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Abstract: Smart cities have been envisioned to provide smartness in managing internet of things
(IoT) application domains, such as transport and mobility, health care, natural resources, electricity
and energy, homes and buildings, commerce and retail, society and workplace, industry, agriculture,
and the environment. The growth trajectory in usage of these IoT domains has led to a heterogeneous
dense network in a smart city environment. The heterogeneous dense network in smart cities has led
to challenges, such as difficulties in the management of LPWAN coexistence, interference, spectrum
insufficiency, QoS, and scalability issues. The existing LPWAN technologies cannot support the
heterogeneous dense network challenges in smart cities. Further, it cannot support diverse IoT,
including medium- to high-bandwidth applications, due to the power, complexity, and resource
constraints of the LPWAN devices. Hence, this paper addresses high data rate IoT applications
and heterogeneous dense networks. This paper proposes a lightweight heterogenous multihomed
network (LHM-N) model for diverse smart city applications that will address dense heterogeneity
network challenges in a smart city. The work aims to advocate and integrate a manageable license-free
LPWAN that will coexist with 5G private and public cellular networks in the LHM-N model. This
will help to provide a cost-effective solution model in a heterogeneous dense smart city environment.
Further, a secured lightweight energy-efficient packet-size forwarding engine (PSFE) algorithm
is presented using the discrete event simulation (DES) methodological approach in MATLAB for
complexity evaluation. In addition, a 5G reduced capability (RedCap) IoT device is integrated
into the (LHM-N) model to support smart city. Finally, the results show that the LHM-N model
outperforms the conventional quadrature amplitude modulation (QAM) protocol scheme in terms of
error rate, latency, and data throughput with reduced energy costs for medium- to high-bandwidth
industrial IoT applications. This validates the suitability of the LHM-N model for high data rate
IoT applications.

Keywords: 5G redcap; coexistence; energy-efficient; heterogenous; lightweight; LPWAN-MHS;
multihoming; optimization

1. Introduction

A low-power wide area network (LPWAN) is a communication means for applications
that require low data rate, low power, and low cost over a long range. The Internet of
Things (IoT) is a typical example of such an application. There are numerous LPWAN
technologies. However, the predominant ones are LoRaWAN, Sigfox, LTE-M (long-term
evolution for machine-type communication (MTC)) enhanced MTC, and NB-IoT (Narrow-
band IoT). These technologies have significantly impacted numerous IoT deployment use
cases, especially in the smart cities ecosystem. Smart cities have been envisaged to pro-
vide smartness in managing domains, such as transport and mobility, health care, natural
resources, electricity and energy, homes and buildings, commerce and retail, society and
workplace, industry, agriculture, and the environment. The use cases of these domains have
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led to a heterogeneous dense network in a smart city environment. Supporting massively
connected devices requires very low-cost end users devices, such as LPWANs [1–3].

Several LPWANs meant to satisfy diverse IoT application domains can be attributed to
this dense heterogeneity in a smart city. Heterogeneity is inherent in IoT communications
due to the vast range of hardware and software capabilities [4]. LPWANs are considered
preferred technologies for diverse IoT connectivity compared to short-range communication
technologies, such as Bluetooth, ZigBee, and Wi-Fi, due to their unique characteristics [5].
However, high-bandwidth smart city applications, such as industrial wireless sensors
(smart manufacturing/smart factory), smart wearabl , and video surveillance, are not
supported by LPWAN. Consequently, the third-generation partnership project (3GPP)
has finalized the specification for the 5G reduced capability (RedCap) device, which was
recently published in the latest 3GPP release-17 [6]. This will support medium to high-speed
connections for bandwidth-demanding smart city applications. Hence, RedCap devices
can be positioned as a lower segment than eMBB (enhanced mobile broadband) devices
with little variation in complexity and coverage distance compared to LPWAN devices.
This means that it has more complexity with lesser coverage than the LPWAN by achieving
a balance between network performance (high bandwidth and low latency) and device
costs. Nevertheless, the reduced coverage can be compensated by considering smaller data
rate specifications. This will help to improve coverage distance for the NR RedCap [7].
Further, the device protocol enhancement can achieve a reduction in complexity. Therefore,
5G RedCap could be considered as LPWAN-MHS (medium-high speed), i.e., an LPWAN
with medium to high-speed applications support based on the specification for improved
distance and low power.

Moreover, other challenges exist, such as coexistence, interference, spectrum insuf-
ficiency, and scalability issues, due to this heterogeneity densification. These problems
can affect the quality of service (QoS) requirements of IoT applications, including perfor-
mance degradation of LPWAN devices. Several methods have been advocated to address
these problems. For instance, in addressing the problems of interference and spectrum
insufficiency, the authors in [8] suggested that spectrum allocation can be moved from
the 2.4 GHz band to a license-free spectrum in the sub-1 GHz free band. However, as the
use cases increase in the sub-1 GHz band due to IoT network densification, this band will
face comparable interference issues to the 2.4 GHz band. Further, the use of multi-radio
access technology (multihoming) integration has been suggested in [9] in dealing with the
problems of coexistence and scalability issues. Consequently, to circumvent the identified
problems, this paper proposes a lightweight heterogenous network model for enabling
LPWANs’ coexistence and diverse IoT applications in a heterogenous dense smart city’s
IoT network. Hence, to actualize this, the following objectives are enumerated:

• To integrate a manageable license-free LPWAN that will coexist with 5G private and
public cellular networks.

• To develop an LHM-N model for enabling the coexistence of different LPWANs.
• To provide a very cost-effective solution model in a heterogeneous dense smart

city environment.
• To develop a secured, lightweight, energy-efficient packet-size forwarding engine

(PSFE) algorithm.

To this end, the original contributions of this paper include:

• Proposing a model with a low error rate that improves the data throughput by a
magnitude of over five times more than the conventional quadrature amplitude
modulation (QAM) protocol scheme with reduced energy cost for medium- to high-
bandwidth industrial IoT (IIoT) applications.

• Optimizing the Physical (PHY) layer protocol of 5G reduced capability (RedCap) IoT
devices to operate comparatively with LPWAN in terms of signal-to-noise ratio (SNR)
symbol energy while maintaining medium to high data throughput.

• Designing and implementing a lightweight heterogenous multihomed network (LHM-
N) model for diverse smart city applications.
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• Advocating and incorporating a manageable license-free LPWAN coexistence with 5G
private and public cellular networks to provide a very cost-effective solution model in
a heterogeneous dense smart city environment.

• Proposing a packet-size forwarding engine (PSFE) algorithm for secured lightweight
energy-efficient and minimized errors in packet forwarding.

• Integrating a 5G reduced capability (RedCap) IoT device in the multihomed LPWAN
solution model, thereby supporting high-bandwidth smart cities applications,
such as industrial wireless sensors (smart manufacturing/smart factory), video
surveillance, etc.

The rest of this paper is organized as follows: In Section 2, related works are discussed.
Section 3 presents the architecture and design methodology of the lightweight heterogenous
multihomed network (LHM-N) model. The implementation of the LHM-N model is carried
out in Section 4. Results and analysis are presented in Section 5. Finally, Section 6 provides
the concluding remarks of the paper.

2. Related Works

Some strategies to address the reported challenges associated with the densification
of heterogeneity for the connections of LPWAN technologies with billions of end users in
smart cities have been advocated in the literature. These challenges include interference,
spectrum insufficiency, unmanaged coexistence, quality of service (QoS), and scalability
issues. For instance, the need for spectrum optimization for improved spectrum efficiency,
QoS, low latency, and appreciable throughput has been opined by the authors in [10–12].
The optimized spectrum enables unlicensed and licensed users to coexist. Works in this
area of spectrum optimization are found in [13–16]. Further, the authors of [17] suggested
the use of machine learning to accurately identify the available spectrum channels of
the LPWAN technologies that are present within an area based on the channel state and
network information (CSNI), such as channel frequency, packet loss rates, typical sizes of
error burst, and so on. In addition, dynamic frequency allocations, including the use of
frequency hopping to mitigate interference problems, are presented in [18,19].

Going forward, the inter-symbol, co-channel, and cross-layer interference in LPWAN
can be mitigated by multiple input-multiple outputs (MIMO) and a smart antenna [20].
This method is unsuitable for LPWAN due to its low complexity and low energy capability.
The issue of co-channel interference has been addressed in [21], in which the authors used
maximum rational combiner in mitigating co-channel interference of sensor nodes in a
smart grid environment. The work in [22] proposed a joint reception mechanism as a
solution to the degradation encountered due to interference from other overlapping tech-
nologies. Furthermore, another method of overcoming the challenges is the coexistence of
technologies with multiple IoT radio access technologies (multi-RAT) on a single device.
This will offload some of the connectivity to other LPWAN technology devices, thereby
reducing the interference and congestion that would have been encountered by a single
LPWAN device. However, the coexistence should be managed using a coordinated coexis-
tence mechanism [8]. The authors in [23] proposed the support of multi-RAT on a single
LPWAN device. They considered two RATs, namely, LoRaWAN and NB-IoT, in a smart
city environment. Other works that considered multi-RAT on a single device are found
in [21,24–28]. Further, enabling different IoT application services via a single infrastructure
using a network slicing mechanism has been considered in [29–31]. Optimization of the
LPWAN device physical (PHY) and media access (MAC) layer protocol settings, including
the radio resource allocation management and deployment model, have been considered
in [32–38] to improve the QoS in the IoT LPWAN-IoT network. In addressing the issue
of scalability, the authors of [39] suggested the optimization of LPWAN technologies to
support the Internet Protocol version 6 (IPv6) addressing scheme since IPv6 is not yet fully
supported in LPWAN. This will enable multiple trillion LPWAN devices in a heterogenous
dense environment. This is because the existing IPv4 addressing scheme does not support
such an enormous capacity of devices to be connected.
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Regarding the various mechanisms used to address the problems of dense smart
cities networks in LPWAN coexistence scenarios, an end-to-end solution model is rarely
investigated, i.e., optimization at the base station/gateway side and the end user device
side. Most of the authors mainly focused on modifications at the base station or the end-
user device. However, this paper considers a model that consists of optimization at the
base station/gateway side as well as protocol optimization of the LPWAN end-user device.
Further, the existing literature does not consider the use of LPWAN in the unlicensed
spectrum jointly with 5G private and public cellular network coexistence. However, to
provide a very cost-effective solution model, this paper considers license-free LPWAN
coexistence with 5G private and public cellular networks. Lastly, the existing literature
does not consider NR reduced capability (RedCap) devices in their LPWAN model. This
paper, however, considers a lightweight NR RedCap as well as LoRaWAN and Sigfox
in multihoming interfaces on a single device. This will address scalability, interference,
congestion, QoS, and high-bandwidth applications in heterogeneous dense smart cities
environment. Section 3 gives the architecture and design methodology of the unique
lightweight heterogeneous multihomed network (LHM-N) model proposed in this paper.

3. Architecture and Design Methodology of the LHM-N Model
3.1. Lightweight Heterogenous Multihomed Network (LHM-N) Architecture

The LHM-N architecture ensures the connection of sensing end devices (EDs), gate-
way/radio modules, and end-to-end connectivity to the various servers and entities.
This helps the transmission of status, sensed data, and control messages throughout
the entire IoT ecosystem. The adopted architecture in LHM-N employs a special mixed
topology approach:

(i) The usual cellular network topology, in which EDs communicate directly with gate-
way/base station (BS), then from BS to network server/entity, and then to the IoT cloud.

(ii) The communication of EDs with the gateway, then from the gateway directly to the
cloud, and then to the server.

The network employs a 5G private network as the main backhaul over an unlicensed
spectrum band. In cases where there is no available 5G private network, a licensed 5G
public network is utilized as an alternative backhaul from the commercial cellular network
operator. Figure 1 demonstrates the end-to-end connectivity and highlights the network
architecture in LHM-N, which comprises the following:

IoT end devices (EDs): This consists of single EDs and multihomed EDs. The single
EDs are Sigfox ED, LoRaWAN, and NB2-IoT. The multihomed ED is the LHM-N access ED
module, which contains the following interfaces: Sigfox, LoRaWAN, and RedCap interface.
The IoT EDs communicate directly with the LHM-N gateway.

Multihomed LHM-N Gateway: This contains multi-radio interfaces that are built
on top of a lightweight Raspberry Pi Zero. The multi-radio interfaces include Sigfox,
LoRaWAN, RedCap, and NB2-IoT. The block diagram of the multihomed LHM-N gateway
is shown in Figure 2. It communicates with EDs through its various interfaces, then
transmits collected information via the main backhaul 5G private network over the license-
free band to various designated servers. If the 5G private network is not available, the
information destined for the 5G core network server is routed via a licensed 5G public
network as an alternative backhaul for data delivery.

gNB base station: This is a 5G base station that communicates directly with mobile
devices. It also communicates with the LHM-N gateway and serves as an alternative
backhaul in transmitting data to the 5G server via the 5G public network.

5G core network: Leverages a service-based architecture comprising many intercon-
nected 5G Network Functions (NFs). The collected information is provisioned in the IoT
cloud/software as a service (SaaS). LoRaWAN network server: Processes the data collected
from a LHM-N gateway, which is then provisioned to various application servers.
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Figure 1. LHM-N Network Architecture.

Figure 2. Block diagram of a multihomed LHM-N gateway.

Application servers: These servers house respective processed information collected
from the LoRaWAN network server, which can further be provisioned to the IoT cloud/SaaS.
Sigfox cloud: This is the cloud hub that directly stores received data from the multihomed
gateway via the Sigfox radio interface. The stored data can be integrated into the IoT
platform/SaaS via an IoT-integrated plugin from the application backend for better man-
agement and usability. The Sigfox data are also accessible by vertical industry IoT solutions.
Vertical industry servers: Vertical industry, such as the IoT solutions industry’s servers,
collects Sigfox data for monitoring and proper management of EDs, including data visual-
ization and analytics. This will enable efficient data usage.

3.2. Design Methodology of the LHM-N Model

We shall look at the overview of the technologies adopted in this model and the design
methodology as follows:
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3.2.1. Overview of Technologies Adopted

The technologies employed in this paper range from fundamental to emerging tech-
nologies, thus, leading to the novel proposed LHM-N model for IoT applications solution
in smart cities scenario. As stated earlier, the model considers a 5G private network over
a license-free band. The 5G new radio unlicensed (5G NR U) is part of the aspect that
has been finalized in the recent 3GPP release-17 [6]. It will enable industries and private
networks to leverage sub-7 GHz as well as the millimeter wave (60 GHz) spectrum band
for IoT and broadband solutions. Also, 1.9 GHz is a license-free band in the sub-7 GHz
bannd. The 1.9 GHz band has been well advocated for supporting eMTC and industrial
IoT (IIoT) technologies’ devices by Multefire Alliance [40,41]. Further, the 5G RedCap IoT
device is well suited for medium to high IoT applications, including IIoT [42]. The 5G
RedCap IoT device operates on both licensed and unlicensed spectrums. However, the
5G RedCap IoT will need to be well modified to have features nearer to an LPWAN. This
modification or optimization may entail the employment of reliable technologies to be
implemented at the physical (PHY) layer of the 5G RedCap IoT. The optimization will
enable 5G RedCap IoT to support diverse LPWAN-IoT applications in smart city scenarios.
One of the reliable technologies that can be implemented on RedCap is the Trellis code
modulation (TCM). The TCM is a bandwidth-efficient scheme that is accomplished using
convolutional code. It conserves bandwidth by doubling the constellation points of the
signal, thus increasing the bit rate, but the symbol rate remains the same [43]. Hence, TCM
is bandwidth and energy-efficient error correction coding (ECC) without a complexity
cost, unlike the conventional ECC by Shannon’s law, in which there is a trade-off between
bandwidth and energy with complexity cost [44].

However, the author of TCM did not take into consideration a Rayleigh fading distri-
bution; rather it was modeled under an additive white gaussian noise (AWGN) channel.
For this scheme to work effectively over a Rayleigh fading channel distribution, there is
a need to implement it alongside a technology that will produce a satisfactory result. A
smart city is a typical terrain that requires Rayleigh fading channel distribution to model
communication access technologies and application use cases in a smart city scenario. This
is because several buildings in the city cause a non-line of sight (NLOS) and scattering of the
wireless signal due to the multipath fading (Rayleigh fading). To overcome this shortfall,
this work proposes a receiver diversity-based TCM technique, RX-TCM. Hence, the RX-
TCM protocol alongside the LHM-N model is proposed to support medium to high data
rate IoT applications. The RX-TCM protocol will be implemented on the LHM-N model
for diverse IoT applications as a solution in smart cities scenarios. The LHM-N model
consists of a multihomed LHM-N gateway and a multihomed LHM-N end device (ED).
Both maintain the same technologies as well as the same radio module interfaces, except
that the former has NB2-IoT and higher complexity in addition to supporting numerous
LPWAN-IoT devices. Hence, the LHM-N model employs the following technologies.

• 5G NR U: specifically, the 1.9 GHz band advocated by the Multifire Alliance
• Private 5G network
• 5G RedCap IoT
• RX-TCM

These technologies are implemented specifically on the PHY layer of the RedCap
radio module interface. Other radio module interfaces in the multihomed device are
meant to offload dense IoT data to their respective use cases depending on the appli-
cation’s requirements. The RedCap interface is meant to support medium to high data
rate IoT applications that cannot be supported by other low-data LPWANs (LoRaWAN,
Sigfox, eMTC, and NB2-IoT) in smart city scenarios. This coordinated coexistence of
the LPWAN technologies in a multihomed strategy will help to mitigate interference
and congestion while improving the QoS of the IoT connectivity in heterogeneous dense
smart city environments. The next section demonstrates the design methodology of the
LHM-N model.
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3.2.2. Design Methodology

There are two phases in the design methodology. The packet size forwarding engine
and the model.

Phase 1: Packet-Size Forwarding Engine Algorithm: The function of the packet-
size forwarding engine (PSFE) algorithm is to forward packets from the multihomed
input interface to the appropriate output chipset interfaces. This will enable each chipset
interface to transfer the packet to its final destination. The PSFE algorithm will forward
data packets to appropriate interfaces based on their respective payload size threshold.
Specifically, data packets forwarded or destined to the 5G RedCap IoT device interface
will work according to the optimized model transmission mechanism. However, data
packets forwarded to other interfaces will be transmitted normally. The data packet format
has three major field parameters, which are represented as header, trailer, and payload.
The header contains source and destination information, including fragments and the
current sectional numbers. The trailer field includes a frame checksum sequence for error
control with cyclic redundancy check (CRC) or parity bits. The payload is the actual data
information being transmitted. Each field holds a size or length of data bits; the header
and trailer have a smaller length, while the payload has a longer length containing the
actual data bits information. Figure 3 shows the packet length information. Actually,
packet forwarding uses information in the header field to forward the payload data to the
appropriate chipset interfaces.

Figure 3. Packet Length information.

Formulation of Optimization Problem for the PSFE: The forwarding of packets is
carried in the forwarding plane of the multihomed gateway/ED. The length of a packet
is denoted as L and a chunk or block of packets is denoted as B. A block of packet length
is represented as BL. A block of originating packet length from the input of the gateway
to be forwarded to the output chipset interface is denoted by BLO. This packet length is
based on the payload size. For a packet to be forwarded, a number of optimization problem
conditions must be met:

(i) The payload must attain a general minimum threshold size denoted as BLGMin or a
block of general minimum threshold packet length.

(ii) The specific port address must be known, which is denoted as PortAddr.
(iii) The block of the originating packet length BLO must move to the block of the packet

forwarding state, denoted as BLF.

Hence, the probability of packet forwarding PrPF is the probability of BLGMin or BLF
and PortAddr, which is expressed as PrPF.

PrPF = Pr[((BLGMin) + (BLF)) ∗ (PortAddr)] (1)

Then, the probability of no packet forwarding is

PrNPF = 1− PrPF (2)

Algorithm 1 illustrates the PSFE for forwarding a block of data packets to the respective
chipset interfaces.
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Algorithm 1: Packet-size forwarding engine (PSFE) algorithm.
1. Initializes→ BLO; BLGMin BLF ; % Block of originating, general minimum

threshold, and
forwarding packet length, respectively;
2. For BLGMin <= BLF;
3. Move packet block to forwarding state;
4. if BLO >= BLGMin;
5. Determine interface port address;
6. if BLO < BL(min−RC);
7. re-route or find appropriate interface;
8. else if PortAddr = PortRC && BLO >= BL(min−RC) && BLO <= BL(max−RC) ;
9. Forward BLO to RedCap;
10. else if PortAddr =PortNB && BLO >= BL(min−NB) && BLO <= BL(max−NB);
11. Forward BLO to NB2-IoT;
12. else if PortAddr = PortLR && BLO >= BL(min−LR) && BLO <= BL(max−LR)
13. Forward BLO to LoRaWAN;
14. else if PortAddr =PortSF && BLO >= BL(min−SF) && BLO <= BL(max−SF)
15. Forward BLO to Sigfox;
16. While BLO < BL(min−SF);
17. No packet forwarding;
18. If BLO + 1; %increment by 1 by additional packet length.
19. Move to appropriate interface packet threshold.
20. else;
21. Wait for attainment to any interface packet threshold before forwarding;
22. While BLO + 1 >= BLF ;
23.Forward incremented BLO to appropriate interface;
24. else;
25. Move to initialize BLGMin then to BLF state
26. end if;
27.end; end; end; end; end;

Algorithm 1 symbols

BLO: Block of originating packet length
BLGMin: Block of general minimum packet threshold
BLF: Block of packet forwarding state
BL(min−RC): Block of minimum packet threshold for RedCap interface
PortAddr: Port address
PortRC: RedCap port address
BL(min−SF): Block of minimum packet threshold for Sigfox interface

Algorithm 1 Explanation: The block of originating packet length, BLO, initializes the
attaining of the general minimum packet threshold, BLGMin, as well as the block of packet
forwarding state, BLF. Data packets should move to the packet forwarding state so long
as the BLGMin is less than or equal to BLF. PSFE should identify the specific interface
port address if BLO is greater than or equal to BLGMin, and if BLO is less than the block of
minimum packet threshold for the RedCap interface.BLmin−RC. Otherwise, if the identified
port address, PortAddr is the RedCap port address, PortRC, and the BLO is less than or equal
to BLmin−RC, and the BLO is also less than or equal to the maximum packet threshold for
the RedCap interface, BLmax−RC, then BLO should be forwarded to the RedCap interface.
The same conditions also hold for NB2-IoT, LoRaWAN, and Sigfox. Therefore, as long
as BLO is less than the minimum packet threshold for the Sigfox interface, BLmin−SF, no
packet should be forwarded. If BLO is incremented by 1 when there is an additional packet
length, the BLO should move to the appropriate interface packet threshold. Otherwise, it
should wait for attainment to any interface packet threshold before forwarding. While the
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incremented BLO is greater than or less than BLF, it should be forwarded to the appropriate
interface. Else it should move to initialize BLGMin, then to BLF state. End if conditions are
met, otherwise the process begins again, then ends.

Benefits of the PSFE Algorithm: PSFE uses a strategy that allows data packets to fulfill
certain conditions before forwarding. Instead of forwarding packets arbitrary and too fre-
quently, packets are accumulated to a substantial level before forwarding to their respective
interfaces. This is because frequent packet forwarding causes excessive overheads to the
packet header and trailer, thereby leading to errors, a sluggish network, and high energy.

PO =
Totalpacketlength− payload

Totalpacketlength
(3)

The total packet length comprises the header length, trailer length, and payload size.
The smaller the value of the protocol overhead, the better the efficiency of the device
protocol. Further, because the PSFE does not follow conventional packet forwarding,
session hijacking and injection attacks that use conventional brute force attack methods are
overwhelmed and circumvented. Hence the benefits of PSFE includes:

• Minimized packet-error forwarding
• Energy-efficient packet forwarding
• Lightweight and less overhead packet forwarding
• Reliable network packet forwarding
• Mitigation of session hijacking and injection attacks

Phase 2: The Model: The design of the LHM-N model considers a system model
comprising a transmitter (Tx) and a receiver diversity with two receiver (Rx1 and Rx2)
systems; that is, a single-input multiple-output (SIMO) system. Figure 4 illustrates the
receiver diversity (RX)-TCM system model. The transmitter is responsible for sending a bit
stream (message signal), which has been encoded by the TCM encoder and modulated by
a 16-QAM (quadrature amplitude modulation) modulator before transmitting. A Rayleigh
fading channel is considered during this transmission. The signals received by the two
receiving antennas are combined by the maximum ratio combiner (MRC) technique. The
corresponding output is then demodulated and decoded by the TCM decoder; the result is
then checkmated with the initial bits stream by the bit error rate (BER) estimator for error
performance computation.

Figure 4. RX-TCM system model.png.

Assuming the channel state information (CSI) is known at the receivers’ side, the
received signal y is represented as

y1 = h1x + n1 (4)
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y2 = h2x + n2 (5)

where y1 is the signal received by antenna 1, h1 is the fading channel at antenna 1, x is the
transmitted coded signal, and n1 is the Gaussian noise coefficient at antenna 1. Similarly,
y2 is the signal received by antenna 2, h2 is the fading channel at antenna 2, and n2 is the
Gaussian noise coefficient at antenna 2. Since the fading channel h is a complex coefficient
with real and imaginary parts, the conjugate of h, that is h* together with a square of h
modulus, |h|2, is applied to obtain the signal equalization z, given as:

z1 = h∗1y1 = |h1|2x + h∗1n1 (6)

z2 = h∗2y2 = |h2|2x + h∗2n2 (7)

Finally, the combined received signal yc is given by:

yc = z1 + z2/|h1|2 + |h2|2 (8)

Then the transmitted coded symbol is estimated from the combined received signal
using the Viterbi decoding algorithm together with a soft detection metric, such as the
maximum likelihood detector (MLD). The MLD is computed based on the squared free
distance (d2

f ree), which is the smallest Euclidian distance of the coded symbol sequence
to the all-zero symbol sequence bits [45]. This process of estimation with detection will
account for the sent TCM convolutional coded bits and constellation mapping of the 16-
QAM. Since the transmitted coded signal is over a Rayleigh fading channel distribution,
the error performance of the 16-QAM signal, that is, the symbol error rate of the QAM
signal (SER(QAM)) in the Rayleigh fading channel, is given by:

SERQAM =

∞∫
0

PSERQAM ((γ̄|γ)) fγ(γ)dγ (9)

where (γ) is the signal-to-noise ratio (SNR), γ̄ is the average SNR, PSERQAM is the symbol
error probability of the QAM signal, and fγ(γ) is the probability density function (PDF) of
(γ). Hence, the SNR, (γ) is given as

γ = Es/N0 (10)

fγ(γ) =
1
γ̄

exp
−(γ)

γ̄
(11)

where ES is the symbol energy per bit, and NO is the Gaussian noise coefficient. Then,
considering the SNR combined signal γc, the PDF of γc is given by

fγcs(γcs) =
γNra−1

cs

γ̄Nra(Nra − 1)!
exp
(
−γcs

γ̄

)
(12)

where Nra is the number of receiving antennas. Hence, the PSERQAM for the combined signal
in a Rayleigh fading channel is given by
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PSERQAM =

∞∫
0

a
n



exp
(
−b γcs

2
)

2
− a exp (−bγcs)

2

+ (1− a)
n−1

∑
i=1

exp
(
−b

γcs

si

)

+
2n−1

∑
i=n

exp
(
−b

γcs

si

)


× γNra−1

cs

γ̄Nra(Nra − 1)!
exp
(
−γcs

γ̄

)
dγcs

(13)

Applying trapezoidal simplification gives

PSERQAM =
a
n



(
1

bγ̄ + 2

)Nra

− a
2

(
1

γ̄ + 1

)Nra

+ (1− a)
n−1

∑
i=1

(
si

bγ̄ + si

)Nra

+
2n−1

∑
i=n

(
si

bγ̄ + si

)Nra


(14)

where

a = 1− 1√
M

, b =
3

M− 1
, si =

2 sin(iπ)

4n
,

The next section provides the implementation in MATLAB.

4. Implementation of the LHM-N Model
4.1. Implementation Overview

The implementation is conducted in MATLAB. Reliable results are achieved in model-
ing and simulations that are based on discrete events simulations (DES). For instance, an
autoregressive integrated moving average (ARIMA) based on the DES method was used to
generate a reliable result with minimal error in smart framing [46]. Further, soft comput-
ing optimization based on the DES approach was used for the modeling and simulation
analysis for a reliable mechanized operation solution [47]. Hence, the LHM-N model is
based on DES. The illustrative phase of the LHM-N model implementation is shown in
Figure 4. In the simulation, a random binary bit stream was created. The bit stream is then
encoded into a convolutional code by the TCM encoder. The coded bit is then mapped to a
16-QAM modulator, which modulates the coded bit streams. A Rayleigh fading channel is
then added to the modulated data in order to simulate a multipath fading channel. Then,
the MRC combines the data received by the two receivers, which the simulation prepares
for demodulation and decoding by the Viterbi decoder. Finally, the simulation compares
the decoded information with the original bits streams in order to compute the bit error
rate (BER).

4.2. The TCM Encoder Implementation

The TCM encoder is represented by (n, k, m) convolutional code parameters; where n is
the output, k is the input, and m is the memory register. The coding rate R is configured as
k/n. For example, R = 2/3 means 2 input message streams and 3 coded output bit streams.
This model considers (3,2,3) convolutional code, wherein z1, z2, and z3 represent the three
memory registers, and R = 2/3. The constraint length L is determined by m + k. Figure 5
depicts a coding rate of a 2/3 TCM encoder, in which the coded bit stream is mapped by the
QAM mapper to the QAM modulator. Hence, the convolutional code equation is given by,

y(i) = u(i)G (15)
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Figure 5. TCM Encoder with QAM Mapper.

The output y(i) is dependent on the input u(i) and on the previous input
u(i − 1), u(i − 2), u(i − 3), · · · · · · , where i denotes the passing time, and G is the gen-
erator matrix. Now, considering k = 2, n = 3, and m = 3 as in our case of R = 2/3
for the 16 QAM signal, here, the input bits u(i) are transformed into the output vectors
y(i) = (y1(i), y2(i), y3(i)) by the following encoding equation:

y(i) =


(y1(i) = u(i) + u(i− 3),
y2(i) = u(i) + u(i− 1) + u(i− 2),
y3(i) = u(i) + u(i− 1) + u(i− 2) + u(i− 3))

(16)

From the above encoder, it can be seen that i needs to remember the three previous
input bits u(i− 1), u(i− 2) and u(i− 3). The contents of the three memory bits juxtapose
the encoding function. Thus, at any time i, the encoder is in a previous state or new state
designated by the state vector s(i).

s(i) = (s1(i), s2(i), s3(i) = u(i− 1), u(i− 2), u(i− 3)) (17)

The convolution code can be encoded with a polynomial generator G. The matrix
representation of a polynomial generator G is given by

G =



g(1)0 g(2)0 · · · g(n)0

g(1)1 g(2)1 · · · g(n)1

g(1)2 g(2)2 · · · g(n)2
...

...
. . .

...
g(1)m g(2)m · · · g(n)m


(18)

where gi = (g(1)0 g(2)0 · · · g
(n)
0 ), 0 ≤ i ≤ m. The generator g(i) is the polynomial connection

and can be represented in binary or octal format. It can also be represented in the transform
domain, D (delay operator) form, which is given by the following convolutional code
equation as

y(D) = u(D)G(D) (19)

thus, the polynomial generator matrix in a D-transform domain is given as,

G(D) =



g(1)0 (D) g(2)0 (D) · · · g(n)0 (D)

g(1)1 (D) g(2)1 (D) · · · g(n)1 (D)

g(1)2 (D) g(2)2 (D) · · · g(n)2 (D)
...

...
. . .

...
g(1)m (D) g(2)m (D) · · · g(n)m (D)


(20)

A particular TCM code (n, k, m) parameter can be encoded by many polynomial
generators gi. Not all polynomial generators are good. Hence, g(i) depends on the number
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of trellis states and d2
f ree to give a good asymptotic coding gain for GT. The number of trellis

states is depicted by 2m. For example, in our case of the 16−QAM (3,2,3) TCM encoder
parameters, the trellis state is 8. The d2

f ree is estimated by the smallest Euclidian distance of
a coded symbol sequence to the all-zero symbol sequence. The TCM asymptotic coding
gain of GT is given by

GT = 10log[((d2
f ree)/(d

2
(minu)

))(E(su)/Es)] (21)

where d2
f ree is the squared free distance of the TCM encoder and d2

(minu)
is the squared

minimum Euclidian distance of the uncoded scheme; E(su) and Es are the symbol energy of
the uncoded scheme and TCM encoder, respectively. Table 1 illustrates optimal polynomials
generators/connections g(i) in octal (base 8) format with the associated parameters for a
good TCM encoder.

Table 1. Optimal polynomial generators for a good TCM encoder.

Trellis State go g1 g2 gm d2
f ree Asymptotic Gain (dB) for 16-QAM

4 5 2 - - 4 4.4
8 11 2 4 - 5 5.3
16 23 4 16 - 6 6.1
32 41 6 10 - 6 6.1
64 101 16 64 - 7 6.8

4.3. Throughput

Adequate asymptotic Gain GT will improve the data rate throughput (Tdr) of a
communication signal. From Shannon’s law, the throughput of an uncoded scheme is
given by

T(dru) = CB(log2)(1 + SNR) (22)

Hence, the throughput for coded scheme T(drGT)
gives

T(drGT)
= CB(GT)(log2)(1 + SNR) (23)

where CB is the channel bandwidth of the carrier signal. The next section presents the
simulation setup for the model implementation.

4.4. Simulation Experimental Setup

Table 2 presents the parameters for the simulation of the LHM-N model implemen-
tation and PSFE algorithm. The model is experimented with and compared with the
conventional QAM protocol. The performance efficiency of the implemented model is
evaluated based on the following instances:

(1) Evaluation with respect to BER and SNR over a Rayleigh fading channel.
(2) Evaluation with respect to throughput and SNR over a Rayleigh fading channel.
(3) Evaluation with respect to bit error rate (BER) and latency over a Rayleigh fading channel.

Further, the PSFE algorithm is experimented with and compared with TCP Reno and
TCP Cubic algorithms for packet forwarding. TCP Reno uses slow start and fast retransmit,
including packet loss, as criteria to detect network congestion during packet transmission.
TCP Cubic uses a cubic function of time from the inception of the last packet loss with
the inflection point set to the window prior to the congestion occurrence during packet
transmission. These algorithms are compared with the PSFE algorithm in terms of packet
forwarding to the device interface.
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Table 2. Simulation parameters.

Parameters Value

Simulation runs 100,000
Channel fading Rayleigh
Modulation size 16-QAM
SNR 0:5:50 (dB)
Channel bandwidth (CB) 20 MHz
Tx 1
Rx 2
Encoder TCM
Frequency 1.9 GHz
Trellis state 8
Trellis structure Poly2trellis
Polynomial generator (gi) g0, g1
Device type 5G RedCap
Combiner type MRC
Simulation runtime for overhead computation 100 s
Total packet length 1642 Byte
Minimum payload 64 Byte
Maximum payload 1500 Byte

5. Result and Analysis

Figure 6 shows the performance of communication signal transmission with respect
to BER and SNR over the Rayleigh fading channel of the LHM-N model compared with
the conventional QAM protocol (uncoded scheme). From Figure 6, it can be deduced that
the bit error rate (BER) at a given SNR in the LHM-N model is lower than the bit error rate
in the conventional QAM protocol. For example, the LHM-N model exhibits a lower BER
below 1, approximately 0.5 at an SNR of 5 dB, whereas the conventional QAM protocol
exhibits a higher BER above 1, approximately 6 at the same SNR of 5 dB. Further, at an
SNR of 50 dB, the BER in the LHM-N model is 10−4, whereas the BER in the conventional
QAM protocol is above 10−4. Therefore, it is apparent that it will take lower errors for
communication signal transmission in the LHM-N model than in the conventional QAM
protocol, which has more errors in transmission, as depicted in Figure 6. Hence, the LHM-
N model coding gain GT of 5.3 dB validates the performance improvement without the
expense of bandwidth energy. For example, at a given SNR (a function of symbol energy
per bit), the communication signal improves with less error compared to the conventional
QAM protocol at the same symbol energy per bit.

Figure 7 shows the performance of the communication signal transmission with re-
spect to throughput and SNR over the Rayleigh fading channel of the LHM-N model
compared with the conventional QAM protocol. From the result, it confirms that the
LHM-N model can effectively maintain a higher throughput or data rate in communication
signal transmission. This is depicted in Figure 7, which shows a higher throughput than
the existing or conventional QAM protocols (uncoded signal). For instance, for the LHM-N
model, at an SNR of 25 dB, a throughput of approximately 800 Mbps is obtained whereas
for the existing QAM protocol, approximately 100 Mbps throughput is obtained at the same
25 dB. Similarly, at an SNR of 50 dB, throughputs of approximately 850 and
150 Mbps are obtained for the LHM-N model and existing QAM protocol, respectively.
Hence, it is evident that the throughput of the LHM-N model is five times the throughput
of the existing QAM protocol. This validates an appreciable and improved throughput
in the LHM-N model than in the existing QAM protocol. This throughput improvement
makes this model (an optimization of a 5G RedCap IoT device) suitable for medium to
high data rate IoT applications without the expense of energy increase (low power). Thus,
this model has a comparable LPWAN potential capability. The 5G RedCap IoT device with
the existing protocol cannot attain appreciable throughput without the expense of energy
increase (high power consumption), which makes it unsuitable for LPWAN-IoT potential
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capability. Hence, the existing RedCap does not support low power capability comparable
with the LPWAN.
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Figure 6. Comparative analysis of BER for LHM-N and the conventional QAM protocol.

Signal-Noise-Ratio (dB)

5 10 15 20 25 30 35 40 45 50

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

101

102

103

LHM-N model (RX-TCM)

Conventional QAM Protocol

Figure 7. Comparative analysis of the throughput for LHM-N and the conventional QAM protocol.

Figure 8 shows the performance of the communication signal transmission with respect
to BER and latency over the Rayleigh fading channel of the LHM-N model compared with
the conventional QAM protocol. From the result, it can be seen that at any instance of the
transmission, the LHM-N model exhibits low BER as well as a lower latency compared
to the conventional QAM protocol For example, the transmission latency is 30 ms with
a BER slightly below 10−3 in the LHM-N model. Whereas at the same BER of 10−3,
the transmission latency or delay was 45 ms in the conventional QAM protocol. This
validates the lower latency or delay in the LHM-N transmission than in the conventional
QAM protocol.
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Figure 8. Comparative analysis of latency (delay) for LHM-N and the conventional QAM protocol.

Figure 9 shows comparisons of the protocol overhead for packet forwarding transmis-
sion. From the three evaluated algorithms, the PSFE algorithm outperforms TCP Reno and
TCP Cubic algorithms with very low protocol overhead throughout the simulation runtime
during the packet-forwarding transmission. The PSFE has a maximum attainment of 0.5
protocol overhead. This is the least attainment of protocol overhead compared with TCP
Reno and TCP Cubic, whose maximum protocol overheads are 0.9 and 0.8, respectively.
Hence, the TCP Reno and TCP Cubic encountered higher protocol overhead due to the
frequent packet forwarding in their algorithm’s criteria. This causes excessive overhead
for the packet header and trailer, which can lead to packet loss errors, sluggish network,
congestion, and high energy consumption on the device. However, the PSFE maintains
conditional properties based on a given threshold for packet forwarding. This allows only
accumulated packets to be forwarded based on the conditional criteria leading to minimal
protocol overhead. The minimal protocol overhead can be attributed to enabling congestion
avoidance in packet-forwarding transmission.
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Figure 9. Comparisons of protocol overhead for packet-forwarding transmission.
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6. Conclusions and Future Work

In this paper, the design and implementation of a lightweight heterogenous multi-
homed network (LHM-N) model for diverse smart city applications is carried out. The
LHM-N model addresses dense heterogeneity network challenges, such as the difficulties
in the management of LPWANs coexistence, interference, spectrum insufficiency, QoS,
and scalability issues, in a smart cities’ scenario. The solution model advocates the en-
abling of smartness in the diverse IoT application domains, such as transport and mobility,
health care, natural resources, electricity and energy, homes and buildings, commerce
and retail, society and workplace, industry, agriculture, and the environment. A receiver
diversity-based TCM technique, RX-TCM, is implemented on the LHM-N model for the
IoT application solution suitable for a smart city ecosystem. In addition, the paper inte-
grates a manageable license-free LPWAN coexistence with 5G private and public cellular
networks in the LHM-N model. This provides a very cost-effective solution model in a
heterogeneous dense smart city environment. Further, a 5G reduced capability (RedCap)
IoT device is integrated into the (LHM-N) model for supporting high-bandwidth smart
city application solutions. Furthermore, the optimization of the PHY layer protocol of
the 5G reduced capability (RedCap) IoT device to operate comparatively with LPWAN in
terms of signal-to-noise ratio (SNR) symbol energy is carried out. The 5G RedCap performs
optimally at medium to high data throughput with low latency in the LHM-N model.

Furthermore, the MATLAB simulation results validate the performance of the LHM-N
model with a lower error rate and lower transmission delay compared to the conventional
QAM protocol. The 5G RedCap protocol optimization performs five times better than
the conventional QAM protocol in terms of data throughput without an energy cost
expense for medium- to high-bandwidth industrial IoT (IIoT) applications. In addition,
the proposed packet-size forwarding engine (PSFE) algorithm outperforms TCP Reno and
TCP Cubic algorithms with very low protocol overhead. Finally, the minimal protocol
overhead in the PSFE algorithm can be attributed to enabling congestion avoidance in
packet-forwarding transmission.

Regarding future work, the authors aim to carry out coverage and energy/complexity
evaluations of the developed LHM-N model compared with conventional LPWANs, such
as LTE-M (eMTC), in a smart city scenario. This is to establish the nearness of the LHM-N
model features to features of the LPWAN in a smart city scenario.
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