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Abstract: In evolving technology, attacks on medical devices are optimized due to the driving force
of AI, computer vision, mixed reality, and the internet of things (IoT). Optimizing cybersecurity on
the internet of medical things (IoMT) and building cyber resiliency against crime-as-a-service (CaaS)
in the healthcare ecosystem are challenging due to various attacks, including spectrum-level threats
at the physical layer. Therefore, we conducted a systematic literature review to identify the research
gaps and propose potential solutions to spectrum threats on IoMT devices. The purpose of this study
is to provide an overview of the literature on wireless spectrum attacks. The papers we reviewed
covered cyber impacts, layered attacks, attacks on protocols, sniffing attacks, field experimentation
with cybersecurity testbeds, radiofrequency machine learning, and data collection. In the final section,
we discuss future directions, including the sniffing attack mitigation framework in IoMT devices
operating under a machine implantable communication system (MICS). To analyze the research
papers about physical attacks against IoT in health care, we followed the Preferred Reporting Items
for Systematic Reviews (PRISMA) guidelines. Scopus, PubMed, and Web of Science were searched
for peer-reviewed articles, and we conducted a thorough search using these resources. The search on
Scopus containing the terms “jamming attack” and “health” yielded 330 rows, and the investigation
on WoS yielded 17 rows. The search terms “replay attack” and “health” yielded 372 rows in Scopus,
while PubMed yielded 23 rows, and WoS yielded 50 articles. The search terms “side-channel attack”
and “health” yielded 447 rows in Scopus, WoS yielded 30 articles, and the search terms “sniffing
attack” and “health” yielded 18 rows in Scopus, while PubMed yielded 1 row, and WoS yielded
0 articles. The terms “spoofing attack” and “health” yielded 316 rows in Scopus, while PubMed
yielded 5 rows, and WoS yielded 23 articles. Finally, the search terms “tampering attack” and “health”
yielded 25 rows in Scopus, PubMed yielded 14 rows, and WoS yielded 46 rows. The search time
frame was from 2003 to June 2022. The findings show a research gap in sniffing, tampering, and
replay attacks on the IoMT. We have listed the items that were included and excluded and provided
a detailed summary of SLR. A thorough analysis of potential gaps has been identified, and the results
are visualized for ease of understanding.

Keywords: cybersecurity; health care; systematic review; internet of medical things; sniffing attacks;
radiofrequency attacks

1. Introduction

Digital health is a promising platform to increase life expectancy and overcome the
challenges that healthcare technologists must deal with. Among the promising research
fields of today, the IoMT (internet of medical things)-based AR/VR (augmented real-
ity/virtual reality) technologies strongly focus on the medical education and patient engage-
ment areas of the healthcare ecosystem. However, digital transformation vulnerabilities are
providing an opportunity to adversaries to explore less studied and little-known physical
emanation attacks, including radio frequency, acoustic, ultrasonic, magnetic, photonic, seis-
mic, infrared, electromagnetic, magnetic field temperature, and low-level vibration attacks
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on air gap and non-air gap source systems [1–4]. To protect high- and low-value assets,
there is a need to provide physical security between personal medical devices, healthcare
providers, education, and patient-centric approaches. Additionally, the evolving nature
of IoT-based healthcare ecosystems requires sound medical and ethical policies to ensure
cybersecurity is safe and attack-aware. Because of disruptive technologies’ demanding
nature and the need to accelerate the learning curve of the workforce, the IoMT sector is
growing more rapidly than ever, bringing new risks and vulnerabilities. The present-day
wireless attacks are not limited to NFC (near field communication) [5], (BLE) bluetooth low
energy [6], LTE (long-term evolution) [7], RF (radio frequency) [8], Wi-Fi (wireless fidelity),
GPS (global positioning satellite), or SATCOM (satellite communications) but extend to
other wireless spectrum technologies vulnerable to quality attribute attacks on reliability,
safety, security, and integrity. In hospital settings, IoMT devices pose greater cyber risks
than ever due to innovation in IoMT devices [8].

Table 1 shows RF attacks by the internet of things (IoT) layer and attack area descrip-
tion, and Figure 1 shows the wireless device, system, and communication technologies
used in the healthcare ecosystem and threats by software-defined radio devices.

Table 1. RF attack by IoT layer and attack area description.

Type of Attack IoT Layer Attack Area Description

Primary emulation Perception The primary transmitter/antenna emits information or spilling of
information.

Spectrum sensing Perception Fake identification and observation of spectrum sensing process.

Control channel attack Network Untrusted system or process collecting confidential information of
trusted system/process.

Cross-layer attack All layers Parallel attack on all the layers of IoT.

SDR device attack All layers SDR device antenna/battery and other core part disruption.

Jamming attack All layers
Decreasing signal to interference noise ratio by blocking the
information transfer between transmitter and receiver in the

communication channel.

Replay attack All layers Interception of signal between transmitter and receiver to accomplish
fake transmission.

Sniffing attack All layers Closely monitoring the sensitive or unauthorized information between
transmitter and receiver in the communication channel.

Tampering attack All layers
Closely monitoring the sensitive or unauthorized information between

transmitter and receiver in the communication channel and
modification of process/parameters to compromise the system.

Denial attack All layers
Closely monitoring the sensitive or unauthorized information between
transmitter and receiver in the communication channel, modification of

process/parameters, and disrupting the availability.

Hospital settings are vulnerable to various attacks, such as simulation and clone
attacks in LFID (low-frequency identification), privacy leakage attacks (PLA) on contactless
cards, replay and brute force attacks on pressure systems, sniffing and jamming attacks on
Wi-Fi, the transmission of fake uplink data, and clone the tracker attacks and LTE sniffing
attacks on mobiles. Information security incidents caused by intruders and unethical
hackers are becoming more common, as evident from various research efforts on the IoT
security and wireless sensor networks security and challenges, including medical devices
and personal body area networks. Information spilling, session hijacking, and phishing
attacks are frequent in healthcare infrastructure. Moreover, attack types based on the layer
are becoming common in the hospital sector due to the low level of the cyber security
maturity model, penetration testing to identify the vulnerabilities, and lack of cyber security
awareness among business users and stakeholders.
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1.1. Radiofrequency Attacks

An RF attack is a type of hacking that does not require physical contact with the
target. Electronic devices are disrupted, damaged, or interfered with by radio waves sent
by the attacker. In addition to disrupting internet-connected devices, they can also affect
computers, routers, printers, and other IoT devices. Software-defined radios (SDRs) are
powerful tools for monitoring, intercepting, and manipulating digital communications.
Additionally, they open the door to the internet of things. As SDRs become more prevalent,
the threat of IoT hacks will increase. Figure 1 shows the possibilities of physical layer
attacks and system attacks by SDR devices. As shown in Figure 1, spoofing, eavesdropping,
and man-in-the-middle attacks have a combined 50% coverage when compared to the other
attacks. Additionally, spoofing and eavesdropping are more significant than man-in-the-
middle attacks in that range.

1.2. Recommended Solutions

There are still organizational, technological, and governance barriers that prevent
the adoption of cybersecurity in healthcare IoT, but the coronavirus disease (COVID-19)
pandemic has brought to light the need for a secure IoT to coordinate the transfer of
confidential information, for temperature control of medical supplies and vaccines, radio
frequency-based machine implantable communication systems, wearable technologies for
remote patient monitoring, and patient-controlled drug delivery systems. The need to drive
greater adoption of IoT security policies in healthcare cybersecurity makes it imperative
to remove some of these barriers in concerted efforts to drive greater adoption. Although
external factors such as COVID-19 alone may push the adoption of these technologies, such
factors cannot achieve lasting and sustained effects [9].

We aimed to systematically review the IoMT to understand the research gap and
identify RF hackers’ locations. Our goal was to provide the healthcare community with
better understanding, literacy, and appropriate advancements, as well as bring together
IoMT and physical layer scientists. Additionally, we hope that this work will foster a
greater interest in integrating IoMT systems into future healthcare applications and beyond.
The following are the main contributions.

1. A description of the current state of research on internet of things (IoT) side-channel
attacks.
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2. The aim of this study was to understand the research gap about sniffing and replaying
IoMT attacks in the healthcare ecosystem.

3. The research papers were reviewed top-down to facilitate our future research, includ-
ing those on cybersecurity systems, cybersecurity frameworks, cyber-attacks on layers
and protocols, radio frequency machine learning, and deep learning in a cybersecurity
field experimentation.

4. The conclusions we have reached, and our plans for future work are presented.

In Table 2, cyber spectrum attacks are analyzed across journals. There is a lack of
research on sniffing and tampering attacks, according to the results.

Table 2. Displays the search analysis of cyber spectrum attacks across journals.

Attack Search Web of
Science Scopus PubMed Total

Jamming Attack 17 330 0 347
Replay Attack 50 372 23 445

Side-Channel Attack 30 447 0 477
Sniffing Attack 0 18 1 19

Spoofing Attack 23 316 5 344
Tampering Attack 25 46 14 85

Total 145 1529 43 1717

Our future research will be facilitated by reviewing research papers from the top down.
Topics included systems for cybersecurity, cybersecurity frameworks, attacks on layers and
protocols, radio frequency machine learning, and deep learning in the cybersecurity field.
Table 3 shows the papers we reviewed.

Table 3. Summary of SLR.

Type of Attack Section Data Method Conclusion/Result

This framework provides details related to
incident insights. It classifies incidents based on
external, internal, and partner-based threats. It
also provides insights into hacking evidence,
including IoT forensics), malware behavior,
social engineering attacks, privilege misuse,

and known and unintentional errors.

3.1 2 3

The key metrics on incidents are classified
based on victims (size of the organization),
actors, actions, assets, attributes, timelines,

impacts, and repeated events.

The research explains various attacks on that
three-layer IoT architecture, starting with

physical attacks, jamming attacks, relay attacks,
Sybil, selective forwarding, side-channel, replay,

evil twin, sniffing, and spoofing.

3.1 1 3

The paper shows goal-based classification
and the evolving spectrum-level

vulnerabilities causing significant
disruption to the OSI.

Their investigation claims that mobilityand QoS
will be high for specific communication

protocols.
3.2 1 3

The reverse engineering of the spectrum
to retrieve those payloads and understand
the protocols becomes a base process of

attack strategies. The hardness scale
depends on the main contributing factors:
encryption, frequency band, modulation,

spread spectrum, and protocols.

How asset mobility contributes to the
continuous evaluation and monitoring of

high-value assets and elevates risk mitigation
strategies and guidelines.

3.2 2 3

The paper evaluates the reasoning behind
new cybersecurity threats from radio

channel-based adversaries such as cluster
drones, mobile networks, satellites,

marine, aeronautical, in-depth space
communication, and IoT.
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Table 3. Cont.

Type of Attack Section Data Method Conclusion/Result

Categorization of attack levels—operating
system level, user interface level—and how the
sensitive information flows across the process

are captured for further analysis.

3.3 2 3

The inheritance of password
authentication shows the infancy of

research rigor and does not contribute to
sniffing attacks.

This paper contributes to knowledge more than
the practical implementation of design, artifacts,
proof of concepts, experimentation, evaluation,

and future direction.

3.3 1 4

The main idea will enhance the
motivation to identify the research focus

with potential questions. IoMT is
operating under MICS or ISM frequency.

The architectural design and completion of the
Version 1 CASE-V testbed. They developed a
web-based UI framework using the MEAN.

3.4 2 4

To reduce the dependability of an external
penetration tester, a low-cost testbed can
be performed to improve the effectiveness

and usability of CSM.

The research claims that open-source hardware
and software can develop a testbed within 500

euros for ethical Industrial Control System
hacking, education, competency development,

and research.

3.4 1 4

According to the analysis, insider threats
and associated toolsimpact levels 0 and 1

compared to a remote intruder. The
author’s findings proved that a low-cost

testbed is possible in the corporate
ecosystem.

Overview of publicly available data sets for
intelligent cybersecurity intrusion detection
system. Also, it proposed how ML and DL
techniques can be used to analyze the raw

network traffic data having real-time traffics
from APT, malware, and botnets.

3.5 2 4

The research investigated the pros and
cons between Machine Learning (ML) and

Deep Learning (DL) algorithm support
vector machines (SVM), deep belief

network (DBN), recursive neural network
(RNN), convolutional neural network

(CNN), Fast-RNN and difference between
ML and DL in terms of data and hardware

dependencies, Feature processing,
problem solving and execution time.

They investigated the publicly available
database—IEEE, Science Direct, ACM, and
Springer Link, between 1990 and 2019 to

address the questions.1.ML algorithm used for
endpoint detection and response (EDR)2.

Alternative available for the EDR.

3.5 2 4
The research claims to analyze the
Publication Trends in EDR and the

techniques used for EDR.

Literature review data = 1; Public dataset = 2. Literature study = 3; Experimental
Study = 4.

2. Methodology

In our systematic review [10], we have focused on the healthcare field, healthcare, and
IoT, and the section starts with the research questions and the data sources. A detailed
keyword search has been listed, followed by an analysis. VOS viewer has been utilized for
visualization and has helped us identify critical research papers.

2.1. Research Questions

In this study, the following research questions were addressed [11]:

1. RQ1: How well has IoT been integrated into healthcare?
2. RQ2: What is the current state of healthcare-RF cybersecurity research?

2.2. The Source of Data

Three electronic databases were included in the systematic review:

• Web of Science (WoS);
• Scopus;
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• PubMed.

The original research articles on IoT signal security in health care were identified using
the Preferred Reporting Items for Systematic Reviews Meta-analysis (PRISMA) guidelines.
Our search was for original research articles published exclusively in English between
January 2002 and June 2022. This document contains PRISMA, as well as articles with full
text and articles in English. We conducted a cross-disciplinary database search of research
articles between inception and June 2022. To find articles published between 2012 and 2022,
we used Boolean functions in electronic databases (PubMed, Scopus, and Web of Science).

In this section, we have reviewed the research papers related to the cybersecurity
framework, the layered classification of IoT, and cybersecurity impacts. Then, we cascaded
the studies on attacks on physical layer protocols and further reviewed radio frequency
attacks (RFA) on the IoMT. For example, they were sniffing attacks, tampering attacks on
vehicular sensors, and replay attacks. Our research studies use the PRISMA approach for
the identification, screening, eligibility, and inclusion of research papers. Then, we used
a systematic literature review (SLR) to identify papers contributing to our defined scope.
Few studies and little-known information are available in the SLR approach on RF physical
attacks on the IoMT and their analyzing trend through radio frequency machine learning
(RFML) [12]. The core papers included in our research studies are directly associated with
physical layer attacks. However, there are papers on IoT health care that provide industry
and market acceptance from healthcare professionals [13]. We used the British Standards
Institution [14] and the national initiative for cybersecurity careers and studies for our
research [15]. The keywords are listed below.

2.3. Search Strategy and Selection Criteria

Following are the search strings we used to search Scopus, Web of Science, and
PubMed:

ALL (“JAMMING ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“REPLAY ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“SNIFFING ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“TAMPERING ATTACK”) AND ALL (“HEALTH”) ALL (“SIDE CHANNEL

ATTACK”) AND ALL VAND PUBYEAR > 2002
ALL (“DENIAL ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“SPOOFING”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
The rejected keywords are “health care,” “physical attack,” “SDR,” “malicious,” “in-

truder,” and “adversaries.” In the last decade, there has been a significant positive increase
in wireless security awareness and spectrum attack awareness. The research articles from
the web of science (WOS), PubMed, and Scopus are included in our study. However, physi-
cal layer research contributions are relatively modest compared to other security layers. An
article was excluded if it falls in another category other than cybersecurity physical layer
attacks and health.

In June 2022, a search was conducted in the online digital libraries to locate the articles.
An overview of the search and selection procedure is given in Figure 2 [16].
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2.4. Data Collection and Visualization

We then collected data from the relevant publications to conduct our analysis. We
gathered basic information about the publications: title, authors, publication type, publica-
tion domain, and publication year. The basic information we collected led us to focus on
two fields of interest—side-channel attacks and healthcare. Figure 3 visualizes the spec-
trum attack search between 2003 and 2022 through the Power BI Microsoft platform [14]
and shows that computer science and medical informatics had the most spectrum attack
publications, followed by the engineering and telecommunication domain.
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A full counting relevance study is shown in Figure 5. The content is visualized based
on the number of occurrences of a term exceeding 10 (143 terms from 5219). The Each term
is given a relevance score. Based on this score, the most relevant term is selected. The
default choice is 60% of the most relevant term. The small size of the red bubble with replay
attack and the light blue bubble with side-channel attack indicate significant research gaps
in those areas [17].



J. Sens. Actuator Netw. 2022, 11, 62 9 of 19
J. Sens. Actuator Netw. 2022, 11, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 5. Relevance and occurrence study-full counting. 

Figure 6 shows the binary counting relevance study. A VOS viewer [18] shows a vis-

ualization of the content based on the number of occurrences of a term greater than 10 

(104 from 5219 terms). Each term is given a relevance score. Based on this score, the most 

relevant term is selected. The default choice is 60% of the most relevant term. Regarding 

the replay attack, the relevant keyword topics are well connected with other key terms 

highly prone to spectrum attacks [18]. The red bubble illustrates a method or attributes 

research gap in relation to replay attack, and the light blue and green bubbles indicate 

significant research gaps in the side-channel attack. 

 

Figure 6. Relevance and occurrence study—binary counting. 

Figure 5. Relevance and occurrence study-full counting.

Figure 6 shows the binary counting relevance study. A VOS viewer [18] shows a
visualization of the content based on the number of occurrences of a term greater than 10
(104 from 5219 terms). Each term is given a relevance score. Based on this score, the most
relevant term is selected. The default choice is 60% of the most relevant term. Regarding
the replay attack, the relevant keyword topics are well connected with other key terms
highly prone to spectrum attacks [18]. The red bubble illustrates a method or attributes
research gap in relation to replay attack, and the light blue and green bubbles indicate
significant research gaps in the side-channel attack.
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2.5. Search Strategy and Selection Criteria

During the selection process, duplicate articles were removed, article titles were
reviewed, and articles that did not pertain to IoT cybersecurity in healthcare were removed.
We selected these articles based on information in our indexed database. Table 4 shows
the attacks identified in WoS, Scopus, and PubMed. In Table 5, we list the attacks that are
excluded. The articles that conceptualized specific use cases were retained, while those
containing editorials, letters, reviews, and opinions not listed in Section 2.3 were excluded.

Table 4. The included articles.

Attacks Web of Science Scopus PubMed

Jamming Attack 17 330 0
Replay Attack 50 372 23

Side-Channel Attack 30 447 0
Sniffing Attack 0 18 1

Spoofing Attack 23 316 5
Tampering Attack 25 46 14

Total 145 1529 43

Table 5. The excluded articles.

Attacks Web of Science Scopus PubMed

Jamming Attack 16 330 0
Replay Attack 49 371 22

Side-Channel Attack 29 446 0
Sniffing Attack 0 18 1

Spoofing Attack 23 316 5
Tampering Attack 24 46 14

Total 141 1527 42

2.6. Data Generalization

We developed a standardized form using Microsoft Excel to evaluate the selected
articles. The findings of heterogeneous studies were synthesized using a narrative review
approach to describe IoT signal attack protocols, platforms, or functional prototypes. In the
narrative review, individual and meta-analysis biases were not assessed, so missing data
were eliminated.

3. Results and Discussion

The purpose of this section is to discuss the results retrieved from the publications
and discuss two research questions.

1. RQ1: How well has IoT been integrated into health care?

We completed a systematic analysis of research articles per year against research
for jamming [19], replay [20], sniffing [21], spoofing [20,22], side-channel, and tampering
attacks in the web of science PubMed and Scopus. The results clearly show that com-
puter and wireless communication domains are dominant, and the research articles are
distributed in sensing layer attacks of IoMT. Table 1 and Figure 4 show the search analysis
of cyber spectrum attacks across journals as per the PRISMA checklist in Appendix A. The
Scopus papers containing terms about “jamming attack” and “health” yielded 330 rows,
and the investigation on WoS yielded 17 articles. Scopus papers containing terms about
“replay attack” and “health” yielded 372 rows, PubMed yielded 23 rows, and WoS yielded
50 articles.

Scopus papers containing terms about “side-channel attack” and “health” yielded
447 rows, and articles on WoS yielded 30 articles. Scopus papers containing terms about
“sniffing attack” and “health” yielded 18 rows, PubMed yielded 1 row, and WoS yielded
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0 articles. Scopus for papers containing terms about “spoofing attack” and “health” yielded
316 rows, PubMed yielded five, and WoS yielded 23 articles. Scopus papers containing
terms about “tampering attack” and “health” yielded 25 rows, and articles on PubMed
yielded 14 rows, and articles on WoS delivered 46 articles. This row-level analysis result
reveals no significant research contribution in sniffing attacks on IoMT devices, and that
trend follows with tampering attacks, etc.

Table 3 shows SLR from Sections 3.1–3.5 in tabular form. Section 3.1 reviews the
cyber impacts and attacks on three-layer IoT architecture to identify the possibility of
compromising adversaries’ assets. Moreover, unethical hacking competencies and the
corresponding core behaviors in weaponizing the SDR and radiofrequency to take over
critical information such as client and clinical data repository from IoMT will significantly
damage the entire healthcare user experience. We have well-established standard models
and best practices with health level Seven international (HL7) [23] and fast health care
interoperability resource (FHIR) [24] to meet health insurance portability accountability
Act (HIPAA) compliance [25]. However, few studies on radio attack analysis on IoMT data
and radio frequency machine learning framework have good wireless physical security
risk mitigation strategies.

Section 3.2 studies attacks on physical layer protocol on the internet of things. The
above review provides a roadmap for understanding RF physical attacks, including jam-
ming, sniffing, spoofing, tampering, and replay attacks. In the upcoming Sections 3.3 and 3.4,
we discuss the paper related to the testbed implementation for IoT field experimentation.

2. RQ2: What is the current state of healthcare-RF cybersecurity research?

3.1. Cyber Impacts and Layered Attacks

Criminality is uprooted from cybercrime, regardless of the attacking layer. By under-
standing cyber impacts at the human and OSI layers, we gained insight into the causes and
were able to deploy countermeasure strategies against powerful attacks. Prior to reviewing
the physical layer attacks, we will examine layered attacks and cybersecurity frameworks.

The research [26] examines threats, vulnerabilities, and attacks. Literature reviews,
surveys, articles, repositories, attacks, incidents, and more demonstrated how cybersecurity
harnesses multiple dimensions of the corporate ecosystem. Cyber harness themes were
examined from adversaries’ perspectives. According to the research, the taxonomy will
enable companies to distinguish between high-value and low-value assets and how they are
directly and indirectly associated with cyber-related harms. To improve their cybersecurity
management program, the paper analyzed the VERIS community database (VCDB) [27].

3.1.1. Cyber-Attacks Taxonomy

In cyber-harm, five themes are distinguished: physical damage, theft, destruction,
infection, exposure, corruption, performance reduction, pain, death, prosecution, and
mistreatment.

Economic harm (disruptions of operations, sales, customers, growth, profits, extortion,
joblessness, and scams).

Anger, shame, guilt, guilt, worthlessness, reduced satisfaction, and incorrect percep-
tions are all physical cyber-harms.

A reputational cyber-harm (leading to damage to public perception, brand damage,
customer-corporate damage, and decreased business opportunities).

As a result of social cyber-harm, dynamic inconsistencies in public opinion are caused,
cultural efficacy is disrupted, a negative impact is incurred on communities, and perceptions
of organizational behavior are reduced.

The author proposes to extend their future work on an asset-oriented model for the
corporate ecosystem and identifying high-value and low-value assets, and how the critical
stakeholders involved in the interest of direct and indirect harm. However, this approach
does not provide analytics or tools for advanced prediction or intelligent cybersecurity
systems to help corporations understand cyber-harm. Despite not focusing on a specific
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theme, their approach was sufficiently flexible and highly scalable. The data were sourced
from an open-source database. The Vocabulary for Event Recording and Incident Distribu-
tion System (VERIS) framework is loaded with open-source cybersecurity key performance
indicators (OCKPI) to identify the security incident insights, increase the companies’ risk
mitigation strategies, and extend that framework for effective incident handling mecha-
nism [28]. This framework provides details related to incident insights. It classifies incidents
based on external, internal, and partner-based threats. It also provides insights into hacking
evidence, including IoT forensics, malware behavior, social engineering attacks, privilege
misuse, known and unintentional errors, and how confidentiality, integrity, and availability
are affected through critical metrics.

The key metrics on incidents are classified based on victims (size of the organization),
actors, actions, assets, attributes, timelines, impacts, and repeated events. Moreover, this
framework provides facilities to understand the efficacy of a business continuity plan
through the discovery and response process targeting how the discovery is processed, the
root causes, and the corrective actions. How do you differentiate between targeted and
opportunistic attack scenarios? This data-driven framework gives greater visibility and
reasoning on the key performance indicators. However, the open-source community lacks
the credibility of data and future support.

3.1.2. Cyber Security Framework

A security framework assessment matrix compares various cybersecurity framework
implementation trends [29]. Authors performed through literature review and qualita-
tive document analysis. The cybersecurity framework’s assessment matrix helps identify
how many items are covered. Besides, three frameworks from three countries are aligned
to their country profile and risk management strategies. According to the investigation,
their analysis benefits policymakers and executives doing business in three states by im-
proving their framework strength and understanding of necessary improvements. In
addition, country-specific cybersecurity implementation frameworks (CIFs) were imple-
mented across regions, and business values were shared. Hence, evidence-based insights
are developed for decision-makers from business regions to improve their existing cyber-
security frameworks. However, most action items are derived from the NIST framework
except for risk governance, which had substantial quantitative empirical support. NIST’s
limitations are prioritized in this paper, but most action items are still inherited from NIST.

Moreover, the author used the old policy-2014 instead of the amended policy-2018
for the Australia protective security policy framework (PSPF) assessment. To improve
cybersecurity framework implementation, the authors analyzed the assessment matrix and
used pattern-matching [30]. On the other hand, there is a potential gap in enhancement
to understand the effectiveness of adopting and utilizing cybersecurity implementation
frameworks, though adopted by businesses having branch offices across those regions (the
UK, Australia, and the USA).

3.1.3. Cyber-Attacks Classification

Based on the open systems interconnection (OSI) model, the author [31] develops
strategies to defend against attacks across industries. The research explains the three-
layer architecture: The top layer, the application layer, comprises intelligent processing,
cloud computing, middleware technologies, and service platforms. Wireless local area
networks (WLAN), GPS, and internet protocol (IP) make up the network layer. Lastly,
the sensing layer includes all IoT technologies, including RFID, NFC, Wi-Fi, computer
vision, and coordination. Despite the growing demand for contactless sensing, SOLI
may lead to multilayer architectures. Furthermore, the research explains various attacks
on the three-layer IoT architecture. The various attacks are physical attacks, jamming
attacks [32], relay attacks [33], sybil, selective forwarding, side-channel attacks [20], replay,
evil twin [34], sniffing [35], spoofing, tampering or malicious code injection, firmware
attacks, and network layer attacks (sinkhole, unfairness, incorrect routing, session flooding,
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eavesdropping related to packets). Application layer (phishing attacks virus, worms,
spyware, malicious scripts, denial-of-service (DOS), injection, buffer overflows, RFID
tampering. However, they demonstrated goal-based classification of the evolving signal
security threats and spectrum-level vulnerabilities, causing significant disruption to the
OSI. Those attacks are not limited to frequency hopping spread spectrum attack [36], direct
sequence spread spectrum [37], or chirp spread spectrum (CSS) hybrid. The research
investigates criminality or attacking goal-based layered classification and still lacks the
choice of methodology, validation, and future works.

The research investigates criminality or attacking goal-based layered classification and
still lacks the choice of methodology, validation, and future works.

3.2. Cyber-Physical Attacks on Protocols

This paper [38] examines the effectiveness of IoT against high-power cellular networks
using various low-power protocols. The author discusses the key technical differences
between Sigfox, LoRa, and NB-IoT, as well as their advantages and disadvantages. Accord-
ing to their investigation, specific protocols will deliver high mobility and QoS. However,
downlink data are possible with wearables with the same spectrum threat of the uplink
process.

In other words, the danger is not different for each process since both work under
an unlicensed frequency band under the range of Industrial, scientific, and medical (ISM)
900 MHZ [39]. Medical sensors in the ISM band are vulnerable to physical layer attacks.
Examples include tampering/malicious code injection, firmware attacks, jamming, replay,
and evil twin attacks. During the reconnaissance phase of attack strategies, adversaries
thoroughly investigate those devices. OSINT toolsets are suited to their motivations and
guided by attack vector maturity. The newly identified markers employ a variety of attack
surfaces, including iron oxide fillings and traces. In our scope, we focus on attacks at the
spectrum level before reaching the IP network gateway. A few common attacks on those
spaces are sniffing, eavesdropping, jamming, network state disruption or transmitting
noise, and conflicting the traffic within the target RF channel having the same frequency.

Re-transmitting the symbol or captured frames to the receiver to implement a replay
attack includes re-transmitting mutated information. The threat or aggression process will
be the same regardless of the spectrum of attacks. The base of any attack strategy is to
understand the protocols and reverse engineer the spectrum for payload injection. Several
factors contribute to the identification and localization, including modulation, frequency,
bandwidth, data rate, half duplex or full duplex system, maximum payload size, range
between source-target, interference immunity, adaptive data rate, authentication, handover
to fault-tolerant node, localization, and energy awareness. Additionally, the localization of
the transmitting rogue SDR is detectable using the angle of arrival (AOA), time difference
of arrival (TDOA), frequency difference of arrival (FDOA), and received signal strength
indicator (RSSI) techniques.

Cyber-Physical Attacks on Low-Power Protocols

In paper [39], the author examines the effectiveness of the Internet of Things using low-
power protocols. Furthermore, their investigation claims that mobility and QoS will be high
for specific protocols because of asset mobility and continuous evaluation and monitoring.
The IoT, drones, radio channels, satellite communications, and marine, aeronautical, and
deep space communication create new cybersecurity threats. Anything emitting RF energy
is vulnerable. Due to IoT, including the internet of medical things, battle things, and the
internet of everything, and high-level adversary motivation, the attack surface is growing.
New threats will increase the urgency for innovation in frameworks, cybersecurity maturity
models, standards, and guidelines. Therefore, cybersecurity policies and controls must
move into the extended maturity group.
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3.3. Sniffing Attack

This section discusses physical attacks—sniffing and tampering. However, little is
known about how the Internet of Medical Things matures and how Radio Frequency
spectrum attacks have grown in recent years. There is a niche gap in the research’s
demonstration evaluation depth and rigor [40] on side-channel attacks on wearables. The
categorization of attack levels—operating system level, user interface level, shows how the
sensitive information across the process flows. However, there are no concrete details on
contribution. Finally, the inheritance of old password authentication strategies shows the
infancy of research rigor and does not contribute to sniffing attacks. An analysis compared
solutions against IoT attacks, dividing them into three layers, focusing on perception layer
attacks and further dividing perception layer attacks by technology. The contribution of
this paper [41] goes beyond the practice of designing, making artifacts, proving concepts,
doing experiments, evaluating them, and making suggestions for the future. Motivating
research focus with possible questions is the main idea.

3.4. Cybersecurity Experimentation with AI-Enabled CS

The paper [42] explores artificial intelligence (AI) cybersecurity systems. A platform
is needed to test big data and fog computing, cyber situational awareness, innovative
simulations, and cyber decision support systems (CDSS). For example, safety-critical
systems include production and industrial control systems (ICS), and mission-critical
includes communication, access management, interfaces, and business system (HRM,
financial, procurement, product, innovation, sales, marketing, etc.). The corporate system
cannot depend only on the external penetration testing strategies but develop an internal
red team—to attack the system—and a blue team—to defend the system—providing a
competitive advantage in attaining cyber maturity. To achieve and reduce the dependability
on external penetration tester, the low-cost testbed can be performed to improve the
effectiveness and usability of continuous security monitoring (CSM), facilitate attack and
defense awareness among employees, and thus reduce KT cost between IT and operational
departments. The testbed can also be scaled to accommodate upcoming threats from similar
market segments and innovate new strategies—deception against advanced persistent
threats (APTs).

Researchers state that the inability to experiment with cybersecurity threats on the low-
cost testbed is an excellent threat to the ICS. The research claims that open-source hardware
and software can develop a testbed within 500 euros for ethical industrial control system
hacking, education, competency development, and research. However, it lacks rationality
in the choice of hardware and software concerning functional and non-functional attributes
such as performance, security, scalability, maintainability, interoperability, usability, and
availability. Additionally, this approach will improve the real-world simulation of attack
and defense strategies discussed in the previous paper. This approach motivates us to
identify a cost-effective way to conduct field experiments as we implement our framework.
Using interoperable data-driven systems, the research examines the industry 4.0 problem.

Additionally, they investigated the four levels of cybersecurity in ICS and how intruder
threats, including insider threats, can experiment against them. Based on the analysis,
insider threats and associated tools impact 0 and 1 compared to a remote intruder. The
author demonstrated that a low-cost testbed could address the growing demand for attack
vectors and surfaces in the corporate ecosystem. Expert assessments and other studies are
recommended for fog computing and AI-enabled systems [43].

Using low-cost SDR hardware and universal radio hacker (URH), we have developed
a framework and validated attack and defense scenarios in the hospital ecosystem [42].

3.5. Radiofrequency Machine Learning and Data Set Creation

ML and DL techniques are analyzed in a paper [44] on network-centric intrusion
detection systems (IDS). This paper provides an overview of publicly available cyberse-
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curity intrusion detection data sets. Due to inconsistent support categories, there may be
insufficient data volume to address research objectives.

In this paper [45], the author examines endpoint detection and response (EDR). They
then demonstrated how data-driven technologies are replacing traditional approaches. Be-
tween 1990 and 2019, they studied IEEE, Science Direct, ACM, and Springer Link databases.
Alternative methodologies are available for endpoint detection and response (EDR). The
research aims to analyze the publication trends in EDR and techniques used for EDR. How-
ever, they do not address how ML and DL can be used for intelligent systems. Each of the
four categories of machine learning algorithms is represented in cybersecurity management
systems (supervised learning, unsupervised learning, semi-supervised learning, reinforce-
ment learning). Using design science principles, each category represents a unique set of
machine learning algorithms. EDR technologies such as fire eye endpoint security [46],
carbon black response [47], Symantec endpoint protection, Webroot endpoint protection,
etc., can be improved through optimized data-driven cybersecurity processes.

Future research will need to examine how these ML techniques are used with analytics
and tools for advanced prediction or intelligent sniffing systems. No evidence or reason
was provided for their choice of four databases. The cybersecurity core systems (gover-
nance, risk management, information security control, compliance, audit, security program
management, operation, information security core module, strategic planning, finance,
procurement, innovation, and vendor ecosystem) are a top hierarchy. Additionally, their
associated subsystems (compliance management, guidelines, program management, opera-
tion management, access control, physical security, network security, endpoint protection,
application security, encryption technologies, virtualization, cloud computing, transforma-
tive technologies, strategic planning, designing, developing, and maintaining information
security program, awareness, education) are categorized as middle-level categories.

Dimensions and facts include security metrics and measurable quantities. The di-
mensions against those facts are viewed by region, time, incidents, threats, vulnerabilities,
assets, and attacks. Frameworks are developed with multilayer architectures (database,
business, presentation, and innovation). Cardinalities from the azure cloud synapse and
data brick [48] connect dimensions and facts in the database layer. The business layer
implements business logic and security logic, including embedded and available filters.
The presentation layer, query items (columns), and query subjects (table) are reflected
as functional requirements, non-functional requirements, policies, and data governance.
Dimensions such as time, date, and asset are critical, as well as malware infection facts,
threats, vulnerabilities, configurations, mitigations, protocol, transmission power, and
reception power.

Our research identifies gaps, develops frameworks and prototypes, and validates
them through experiments and analysis. RFML provides insight into how deep learning
technologies could be used for identifying modulation and spectrum information and their
signal classification.

4. Conclusions and Future Works

The PRISMA-based search and systematic literature review identify the research gap
in radio frequency spectrum threats in the hospital ecosystem. The potential gap is well
analyzed, and the results are visualized. This research paper will be relevant to the IoT,
IoMT, and medical readers, as this will open a new dimension for physicians and healthcare
researchers in spectrum-level threats in machine implantable communication systems.
Examples: deep brain stimulators, implantable cardioverter-defibrillator, cardiac stents,
implantable insulin pumps, interocular lenses, and pacemakers.

Time difference of arrival (TDOA)-based IoMT field experimentation will be used
in our future research to validate the defensive framework. The framework will guide
healthcare stakeholders while implementing corporate cybersecurity strategies.

Eventually, further analysis will answer why and how sniffing attacks occur and how
they can be identified and mitigated. We will use the design science research methodology
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to validate the entire process. A core research problem is identified as part of the first agile
process, motivating the researcher and customer toward solutions. An overview of the
issue and the importance of finding solutions are provided. As part of the second agile
process, solutions are evaluated qualitatively, quantitatively, or using a combination of
methods. An artifact’s core behavior and structure are deduced by analyzing the created
solutions during the third agile process. The fourth, the agile methodology, shows how well
you can create artifacts that solve problems through design and development. We planned
to perform extensive experiments, simulations, and proofs-of-concept to understand how
the artifacts address the core issues. As part of the fifth agile process, the success criteria
are compared with the findings or results.

We are measuring and observing how artifacts support solutions to problems. The
proposed solutions’ objectives are well matched with the experimental findings through
demonstration processes. As a result of this process, researchers can improve artifacts and
communicate results for further development. At the end of the agile process, findings will
be communicated in relation to the published objectives for peer review. Our proposed
future research investigates sniffing attacks on IoMT under the medical implantable com-
munication system (MICS) frequency band ranging from 402 to 406 MHZ using the design
science method.

We planned to use radio frequency machine learning (RFML) utilizing radio frequency
machine learning [49], physical emanation security [50], and the internet of medical things.
We will develop an open-source testbed for collecting signal intelligence data. We develop
a proposed framework for countering or mitigating RF spectrum-based sniffing attacks on
IoMT in the healthcare ecosystem. The results and analysis will be evaluated in the testbed.
Research issues in spectrum-level physical attacks on IoMT devices will be discussed,
including future directions and commercialization.
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Appendix A

Table A1. SLR Protocol.

The Objective

A Systematic Review of Radio Frequency Threats in IoMT.

Research Questions

RQ1: How well has IoT been integrated into healthcare?
RQ2: What is the current state of healthcare-RF cybersecurity research?

https://github.com/VaccineResearch/RF_SLR
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Table A1. Cont.

The Objective

A Systematic Review of Radio Frequency Threats in IoMT.

Research Questions

RQ1: How well has IoT been integrated into healthcare?
RQ2: What is the current state of healthcare-RF cybersecurity research?
Literature Reviewers

Primary reviewer: Mr. Irrai Anbu Jayaraj, Energy and Resources Institute, College of Engineering, IT and Environment, Charles
Darwin University, NT, Australia.
Second reviewer: Dr. Bharanidharan Shanmugam, Energy and Resources Institute, College of Engineering, IT and Environment,
Charles Darwin University, NT, Australia.
Third reviewer: Dr. Sami Azam, College of Engineering, IT and Environment, Charles Darwin University, NT, Australia.

Methodology of search

Search Terms:ALL (“JAMMING ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“REPLAY ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“SNIFFING ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“TAMPERING ATTACK”) AND ALL (“HEALTH”) ALL (“SIDE CHANNEL ATTACK”) AND ALL VAND PUBYEAR > 2002
ALL (“DENIAL ATTACK”) AND ALL (“HEALTH”) AND PUBYEAR > 2002
ALL (“SPOOFING”) AND ALL (“HEALTH”) AND PUBYEAR > 2002

The following databases are included:

Web of Science (WoS), Scopus, and PubMed

Process of evaluation (POE)

POE1: Range: Evaluations are based on the date range (2003–2022) and originality of the studies.
POE2: Relevance: During the screening process, titles and abstracts are checked for relevance to IoMT in attacks on physical layers.
POE3: Inclusion: Studies are evaluated against inclusion criteria. The inclusion of any study that does not meet all the criteria is
discarded.
POE4: Specificity: Checking whether the studies relate closely enough to the defined research field of IoMT in healthcare
cybersecurity.
POE5: Data: Data related to the research questions and contributions are analyzed for selected studies.

Criteria for the study

Inclusion Criteria (I)I1: The original research study was conducted by the corresponding author.
I2: A publication about IoT and cybersecurity at the physical layer.
I3: Research findings should be adequately explained in publications.
I4: Years of publication between 2003 and 2022.
Exclusion Criteria (E)
E1: Reviews of the literature, secondary research, and other publications that are not related to the topic.
E2: Publications that contain only ideas, such as magazines, interviews, and discussion papers.
E3: Non-English publications.

Report

A spreadsheet is used to record and analyze findings.
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