that most of
them involved dealing with collecting, managing, analyzing, and correlating data to extract new
information useful to a city, but they do not integrate a diversified set of services and react to events
on the fly. Moreover, the application development facilities provided by them seem to be limited
and might even increase the complexity of this task. We propose an event-based architecture with
components that meet important requirements for smart city platforms, supporting increased demand
for scalability, flexibility, and heterogeneity in event processing. We implement such architecture and
data representation models, handling different data formats, and supporting a semantics-based data
model. Finally, we discuss the effectiveness of a S mart Event-based Middleware (SEMi) and present
empirical results regarding a performance evaluation of SEMi.

Keywords: smart city; event-driven architecture; event processing; heterogeneity; interoperability;
scalability

1. Introduction

Due to the rapid growth of the global population urban density, there has been a great
challenge in many cities to define smarter ways to manage the increasing number of issues
generated as a consequence of the growth [1,2]. Additionally, the COVID-19 pandemic,
since its emergence in late 2019, has given momentum to smart city paradigms exploiting
the potential utility of smart city solutions for dealing with the crisis [3,4]. Over the last
decade, smart city has emphasized ICT infrastructure with a focus given to the use of
digital technologies such as the Internet of Things (IoT), artificial intelligence (AI), deep
learning, and cloud computing. It mainly deals with the issues resulting from a growing
urban population and the need to make cities smarter through the effective management
of infrastructure. Currently, the smart city paradigm has changed. The concept of smart
cities has been viewed alongside ideas of holistic and sustainable development [1,2]. It has
focused on collaborative communities in which citizens, businesses, knowledge institutions,
and municipal agencies are working together to achieve systems integration and efficiency,
citizen engagement, and sustainable improvements in quality of life [3].

In this context, smart city platforms are evolving into several distributed systems
engaged in dynamic environments such as the integration and interaction of huge volumes
of data derived from various sources or some existing infrastructures owned by multiple
different organizations [5,6]. Typically, smart city systems are carried out in a heteroge-
neous, distributed, isolated, and non-standardized way where data from pervasive sensors
are individually processed with their own systems. In the real-world urban space, the

J. Sens. Actuator Netw. 2023, 12, 12. https://doi.org/10.3390/jsan12010012 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan12010012
https://doi.org/10.3390/jsan12010012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0003-1785-4646
https://orcid.org/0000-0002-5339-9305
https://doi.org/10.3390/jsan12010012
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan12010012?type=check_update&version=1

J. Sens. Actuator Netw. 2023, 12, 12 2 of 20

integrated infrastructures with common services in several domains of a city such as public
safety and security, transportation, healthcare, environment monitoring, energy, and so
forth are useful [1,7]. For example, daily weather information combined with data from
some accident monitoring sensors, deployed along the roads, can provide a glimpse of
the real-time traffic state within the city and enable planning ahead, e.g., for public trans-
portation policies and transportation improvements. Hence, smart city platforms need to
address important concerns including the integration of data from heterogeneous sources,
the interoperability with the dynamicity of multi-domain contexts, and the enhancement of
event-based processing for analytics.

Recent work has proposed and considered a set of platforms aiming to support the
development of smart city applications. It seems that most of them involved collecting,
managing, analyzing, and correlating existing data to extract new information useful to
the city, but they do not integrate a diversified set of services and react to events on the fly.
Moreover, the application development facilities provided by them seem to be limited and
might not help deal with the complexity of handling a range of urban data.

The contributions of this paper are threefold:

1. A proposal of an event-based architecture with components that meet important
requirements for smart city platforms, supporting increased demand for scalability,
flexibility, and heterogeneity of event processing;

2. Discussions on the implementation of such an architecture and data representation
model, handling different data formats, and support for semantic-based data models;

3. Discussions on the effectiveness of a Smart Event-based Middleware (SEMi) and
presentation of empirical results regarding a performance evaluation of SEMi.

Our approach presents several advantages, as compared with the state-of-the-art. First,
the approach focuses on providing services that remove the burden and complexities of
extracting information from heterogeneous data sources. Second, our proposed architecture
goes beyond the provision of a tool for smart city management by enabling the development
of information services with data interoperability, scalability, real-time processing, spatial
functionality, security, and semantic querying. Third, our event-driven processing approach
seamlessly integrates complex event processing as well as spatiotemporal analytics into
a smart city platform. Lastly, our event-driven processing approach provides a generic
workflow for the detection of geographic events at different levels of abstraction.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes in detail the SEMi architecture of our proposed solution, while Section 4
presents the design of the event city metadata model. Section 5 provides details about
the implementation of SEMi. Section 6 presents the results of computational experiments
aimed to evaluate the performance and the potential for scalability of SEMi. The concluding
remarks are made in Section 7.

2. Related Works

Even though smart cities have been presented in research and industry for over a
decade, there is still no common agreement on the particular models that make cities
smarter. Several different projects have addressed smart cities presented in the literature,
mostly focusing on infrastructure, data collection, and aggregation, or on specific ser-
vices [8,9]. The development of smart city solutions indeed demands a multidisciplinary
perspective, and it often requires the integration of multiple technologies [10–12].

Recently, there have been research surveys [13–15] discussing software platforms and
reference architectures that provide frameworks and tools for designing and implementing
applications in smart cities. Santana et al. [13] reviewed the state of the art regarding a
reference architecture for smart city software platforms. They extracted the main require-
ments, components, and features derived from existing smart city platforms, and then
identified the most common functional and non-functional requirements for facilitating the
development of smart city applications. Moreover, other works [14,15] have mentioned the
architectural characteristics of frameworks and identified the extended key requirements

J. Sens. Actuator Netw. 2023, 12, 12 3 of 20

in a smart city to guide the design of reference architectures for smart cities such as hetero-
geneity, distributed sensing and processing, resource discovery, resource constraint, event
management, and user involvement. A summary of how some existing proposals in the
context of smart city platforms meet those functional and non-functional requirements are
shown in Table 1.

SGeoL [16] is a middleware framework that provides high-level abstraction related
to the development of smart city applications such as heterogeneity, scalability, data man-
agement, geolocation information, security, and privacy issues. The platform is composed
of several core nodes that integrate other platforms and applications providing relevant
services into the city. SGeoL enables correlating geographic information with data from
different domains and organizing them into layers according to a semantic data model.
ATCLL [17] is a smart city platform for integrating heterogeneous sources of information
including mobility data, environmental data, or even network data. It supports a real-time
distributed processing system. The core data platform is able to manage the collected data
for internal and third-party access, and process the data through real-time and predicted
data. Nonetheless, SGeoL and ATCLL do not provide event-driven applications seamlessly
integrating complex event processing, and spatiotemporal analytics.

5G-SCSP [18] is a platform that gathers data from 5G-based CCTV media and makes
it available through different open APIs, allowing the development of different services
on top of the platform. Although 5G-SCSP provides the platform supporting situation
awareness processing and sharing data over open API, the concept of data integration
with semantic support for structuring data does not occur. Another work in [19] refers to
CityAction as the design and development of an integrated platform that combines city
data from different sources, producing information for more efficient urban management,
contributing to better citizens’ life quality, and a more sustainable environment. In addition,
the platform provides data in an open format, to facilitate the creation of services by third
parties. Even though CityAction provides monitoring, analysis, and correlation of events
from multiple sources, it does not concern data integration or formalization of contextual
entities and situation awareness for detecting events from streaming data.

SCDAP [20] is a framework based on the characteristics of big data analytics frame-
works applied in smart cities. This work studied three different aspects that include design
principles, enabling technologies, and application domains so as to identify the character-
istics of the big data frameworks in smart city platforms. The framework proposed three
layers including the platform layer, security layer, and data processing layer. The main
feature of this architecture is limited to the Apache Hadoop suite as an underlying data
storage and management layer. The separation between SCDAP functionalities and the
underlying data storage and management layer will add enhancement to the generality
of SCDAP and its ability to deal with many other platforms. However, this work still
has limited event discovery and analytical data models from multiple devices/platforms.
RASCA [21] is a generic architecture for smart city applications driven by event-based
systems. This framework provides event processing capabilities for detecting geographic
events in real-time processing and analysis. RASCA also achieved interoperability between
the sensor and service layers by adopting open standards. However, it is noted that this
work still has limited event discovery and data analysis on large-scale distributed smart
city data streams.

Nowadays, event-driven architecture becomes the core of a data movement and
management strategy for any smart city. Because smart city infrastructures are dynamic
and rely on real-time data movement, smart city platforms need to be built on event-driven
mechanisms to reach their potential. Several works have addressed the event detection
problem in smart cities. Most of the approaches focused on the processing time to detect
events with geospatial characteristics [21–24]. Alvarez et al. and Khazael et al. [21,23] utilize
a middleware to collect sensor data and apply event processing schemes to analyze the
data can achieve real-time processing capabilities and detect geographic events. Moreover,
the studies in [22,24] have focused on enhancing CEP features such as event definition

J. Sens. Actuator Netw. 2023, 12, 12 4 of 20

rules, pattern matching, and stream processing. Their aim is to identify spatial events near
real-time by considering CEP engines in their approach.

Table 1. Architectural characteristics of some smart city platforms.

Requirements Smart City Platforms
SGeoL ATCLL 5G-SCSP ActionCity SCDAP RASCA

Functional requirements
Data management X X X X X X
Application runtime X X X
Sensor management X X X X X
Data processing X X X X X X
Service management X X X X X X
Software engineering tools X X X X X X
City model X X X X X X
Historical data X X X X X X
Distributed sensing and processing X X X
Resource discovery X X X X X X
Resource management X X X X X X
Event management X X
Non-functional requirements
Interoperability X X X X X X
Scalability X X X X
Real-time processing X X X X X X
Security and privacy X X X X X X
Context awareness X
Adaptation X X X X X X
Extensibility X X X X X X
Configurability X X X X X X
User Involvement X

3. SEMi Architecture

The proposed architectural model, based on middleware for event-driven applications,
is called Smart Event-based Middleware (SEMi). To support the increasing demands of
scalability, flexibility, and heterogeneity for event processing, the SEMi architecture is
composed of several hierarchically interconnected modular components organized in a
distributed way. Open protocols including SensorThings, HTTPs, stream API, and OAuth
are adopted in its development, for the underlying middleware infrastructure. SEMi is an
open, generic platform aimed to support the development of smart city applications for
different domains through general-purpose components. For instance, the domain of envi-
ronment can gather data about environmental parameters such as air/noise pollution and
weather conditions from various areas to detect geographic events of environment moni-
toring, whereas the public safety domain can aggregate street surveillance of registered car
accidents. Moreover, the architecture enables users to graphically compose comprehensive
event-triggered rules, which can be used to identify situations from monitored devices. For
the definition of a rule set, users can independently define event conditions, event patterns,
and correlation-related information which can be combined for event modeling in complex
situations.

Figure 1 depicts the SEMi architecture. It is composed of several distributed compo-
nents that collaborate with each other to provide important functionalities to smart city
applications. The architecture is basically organized in two layers, namely (i) the SEMi
core layer which represents all the essential services of an event-driven scheme in smart
city applications, and (ii) the SEMi infrastructure layer, which represents the underlying
middleware services used by SEMi core. We provide the functional description of each
layer in the following sections.

J. Sens. Actuator Netw. 2023, 12, 12 5 of 20

API
Manager

Integration
Controller

Integration
Service

Historical

Observation Event Rules

Event

Repository

CEP
Engine

Event
Query Interface

REST
API

Report
Engine

Backend

Visualisation

UI
Editor

UI
Components

Dashboard

Application Interface

Event
Mapping

Event
Modelling

Event
Message
Broker

Event
Stream

Manager
Event

Handler

Event Core

User

Configuration
Geographic
Database

Security Manager

SEMi

IOT Devices

Crowdsourcing

Third-Party Systems

HTTP-Enabled Devices

People and Organizations

City Admins/Developers

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 1. Smart Event-based Middleware (SEMi) architecture.

3.1. SEMi Core Layer

The SEMi core consists of four main components: (i) Integration Service component
provides functionality to integrate data from multiple sources/systems with SEMi, with
support for importing data provided by RESTful APIs, JSON, and CSV files; (ii) Event Core
component provides the main functionalities of SEMi; (iii) Application Interface component is
responsible for the SEMi dashboard, which enables users to query data/event and visualize
dashboards; (iv) Security Manager component is responsible for protecting data managed
by SEMi.

3.1.1. Integration Service

This component involves the integration of data derived from various sources spread-
ing across the cities. It allows (i) importing data from multiple platforms, including IoT
devices/sensors related to urban environments (e.g., weather, pollution, traffic, waterways,
POI, and so on), other data capturing devices/citizens (e.g., smartphone, vehicles, social me-
dia, crowdsourcing, etc.), data from different sources such as Web service, open data portals
in several formats (e.g., CSV, JSON, XML, RDF), and data provided by third-party plat-
forms (e.g., governmental, non-profit, or academic sources, etc.); (ii) managing APIs from
third-party providers and identifying access tokens of users/applications via the HTTP
request connected to SEMi; and (iii) parsing and modeling according to the Event-driven
City Data Model (ECDM) format making data available to the Event Core component. The
Integration Service component can break into two sub-components: (1) API Manager oper-
ates as the API gateway connecting data from external sources through their APIs with the
existing identity access or tokens, thereby making data available to other components and
(2) Integration Controller is responsible for converting (and modeling various data sources)
to the ECDM format available for the Event Core component and providing discovery and
access to observations and metadata of devices/platforms registered with the services.

3.1.2. Event Core

The Event Core that is in charge of managing event processing provides the main
functionalities of SEMi for connecting users to sources of data. There are several sub-
components that include (1) Event Modeling parses an event declared by the user in the
ECDM format and then generates an event definition and a detection rule. These event
conditions are optionally stored in the event repository and the event rule storage for reuse;
(2) Event Handler Event Handler controls the instantiation of resources to detect events
and detection rules in the Complex Event Processing (CEP) engine. Event Handler is the
core function of Event Core for managing and cooperating with other sub-components
including repositories/databases; (3) Event Stream Manager connects to the Integration
Service component to request observations that meet the attributive, spatial, and temporal
properties required for event definitions. Additionally, it provides communication channels
to push data streams to the CEP engine during runtime; (4) Event Message Broker acts as the

J. Sens. Actuator Netw. 2023, 12, 12 6 of 20

mediating message exchange between the Integration Service and the CEP Engine, allowing
the analysis of large volumes of streaming events; (5) Event Mapping is responsible for
transforming the event definitions and incoming stream data to the event format defined
in the CEP and used for data processing in the CEP Engine.

3.1.3. Application Interface

The SEMi Application Interface aims to provide end-users with a Web interface for
event/graphical querying and visualizing context entities over the city’s urban space. It
aggregates two sub-components, namely (i) the Event Query Interface and (ii) the Visualization
Dashboard. The Event Query Interface enables users to create event declaration and event
queries with a graphical interface. In the interface, the event specification including a set of
attributes, devices/sensors, spatial, temporal characteristics, and event rules is declared
by the users using a formal specification mechanism, i.e., a well-defined set of properties
and values. Those events and domain specifics are transferred and subscribed through
the Event Core component. The Visualization Dashboard is a reporting service enabling a
push service to manage the results/notifications between the CEP and the report engine
sub-component. In this service, a RESTful API provides a standard interface for responding
to the notifications of specific events. The notification history includes functionality for
archiving and retrieving historical notifications; this functionality is essential for this
component as it requires access to historical records of events.

3.1.4. Security Manager

This component is responsible for protecting data and managing user access. The
SEMi-implemented security features are based on the user’s roles, access policies, and the
OAuth protocol. All requests are sent to the SEMi via the Application Interface component
to ensure that only authenticated and authorized users can access them. The access tokens
of users/applications are received over HTTP requests and are sent to the Security Manager
component for validation. A set of suitable security policies allows SEMi to restrict the
notifications only to the users that have subscribed with appropriate credentials. In this
regard, the data can be securely protected and only authorized users can access them.
Moreover, for the report service, the system also uses data encryption via HTTPS.

3.2. SEMi Infrastructure Layer

This layer represents the underlying middleware services used by the SEMi core layer.
There are four key components: (i) the Data Sources involves various sources of data
in multiple platforms spread across the city. The Data Sources may include IoT sensors
related to urban environments and other data capturing devices/citizens including mobile
apps, social media, third-party data, HTTP-enabled devices, etc.; (ii) the Data Manager is
responsible for dealing with all requests and streams of data received via the Application
Interface, Event Core, and Integration Service, besides providing access to databases and
supporting the synchronization of stored data. The SEMi uses a set of databases to store
data. Hence, this component functions to manage the persistence of data and event streams.
For instance, all observation data is collected in the Historical Observation Database
whereas, in the Geographic Database, the geographic information is separately stored
and used to query with geographic data processing. The Event Rules Database stores
the rules provided by users for detecting the incoming streams of data, besides the Event
Repository performing data analysis in the CEP and the visualization dashboard; (iii) the
Users, playing a vital role in SEMi, adopt two roles: (1) city administrators/developers who
are behind the need for information focusing on monitoring/detecting the current status of
a city, performing general/advanced event queries for people or organizations, advanced
visualization settings with the SEMi visualization dashboard, configuration data access
policies, executing and scheduling data import tasks, etc.; (2) people and organizations
who are general-purpose users that are typically transient and respond to the needs and
desires of individuals or the public sector; those are able to use SEMi with data edit, event

J. Sens. Actuator Netw. 2023, 12, 12 7 of 20

querying and visualization capabilities; and (iv) the CEP Engine component is responsible
for real-time event processing received by SEMi to identify the occurrence of complex
events.

4. The Event-Driven CITY Data Model (ECDM)
4.1. The Conceptual Model

The main contribution of this section is to propose a data model supporting inter-
operability which is an essential requirement for event-driven smart city solutions. The
proposed data model, called the Event-driven City Data Model (ECDM), is inspired by the
Open Geospatial Consortium (OGC) SensorThings data model that is currently an OGC
standard. In an attempt to solve the problem of interoperability, a platform-independent
and model-driven approach for event processing has been proposed. A key to building the
ECDM expressing and simulating event-driven processes includes not only the elements but
also a description of their relationships. A form of the conceptual data model is displayed
in Figure 2. The core of the model is centered around the Event that represents a simple
event derived by data streams (DataStream) and it is composed of properties/features
(EventProperty) in a specific domain (DomainEvent). DomainEvent is derived by mapping
raw events to domain concepts. Then, it is synthesized into Status, which describes the
overall relationship of events in such a domain. Based on the Status, the ActionEvent plays
a role in the planning step which yields a sequence of actions appropriate to the Actuator
or a certain situation. Event entity also links to the DataStream representing a sequence of
one or more Observations belonging to a Sensor or a source of data.

Event

Event
Property

Domain
Event

Status

Action
Event

DataStream

Observation

Thing

Event-Driven City

subscribebelong to

has status

cause has property belong to

observe

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 2. The conceptual model for ECDM.

Moreover, the proposed metamodel of the ECDM is described in detail, depicted in
Figure 3. The language concepts and relationships between them are defined, as well as the
restrictions for model elements and their relationships in order to ensure compliance with
domain rules. A Unified Modeling Language (UML) class diagram is used to represent
this conceptual data model. UML is able to describe a design of class hierarchies and their
interacting relationships. It is also able to include and express the semantics of event data.
The meta classes of ECDM and their relationships are described as follows:

• Event is the main meta class describing an event detecting the relevant or critical
situations for a particular domain. The event instance contains event-id, name, and
description. It corresponds with the DataStream and the Sources; each event instance
can subscribe to data streams and sources whereas each data stream or source can
be subscribed to by one or more event instances. Additionally, to provide event
information, EventProperty can be used.

• EventProperty is used to classify the event instance and describe the event character-
istics. The EventProperty includes event description, time, location, and conditions.
The condition is a very important part of the EventProperty, and it is composed of its

J. Sens. Actuator Netw. 2023, 12, 12 8 of 20

own condition and the environmental condition of the data streams located in the
EventProperty subscription. For instance, an event condition can identify high traffic
density, traffic congestion, or a blocked road in the traffic control event. Moreover, a
property can contain one or more properties, i.e., the definition of nested properties is
supported.

• DomainEvent is described by the events or the situations that occur within a domain or
a group of events in the specific region; therefore, DomainEvent is composed of one or
more events in the same domain group. For example, considering an emergency fire
situation as the domain of interest, measuring the changes in the atmosphere such as
the temperature level, smoke level, and gas level will be the relevant events. For every
domain, it is necessary to specify its name, temporal, spatial, timestamp, and method
of returning data operation results.

• Status is the meta class that defines the relationship among the events of the particular
domain. Each Status has an event pattern describing the situation which has to be
detected from a sequence of events that occur over a period of time in a specific area.
The event pattern can be defined by some basic operators of an underlying algebra:
the sequential operator E1;E2, a conjunction operator E1∧E2, the disjunction operator
E1∨E2 and a negation operator ¬E1.

• ActionEvent is the meta class that performs actions in response to the domain event
according to a given condition in the status event. The actions of sense and respond
rules generate response activities, which can be used for triggering business activities
or evaluating further rules such as notify(), alert(), createDashboard().

• Actuator is the entity that receives the action and transforms it into physical or digital
forms to perform a specific task.

DataStream

+name: CharacterString
+description: CharacterString
+observationType: ValueCode
+unitOfMeasurement: JSON_Object
+observedArea: GM_Envelope[0..1]
+phenomenonTime: TM_period[0..1]
+resultTime: TM_period[0..1]

Source

+name: CharacterString
+description: CharacterString
+enCodeType: CodeValue
+metadata: Any
+attributes: JSON_Object

Event

+event_ID: CharacterString
+name : CharacterString
+description : CharacterString
+sources: JSON_Object

Status

+name: CharacterString
+description: CharacterString
+eventPattern: JSON_Object
+callAction()

DomainEvent

+name: CharacterString
+description: CharacterString
+temporal: JSON_Object
+spatial: GeoJSON
+timestamp: TM_instant
+resultMethod: Any
+callAction()

ActionEvent

+name : CharacterString
+description: CharacterString
+notify()
+alert()
+createDashboard()

0..*

+sensor

+datastreams

+subscribedBy

+subscribe

1..* +subscribedBy

0..*

Actuator

+name : CharacterString
+description : CharacterString
+metadata: Any

EventProperty

+name: CharacterString
+description: CharecterString
+eventTime: TM_period[0..1]
+location: GeoJSON
+condition: JSON_Object1 1..*

1

+subscribe1..*

0..*

1..*

1..*

+hasProperties

+referencedEvent

+belongTo

+aggregate

1..* 1

+basedOn

+hasStatus

+reactOn

+cause

0..*

1..*

0..*

1..*

+reactOn

+cause

1..*

+usedBy+use

0..*

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 3. The meta classes of Event-driven City Data Model (ECDM) for smart city and their
relationships.

J. Sens. Actuator Netw. 2023, 12, 12 9 of 20

4.2. Data Modeling Scenario

We apply the ECDM to a case study that illustrates how entities and events may be
modeled for a specific domain. The example case scenario is an air pollution domain, where
the two particular situations including PM2.5 and carbon monoxide in certain areas are
going to be considered. From the conceptual model in the previous section, Figure 4 shows
how different aspects of the air pollution domain can be modeled via class entities. The
DomainEvent entity is given the details of the air pollution domain, especially time (e.g.,
2022-04-30:8.00AM–2022-04-30:9.00AM, collecting data every 5 s) and space (e.g., “Trang”).
In addition, it utilizes “Average” as a method to process the results. In order to monitor
the air quality, two events are associated with this domain including the event monitoring
PM2.5 (E1) and the event detecting carbon monoxide (E2). Each event entity contains a
general description (such as even-id, name, description) and gathers data streams from
different heterogeneous sources (such as sensor, social media, csv-file).

event_id: E1

name: Event PM2.5

sources: [{type": sensor, source_id:PM2_5a01}

 {type: csv, source_id":webPM2_5a01}]

Event

name: Air Pollution

temporal: 2022-04-30T09:00:00.000Z

timestamp: 2022-04-27T08:00:00.000Z

result Method: average

spatial: [type: Polygon coordinates: 99.6,7.5...}

DomainEvent

name: Event PM2.5

eventTime":2022-04-30T08:27:00.000Z

condition: {field: PM2_5, operator: >, value: 90

spatial: [type: Polygon coordinates: 99.6,7.5...}

EventProperty

event_id: E2

name: Event CO

sources: [{type": sensor, source_id: Co01}

Event

name: Event CO

eventTime":2022-04-30T08:27:00.000Z

condition: {field: CO, operator: >, value: 10

spatial: [type: Polygon coordinates: 99.6,7.5...}

EventProperty

name: status for air pollution

eventPattern:

 and: event_id: E1

 event_id: E2

Status

name: PM2_5a01

enCodeType: application/pdf

metadata: pm25-air-quality-sensor.pdf

Source

name: webPM2_5a01

enCodeType: application/pdf

metadata: pm25-air-quality-sensor.pdf

attribute: {url":" weather_data.csv ,authen:

username:"", password:""}

Source

name: CO01

enCodeType: application/pdf

metadata: co-air-quality-sensor.pdf

Source

Figure 4. The data modeling scenario in an air pollution domain.

These events must have a condition component so they are modeled as EventProperty,
inheriting their properties. The conditions “PM2.5 > 90 µg/m3” on the PM2.5 event and
“CO > 50 ppm” on the CO event are set so that data streams with the measured values of
PM2.5 and CO in the air are received. The condition component provides the capability of
detecting if data streams are relevant according to measured values and a given location.
The overall relation of each event in a particular domain occurs in the Status entity. In
this scenario, the event pattern in the air pollutant domain is defined as “E1 and E2”.
Finally, the Status entity and DomainEvent entity are transformed into ActionEvent including
information about action plan registration, e.g., alert, notify, or show on the dashboard;
then those actions will be responded to by the particular Actuator.

The ECDM conceptual modeling is adopted in the SEMi architecture by using JSON
encoding. By doing this, SEMi achieved interoperability between the sources/sensors and
service layers by adopting open standards—JSON/REST API. The Listings 1 and 2 are
excerpts of a JSON file from the above scenario.

J. Sens. Actuator Netw. 2023, 12, 12 10 of 20

Listing 1. JSON array: DomainEvent Entity.

{{ "name": "Air Pollution",
"description": "Measure Air Pollution - PM2.5 & CO",
"temporal": [{

"type": "continuous",
"phenomemontime": "2022-04-30T08:00:00.000Z/2022-04-30T09:00:00.000Z",
"interval": 5000 }],

"timestamp": "2022-04-27T08:00:00.000Z",
"resultmethod": "average",
"spatial": [{

"name": "Khuan Pring",
"description": "Khuan Pring District, Trang, Thailand",
"geometry": {

"type": "Polygon",
"coordinates": [[
[99.57887649536133,7.528936045973436],
[99.59054946899413,7.528936045973436],
[99.59054946899413,7.542380172130726],
[99.57887649536133,7.542380172130726],
[99.57887649536133,7.528936045973436]]]}}],

"status": {
"name": "event status for air pollution",
"description": "event stature Air Pollution - PM2.5 & CO",
"eventPattern": {

"and": [{"event_id": "E1"},{"event_id": "E2"}]}}}

Listing 2. JSON array: Event E1 entity (PM2.5).

{ "event_id": "E1",
"name": "Event PM2.5",
"description": "Event to measure air pollution PM2.5",
"sources": [{

"type": "sensor",
"source_id": "PM2_5a01"},

{ "type": "csv",
"source_id": "webPM2_5a01"}],

"eventProperty": {
"name": "condition PM2.5",
"description": "....",
"eventTime": "2022-04-30T08:27:00.000Z",
"condition": {

"field": "PM2_5",
"operator": ">",
"value": "90"},

"location": [{
"name": "Khuan Pring",
"description": "Khuan Pring District, Trang, Thailand",
"geometry": {
"type": "Polygon",
"coordinates": [[

[99.57887649536133,7.528936045973436],
[99.59054946899413,7.528936045973436],
[99.59054946899413,7.542380172130726],
[99.57887649536133,7.542380172130726,
[99.57887649536133,7.528936045973436]]]}},

{"name": "Na-yong",
"description": "Na -yong District, Trang, Thailand",
"geometry": {
"type": "Polygon",
"coordinates": [[

[99.59484100341797,7.535232713975206],
[99.60016250610352,7.525872769006524],
[99.60256576538086,7.535573071800809],
[99.59484100341797,7.535232713975206]]]}}]}

}

J. Sens. Actuator Netw. 2023, 12, 12 11 of 20

5. Implementation

In the proposed architectural model, the SEMi components were implemented by
integrating several technologies. All these technologies are able to cooperate seamlessly
and have been used in many successful cases. The SEMi core, implemented in the Python
programming language, acts as a middleware service (an HTTP server) that is responsible
for handling incoming service requests and formulating appropriate responses to the
application interface. This core component is carried out by several Python modules which
automate the processes of instantiating an event for each phenomenon in the system. For
example, they can take event declarations from the event query interface as input and
generate event definitions and detection rules in order to observe the incoming data streams,
and then deploy the configuration of requirement parameters to the CEP engine.

In SEMi core, the Event Message Broker component is capable of controlling the
streaming of observations between the Integration Service and the CEP engine through
Apache Kafka (https://kafka.apache.org/, accessed date 19 January 2023) , a distributed
and scalable message broker. Kafka is able to handle a huge number of data streams
in real-time in a fault-tolerant way occurring in a publish-subscribe fashion. The CEP
Engine component is, respectively, realized by the WSO2 Complex Event Processor (https:
//wso2.com/products/complex-event-processor/, accessed date 19 January 2023) (WSO2
CEP). The WSO2 CEP, built with the Siddhi CEP Engine, contributes to real-time complex
event detection for streaming processing. The WSO2 CEP server exploited SiddhiQL, a
SQL-like language providing a familiar syntax for writing queries, for specifying detection
rules. WSO2 CEP can be easily integrated into Apache Kafka towards enabling the analysis
of large volumes of data. The SEMi core interacts with Apache Kafka through TCP/IP-
enabled Python libraries. Similarly, Apache Kafka communicates with the WSO2 CEP
components through Python modules.

In importing data into the Integration Service component, the implemented middle-
ware allows importing data from various sources such as files, Web services, RESTful API,
etc. Then, this component converts data formats and makes them available to smart city
platforms. Currently, the Integration Service allows importing data provided by third-party
RESTful APIs and CSV files to SEMi. For the Sensors API service, we used the FROST
server implementing the SensorThings API standard. The SensorThing API offers built-in
spatial and temporal filters and query functions to retrieve data from sensing devices using
HTTP requests. In terms of databases of the SEMi infrastructure layer, NoSQL database,
Geographic Database, and Event Rules were, respectively, concretized by MongoDB, Post-
greSQL with the PostGIS extension, and File Systems to manage data and information
whereas MariaDB had been used for Historical Observation, Event Repository, and User
Configuration. All of these database management systems are consolidated and widely
used in both industry and academia.

The SEMi application interface, shown in Figure 5, was implemented in a Python
module using the Flask web framework as server-side development whereas the SEMi
visualization dashboard was implemented in the JavaScript and the Vue.js framework.
JavaScript libraries are used to manage and edit geographic points on the map. The
SEMi Dashboard provides a user interface that interacts with the SEMi core, thereby
enabling users to perform event queries and view graphs and time series of event detection.
Eventually, the SEMi implemented Security Manager features between the following
components. Between the sensing sources and the Integration Service, we implemented
basic access authentication over HTTP, using a user name and password; between the
Event Core and the CEP Engine, we implemented SSH over TCP/IP using public keys; and
between the CEP Engine and the Application Interface, we used data encryption using
HTTPS.

https://kafka.apache.org/
https://wso2.com/products/complex-event-processor/
https://wso2.com/products/complex-event-processor/

J. Sens. Actuator Netw. 2023, 12, 12 12 of 20

(a) Creating domain specification (b) List of domains (c) Identify geographic regions

(d) Results displayed by the Visualization Dashboard.

Figure 5. Screenshots of a web interface of the SEMi application for graphical querying and visualized
context entities.

6. Performance Evaluation

In this section, empirical experiments were carried out to assess the performance and
the potential for scalability of our SEMi framework subject to a number of data streams
and requests. The experiments simulated data streams and requests related to devices
producing data through HTTP requests. All the experiments considered only the SEMi Core,
the main component of the overall architecture as mentioned in Section 3. The purpose of
the simulation presented in this section is two-fold: (1) to evaluate the performance of the
SEMi architecture including throughput, response time, and latency; and (2) to optimize
the performance of the SEMi framework, especially in a large-scale data stream processing
setting, making it more efficient and effective.

The performed experiments aimed to evaluate the potential for scalability of SEMi
considering a smart city scenario with varying workloads. Two main computational
experiments were carried out. Experiment 1 explored the detection and data throughput
processed by SEMi on the underlying computational infrastructure. Experiment 2 assessed
the performance improvement faced by SEMi upon multiple concurrent requests. The
following sections describe the operation of these experiments and the obtained results. The
scripts used to run the experiments are publicly available at GitLab (https://gitlab.com/
jurairatb/semi-experiments/accessed date 19 January 2023). For statistical significance, all
the experiments run 10 times for each explored scenario.

https://gitlab.com/jurairatb/semi-experiments/
https://gitlab.com/jurairatb/semi-experiments/

J. Sens. Actuator Netw. 2023, 12, 12 13 of 20

Experiment 1: Data streams detection and throughputs.
Experiment 1 aimed to determine the successful detection of a simple event by mon-

itoring the number of notifications displayed by the SEMi app. We accounted for the
response of SEMi to a high data throughput by controlling the number of data streams
processed through the system. To perform the experiment, we defined a simple event as
an event query to monitor the temperatures above 35 degrees Celsius in the area around
the center of Trang city, Thailand. We also used two different types of sources to generate
streams of data including IoT sensors (SensorThings) with a given geographic area and
HTTP-enabled devices (Plain Text) in JSON format.

Regarding IoT devices, 100,000 temperature sensors were simulated with real-world
geographic information representing the urban space of Trang and randomly produced
the same number of data streams through HTTP requests. Such data streams were regis-
tered and retrieved from the FROST Server which is the server implementation of OGC
SensorThings API. FROST Server had been installed on the Azure Virtual Machine Scale
Sets as sensing services providing built-in spatial and temporal filters and query functions
to retrieve data. On the other hand, the data streams generated by HTTP-enabled devices
were ready in a JSON file as a dataset of temperature data containing information about
the spatial and temporal patterns of the occurrence of geographic events.

For this experiment, simulated data streams were created by a script that was executed
in Apache JMeter, a tool widely used to perform load and stress tests, generating as many
data streams as possible to the SEMi core. These streams were related by only one request.
The computational environment was set up in Azure virtual machines cloud platform
including a total of 4 VMs (Virtual Machines) and 2 VMSS (Virtual Machine Scale Sets) as
follows: one VM to deploy the requests/events, one VMSS to deploy the SEMi core (default
one VM instance); one VMSS to deploy the FORST server (default five VM instances); one
VM to deploy the WSO2 CEP server; one VM to deploy MongoDB with data replication;
and one VM to deploy PostGIS. The VMs and VMSS used in Experiment 1 had the following
configurations: the VMSS for SEMi core, the VM for users’ requests and WSO2 CEP server
using Windows Server 2019 as an operating system with 2 VCPUs, and 8 GB of RAM;
the others using Linux Ubuntu Server 20.04 LTS as operating system, 2 VCPUs, and 8 GB
of RAM.

To evaluate the performance of SEMi core handling incoming data streams from
multiple sources, we had two observations in this experiment including the number of
throughputs per second (ds/s) and the execution time of the SEMi core. Figure 6 shows the
comparison of the two different data sources including (1) data streams queried through
the FROST Server called SensorThings, and (2) data streams queried through a dataset in
JSON file format called Plain Text. Note that the size of a data stream in our experiment is
313 bytes per second. Figure 6a presents the number of throughputs per second proceeded
by the SEMi core comparing two sources with varying numbers of data streams ranging
from 20,000 data streams up to 100,000 data streams. Based on this study, it is apparent
that the more the number of data streams queried, the higher the throughput, i.e., data
retrieved per second, as we expected. The throughput in Plain Text increased greatly; it
increased from 4313 to 13,667 ds/s, while the throughput in SensorThings grew slightly,
increasing from 2341 to 2809 ds/s. Indeed, the throughput via Plain Text was, in this sense,
considerately higher than the throughput with SensorThings.

In our study, we also measured the time spent by the SEMi core operating incoming
data streams from multiple sources. In Figure 6b, we can see that two sources including
SensorThings and Plain Text shared the same trend that the higher the number of data
streams queried, the longer the time spent by the SEMi core processing. However, there
was a slight increase in the Plain Text when the number of data streams rose from 20K ds to
100K ds. For example, finding the execution time via the source of Plain Text with ds sizes
of 20K, 40K, 60K, 80K and 100K was 4.60, 5.50, 6.20, 6.47, and 7.32 s, respectively. Note
that at the number of data streams between 20K and 100K ds in SensorThings, the time for
proceeding data streams increased greatly between 8.55 and 35.60 s. This also indicates

J. Sens. Actuator Netw. 2023, 12, 12 14 of 20

that the source from SensorThings takes a much longer time to execute streams of data
compared to the other source.

0 20k 40k 60k 80k 100k
0

5

10

15

20
·103

The number of data stream (ds× 103)

T
h
e
n
u
m
b
er

o
f
th
ro
u
g
h
p
u
t
(d
s/
se
c)

SensorThings

Plain Text

(a) The relationship between the number of throughput and the number of
data streams

0 20k 40k 60k 80k 100k
0

10

20

30

40

50

The number of data stream (ds× 103)

E
x
ec
u
ti
o
n
T
im

e
(s
ec
)

SensorThings

Plain Text

(b) The relationship between execution time and the number of data streams

Figure 1: The comparison between two different data sources 1) SensorThings, and 2) Plain Text in two metrics including
throughput and execution time

1

(a)

0 20k 40k 60k 80k 100k
0

5

10

15

20
·103

The number of data stream (ds× 103)

T
h
e
n
u
m
b
er

o
f
th
ro
u
g
h
p
u
t
(d
s/
se
c)

SensorThings

Plain Text

(a) The relationship between the number of throughput and the number of
data streams

0 20k 40k 60k 80k 100k
0

10

20

30

40

50

The number of data stream (ds× 103)

E
x
ec
u
ti
o
n
T
im

e
(s
ec
)

SensorThings

Plain Text

(b) The relationship between execution time and the number of data streams

Figure 1: The comparison between two different data sources 1) SensorThings, and 2) Plain Text in two metrics including
throughput and execution time

1

(b)

Figure 6. The comparison between two different data sources (1) SensorThings, and (2) Plain Text in
two metrics including throughput and execution time: (a) The relationship between throughput and
the number of data streams; (b) The relationship between execution time and the number of data
streams.

Moreover, of note is that the increases are linear or sublinear, so our framework is (in
this sense) scalable, with respect to the number of data streams.

Experiment 2: Multiple concurrent requests
Experiment 2 assessed the performance improvement faced by SEMi upon multiple

concurrent requests. To conduct this experiment, we divided it into three sub-experiments;
(2.1) to measure the maximum number of requests/users; (2.2) to measure the response time
and the latency when limiting the number of requests; and (2.3) to assess the performance
degradation considering the increasing number of concurrent requests processed by SEMi
core. This experiment was implemented in the Azure virtual machines cloud platform
with the computational environment set up similar to the environment in Experiment 1.
However, the source from SensorThings is merely focused on this experiment because
sensing devices are the key component of the smart city platform, and this source could
make the environmental requests/queries as close as possible to real-world situations.

Experiment 2.1: Maximum number of requests
The maximum number of requests over multiple virtual machines (VMs) in a certain

time window of one minute processed by SEMi core was explored in this experiment.
To perform Experiment 2.1, a script was created to simulate the requests made by the
FROST server (SensorThings) connected to the SEMi core. The script was executed in
Apache JMeter generating as many concurrent requests as possible to the SEMi core. Each
of the requests carried out only one simple event connecting to SensorThings randomly
producing the same number of data streams (1000 ds per event query). In this experiment,
the number of deployed instances of the SEMi core was added to the infrastructure, and
all requests generated by the script were addressed to balance the workload with such
deployed instances. By doing so, it was possible to observe the potential for scalability of
SEMi core to handle an increasing number of requests when new computation resources
were added to the platform infrastructure.

Table 2 shows the findings of Experiment 2.1 in terms of concurrent requests per
minute handled by the number of instances (3 instances) of SEMi core. A single instance
was able to handle an average of 462 requests, two instances were able to handle an average
of 517 requests, and three instances were able to handle an average of 571 requests. These
results indicate that the number of requests processed by the SEMi core has increased with
the addition of new instances to the infrastructure of SEMi. In summary, it can be seen that
SEMi can deploy new computation resources to support a higher workload which is a vital
feature for smart city platforms.

J. Sens. Actuator Netw. 2023, 12, 12 15 of 20

Table 2. (The results of Experiment 2.1): the number of handled concurrent requests over multiple
deployed instances of SEMi core for one minute.

No.
of Instances

Minimum Throughput
(Request/min)

Maximum Throughput
(Request/min)

Average Throughput
(Request/min)

1 431.421 493.3944 462.892

2 499.5402 551.7732 517.37712

3 563.0754 591.6972 571.92648

To evaluate the performance improvement obtained by the SEMi core with the addition
of new resources to its infrastructure, speedup measures were explored in this experiment.
Speedup measures [25] one of the performance characteristics of a distributed system,
related to the relative performance executing a task performed on two similar architectures
with different resources. Therefore, the following equation is used to calculate speedup,
where S is defined as the ratio of the number of requests handled by j instances of SEMi
core, R(j), and the number of requests previously handled by i deployed instances, R(i).

S(j) =
R(j)
R(i)

(i, j ∈ {1, 2, 3} ∧ i < j) (1)

In the first scenario, the ratio between two instances (j) and one instance (i), the
speedup measurement was 1.12. Note that it obtained a performance improvement of
12% with the addition of a new VM to the underlying infrastructure. While the speedup
of the second scenario at three instances (j) with two instances (i) was 1.10 (+11%), the
observed speedup ratio was 1.24 (+24%) in comparison between three instances (j) and one
instance (i).

Experiment 2.2: the response time and the latency
We explored the time for response and the latency in this experiment in order to assess

the performance improvement resulting from adding new computational resources to the
infrastructure of SEMi. For this purpose, we conducted the experiment by creating a script
executed in Apache JMeter performing a fixed number of concurrent requests to the SEMi
core. The number of requests was set at 600 requests, the maximum number of concurrent
requests that VMSS is responsible for simulating (the results in Experiment 2.1) could
support. Similarly, the number of deployed instances of the SEMi core was added to the
infrastructure as in Experiment 2.1.

The response time for responding to the requests is shown in Table 3. The average
response time to requests was 34.797 s with a single instance of the SEMi core, being
reduced to 30.852 s with the use of two instances and to 22.748 s with the use of three
instances. In this experiment, speedup performance was also measured. The equation of
speedup measurement shows in the following; where speedup S is defined by the ratio of
the average response time spent by i instances of the SEMi core to process a fixed number
of requests, T(i), and the average response time spent by the next j deployed instances to
process the same number of requests, T(j).

S(i) =
T(i)
T(j)

(i, j ∈ {1, 2, 3} ∧ j > i) (2)

Comparing data obtained in the first scenario with the second scenario, an approxi-
mate speedup was achieved at 1.12. This means that the SEMi core obtained 11% of the
performance gains with the addition of a new VMSS to the underlying infrastructure. In
the third scenario, the observed speedup was approximately 1.36 (+26%) compared to the
second scenario, and approximately 1.53 (+35%) compared to the first one.

J. Sens. Actuator Netw. 2023, 12, 12 16 of 20

Table 3. (The results of Experiment 2.2): the response time (in seconds) handling concurrent requests
over multiple deployed instances of the SEMi core.

No. of Instances Minimum Time (s) Maximum Time (s) Average Time (s)

1 10.602 65.848 34.797

2 5.249 61.367 30.852

3 5.136 52.281 22.748

In addition, we also measured the latency that occurred during sending requests to
the SEMi core. The latency refers to the delay generated by transferring the data through a
communication network [26,27]. The latency is shown in Table 4. The average latency was
515.63 ms with a single instance of the SEMi core, being reduced to 70.60 ms with the use
of two instances and to 30.41 ms with the use of three instances. As a result, the SEMi core
obtained 86% of performance gains, comparing data obtained in the first scenario with the
second scenario. In the third scenario, the performance improvement was approximately
57%, as compared to the second scenario, and approximately 94%, as compared to the first
one. In terms of the scalability of our SEMi, the average latency through the components of
SEMi was compared with that of the GEDSys [21] middleware. The latency of our system
is far lower than that of the original GEDsys by approximately almost 50 times. These
findings suggest that the response time and the latency with the SEMi core tend to decrease
more when new computational resources are added to the platform infrastructure, i.e., it is
scalable, and it could support a higher workload and improve its performance, especially
for smart city applications.

Table 4. (The results of Experiment 2.2): the latency (in milliseconds) handling concurrent requests
over multiple deployed instances of the SEMi core.

No. of Instances Minimum Time (ms) Maximum Time (ms) Average Time (ms)

1 460.31 560.03 515.63

2 54.94 79.29 70.6

3 25.71 34.63 30.41

Experiment 2.3: The performance degradation
The purpose of this experiment is to assess the performance degradation confronted by

the SEMi core with multiple concurrent requests. To perform the experiment, the number
of instances deployed in the infrastructure of SEMi was fixed. A script generated the
number of concurrent requests varied from 100 to 1000 requests executed in Apache JMeter.
Moreover, three deployed instances were performed over the infrastructure to support the
SEMi core in this experiment. The simple event randomly produced the same number of
data streams, set up similarly to Experiment 2.1.

Table 5 presents the results derived from Experiment 2.3. These results show an
evident linear increase in the average response time, varying from 5 s in the best case to 53 s
in the worst case. Note that SEMi core is not significantly affected in its performance when
it is executed on a fixed infrastructure in terms of the number of computational resources
used. Therefore, the response time to requests linearly increases in a relatively predictable
way according to the workload over the platform.

J. Sens. Actuator Netw. 2023, 12, 12 17 of 20

Table 5. (The results of Experiment 2.3): the response time (in the second) handling concurrent
requests using three instances of the SEMi core.

No. of Requests Minimum Time (s) Maximum Time (s) Average Time (s)

100 4.973 8.198 5.989

200 4.48 25.768 16.698

300 5.194 42.331 20.226

400 4.271 48.058 21.578

500 4.327 50.535 22.366

600 5.201 53.16 29.997

700 5.364 65.612 30.802

800 6.011 67.205 35.85

900 9.901 92.85 39.77

1000 6.763 102.715 53.563

To summarize, Experiments 2.1 and 2.2 have shown that SEMi core can horizontally
scale to improve its performance and handle an increasing number of users making requests,
i.e., its distributed architecture enables new computational resources to be added to the
platform when needed. Experiment 2.3 has shown that the degradation faced by SEMi
linearly increases with the number of concurrent requests, an ordinary, expected behavior
in distributed services. It is also worth highlighting that the average response time was less
than 53 s in all scenarios explored by the experiments, even when the SEMi platform was
subjected to a large number of concurrent requests.

7. Discussion and Conclusions

In this section, we compare the important differences from the proposed architecture
represented in Section 3 with other reference frameworks. In addition, drawing on the
detailed results in the previous section, we summarize the main points of observation as
follows. We also address some of the limitations of our proposed framework and the test
scenarios. Finally, we conclude with future work.

Although SEMi offers some similar functionalities to the mentioned platforms in
Section 2, it comes up with certain important differences that include (i) enabling users
to compose their own comprehensive event-triggered rules/queries, (ii) providing an
open data model based on the OGC SensorThings data model to integrate data from
heterogeneous sources, (iii) allowing interoperability with the dynamicity of multiple
domains and enhancing the event-based processing for analytics, (iv) processing vast
amounts of streamed data in real-time occurring in a publish-subscribe fashion, and (v)
enhancing the decision-making process for users with the personal dashboard.

The empirical experiments from the previous section demonstrated that SEMi is capa-
ble of detecting events on the computational infrastructure. The experiments performed
evaluate both the performance and the potential scalability of SEMi. The results have
shown the throughput of concurrent data streams, average response time, latency, and the
capability of horizontally scaling the platform to handle an increasing number of users. The
factors that influenced the results presented in Section 6 include the workload of the system
components, the number of computational resources available, and network capacity. The
effect of the workload on the performance was evident during the Event Core process
because there are many sub-processes involved in this component such as event declaration,
validation, configuration parameters and controlling the streaming of observations to the
CEP engine during runtime. As a result, the response times for these functions increased

J. Sens. Actuator Netw. 2023, 12, 12 18 of 20

with the number of events instantiated in the system. The number of resources available
and network capacity influenced the results shown in Experiment 2.2 and it was respon-
sible for the slight decrement in response time when increasing the number of instances.
Moreover, SEMi showed more significant latencies; the fewer computational resources used
for the platform infrastructure, the more delay generated by transferring the data through
a communication network when handling multiple events.

When compared with similar event processing systems [21,22] SEMi introduces ECDM
that enables event-driven smart city applications to define the relationships of events in a
specific domain, especially temporal and spatial attributes in complex event definitions
and reasoning rules. Then, we devise the SEMi core that implements geospatial operations
that compiles ECDM and processes the spatial data. The integration of SEMi core and
CEP engine through microservices communication enables applications to process complex
events in real-time with spatial characteristics in their semantics rules in a fault-tolerant way
occurring in a publish-subscribe fashion and identify boundaries of the detected complex
event. The SEMi platform enables users to specify their domain of interests, create event
rules and customize their own dashboard driven by events and situation awareness.

Although the study has successfully demonstrated a workable system, it has certain
limitations in terms of computational infrastructure and network structure. Our SEMi
implementation relies on centralized approaches, where streamed data are processed in the
center. In the centralized model, it can be challenging to scale because the capacity of the
server is limited and the traffic can not be infinite. Another limitation is that SEMi provides
security only among its internal components and at a basic level. However, the security
features in IoT and cloud-based smart city architectures, including sensing, transmission,
storage and processing layer, and security between SEMi and external components, have
to be considered to protect unauthorized parties from attacks on the system. Lastly, the
framework provides a Web interface for graphical querying and visualized context entities.
It also enables users to view only graphs and a simple dashboard.

This work has presented an event-based architecture with components that meet im-
portant requirements for smart city platforms by enabling the development of information
services with data interoperability, scalability, real-time processing, spatial functionality,
security, and semantic queries. The proposed approach seamlessly integrates complex
event processing, and spatiotemporal analytics into smart city platforms and provides a
generic workflow for the detection of geographic events at different levels of abstraction,
including semantic modeling.

In future work, we aim to extend SEMi toward a distributed network of computing
nodes directly scattered in the urban environment, to evaluate its performance for the
detection of composite events and to identify strategies for reducing latencies in its compo-
nents. We plan to integrate blockchain technology as decentralized protocols creating open
data among third-party platforms in order to provide secure communication in a smart
city. We also plan to extend the advanced reports/dashboards providing users with a more
granular view of the data by assuming a hierarchical relationship between different data
levels and allowing access to more detailed data overviews.

Author Contributions: Conceptualization, J.P. and S.W.L.; Methodology, J.P.; Software, J.P.; Valida-
tion, J.P.; Formal analysis, J.P.; Investigation, J.P.; Resources, J.P.; Data curation, J.P.; Writing—original
draft, J.P.; Writing—review & editing, S.W.L.; Visualization, J.P.; Supervision, S.W.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the Office of the Ministry of Higher Education, Science, Research
and Innovation. This work is also supported by the Department of Digital Business, Faculty of
Commerce and Management, Prince of Songkla University on Trang campus, Thailand.

Conflicts of Interest: The authors declare no conflict of interest.

J. Sens. Actuator Netw. 2023, 12, 12 19 of 20

References
1. Zhao, F.; Fashola, O.I.; Olarewaju, T.I.; Onwumere, I. Smart city research: A holistic and state-of-the-art literature review. Cities

2021, 119, 103406. [CrossRef]
2. Rozario, S.D.; Venkatraman, S.; Marimuthu, M.; Khaksar, S.M.S.; Subramani, G. Creating Smart Cities: A Review for Holistic

Approach. Appl. Syst. Innov. 2021, 4, 70. [CrossRef]
3. Ali, N.; Alrikabi, H. Design and Implementation of Smart City Applications Based on the Internet of Things. Int. J. Interact. Mob.

Technol. 2021, 15, 4–15. [CrossRef]
4. Sharifi, A.; Khavarian-Garmsir, A.R.; Kummitha, R.K.R. Contributions of Smart City Solutions and Technologies to Resilience

against the COVID-19 Pandemic: A Literature Review. Sustainability 2021, 13, 8018. [CrossRef]
5. Heidari, A.; Navimipour, N.J.; Unal, M. Applications of ML/DL in the management of smart cities and societies based on new

trends in information technologies: A systematic literature review. Sustain. Cities Soc. 2022, 85, 104089. [CrossRef]
6. Panahi Rizi, M.H.; Hosseini Seno, S.A. A systematic review of technologies and solutions to improve security and privacy

protection of citizens in the smart city. Internet Things 2022, 20, 100584. [CrossRef]
7. Medagliani, P.; Leguay, J.; Duda, A.; Rousseau, F.; Duquennoy, S.; Raza, S.; Ferrari, G.; Gonizzi, P.; Cirani, S.; Veltri, L.; et al.

Bringing IP to Low-power Smart Objects: The Smart Parking Case in the CALIPSO Project. In Internet of Things Applications—From
Research and Innovation to Market Deployment; Series in Communications; Vermesan, O., Friess, P., Eds.; The River Publishers:
Aalborg, Denmark, 2014; pp. 287–313. ISBN 9788793102941.

8. Singh, T.; Solanki, A.; Sharma, S.K.; Nayyar, A.; Paul, A. A Decade Review on Smart Cities: Paradigms, Challenges and
Opportunities. IEEE Access 2022, 10, 68319–68364. [CrossRef]

9. Reis, J.; Marques, P.A.; Marques, P.C. Where Are Smart Cities Heading? A Meta-Review and Guidelines for Future Research.
Appl. Sci. 2022, 12, 8328. [CrossRef]

10. Kyriazopoulou, C. Smart city technologies and architectures: A literature review. In Proceedings of the 2015 International
Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Lisbon, Portugal, 20–22 May 2015; pp. 1–12.

11. Yang, C.; Liang, P.; Fu, L.; Cui, G.; Huang, F.; Teng, F.; Bangash, Y.A. Using 5G in smart cities: A systematic mapping study. Intell.
Syst. Appl. 2022, 14, 200065. [CrossRef]

12. Peralta Abadía, J.J.; Walther, C.; Osman, A.; Smarsly, K. A systematic survey of Internet of Things frameworks for smart city
applications. Sustain. Cities Soc. 2022, 83, 103949. [CrossRef]

13. Santana, E.F.Z.; Chaves, A.P.; Gerosa, M.A.; Kon, F.; Milojicic, D.S. Software Platforms for Smart Cities: Concepts, Requirements,
Challenges, and a Unified Reference Architecture. ACM Comput. Surv. 2017, 50, 78. [CrossRef]

14. Bastidas, V.; Helfert, M.; Bezbradica, M. A Requirements Framework for the Design of Smart City Reference Architectures.
In Hawaii International Conference on System Sciences 2018 (HICSS-51), Hilton Waikoloa Village, HI, USA, 3–6 January 2018; pp.
2516–2523. Available online: https://aisel.aisnet.org/ (accessed on 19 January 2023)

15. Waseem Anwar, R.; Ali, S. Smart Cities Security Threat Landscape: A Review. Comput. Inform. 2022, 41, 405–423. [CrossRef]
16. Pereira, J.; Batista, T.; Cavalcante, E.; Souza, A.; Lopes, F.; Cacho, N. A platform for integrating heterogeneous data and developing

smart city applications. Future Gener. Comput. Syst. 2022, 128, 552–566. [CrossRef]
17. Vítor, G.; Rito, P.; Sargento, S.; Pinto, F. A scalable approach for smart city data platform: Support of real-time processing and

data sharing. Comput. Netw. 2022, 213, 109027. [CrossRef]
18. Kim, J.; Jang, S.; Jee, D.; Ko, E.; Choi, S.H.; Kyong Han, M. 5G based SmartCity Convergence Service Platform for Data sharing.

In Proceedings of the 2020 International Conference on Information and Communication Technology Convergence (ICTC), Jeju
Island, Korea, 21–23 October 2020; pp. 1522–1524. [CrossRef]

19. Martins, P.; Albuquerque, D.; Wanzeller, C.; Caldeira, F.; Tomé, P.; Sá, F. CityAction a Smart-City Platform Architecture. In
Proceedings of the Advances in Information and Communication, San Francisco, CA, USA, 14–15 March 2019; Arai, K., Bhatia, R.,
Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 217–236.

20. Osman, A.M.S. A novel big data analytics framework for smart cities. Future Gener. Comput. Syst. 2019, 91, 620–633. [CrossRef]
21. Garcia Alvarez, M.; Morales, J.; Kraak, M.J. Integration and Exploitation of Sensor Data in Smart Cities through Event-Driven

Applications. Sensors 2019, 19, 1372. [CrossRef] [PubMed]
22. Khazael, B.; Vahidi Asl, M.; Tabatabaee Malazi, H. Geospatial complex event processing in smart city applications. Simul. Model.

Pract. Theory 2023, 122, 102675. [CrossRef]
23. Khazael, B.; Malazi, H.T.; Clarke, S. Complex Event Processing in Smart City Monitoring Applications. IEEE Access 2021,

9, 143150–143165. [CrossRef]
24. Meslin, A.; Rodriguez, N.; Endler, M. A Scalable Multilayer Middleware for Distributed Monitoring and Complex Event

Processing for Smart Cities. In Proceedings of the 2018 IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA,
16–19 September 2018; pp. 1–8. [CrossRef]

25. Eager, D.; Zahorjan, J.; Lazowska, E. Speedup versus efficiency in parallel systems. IEEE Trans. Comput. 1989, 38, 408–423.
[CrossRef]

http://doi.org/10.1016/j.cities.2021.103406
http://dx.doi.org/10.3390/asi4040070
http://dx.doi.org/10.3991/ijim.v15i13.22331
http://dx.doi.org/10.3390/su13148018
http://dx.doi.org/10.1016/j.scs.2022.104089
http://dx.doi.org/10.1016/j.iot.2022.100584
http://dx.doi.org/10.1109/ACCESS.2022.3184710
http://dx.doi.org/10.3390/app12168328
http://dx.doi.org/10.1016/j.iswa.2022.200065
http://dx.doi.org/10.1016/j.scs.2022.103949
http://dx.doi.org/10.1145/3124391
https://aisel.aisnet.org/
http://dx.doi.org/10.31577/cai_2022_2_405
http://dx.doi.org/10.1016/j.future.2021.10.030
http://dx.doi.org/10.1016/j.comnet.2022.109027
http://dx.doi.org/10.1109/ICTC49870.2020.9289155
http://dx.doi.org/10.1016/j.future.2018.06.046
http://dx.doi.org/10.3390/s19061372
http://www.ncbi.nlm.nih.gov/pubmed/30893843
http://dx.doi.org/10.1016/j.simpat.2022.102675
http://dx.doi.org/10.1109/ACCESS.2021.3119975
http://dx.doi.org/10.1109/ISC2.2018.8656961
http://dx.doi.org/10.1109/12.21127

J. Sens. Actuator Netw. 2023, 12, 12 20 of 20

26. Delaney, D.; Ward, T.; McLoone, S. On Consistency and Network Latency in Distributed Interactive Applications: A Survey—Part
I. Presence 2006, 15, 218–234. [CrossRef]

27. Popescu, D.A.; Zilberman, N.; Moore, A.W. Characterizing the Impact of Network Latency on Cloud-Based Applications’ Performance;
Technical Report UCAM-CL-TR-914; University of Cambridge, Computer Laboratory: Cambridge, UK, 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/pres.2006.15.2.218
http://dx.doi.org/10.48456/tr-914

	Introduction
	Related Works
	SEMi Architecture
	SEMi Core Layer
	Integration Service
	Event Core
	Application Interface
	Security Manager

	SEMi Infrastructure Layer

	The Event-Driven CITY Data Model (ECDM)
	The Conceptual Model
	Data Modeling Scenario

	Implementation
	Performance Evaluation
	Discussion and Conclusions
	References

