
Citation: Rashidibajgan, S.;

Hupperich, T. Improving the

Performance of Opportunistic

Networks in Real-World Applications

Using Machine Learning Techniques.

J. Sens. Actuator Netw. 2022, 11, 61.

https://doi.org/10.3390/

jsan11040061

Academic Editor: Chengwen Luo

Received: 6 August 2022

Accepted: 20 September 2022

Published: 26 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of 

Actuator Networks
Sensor and

Article

Improving the Performance of Opportunistic Networks in
Real-World Applications Using Machine Learning Techniques
Samaneh Rashidibajgan * and Thomas Hupperich

Department of Information Systems, University of Münster, 48149 Münster, Germany
* Correspondence: samaneh.rashidibajgan@wi.uni-muenster.de

Abstract: In Opportunistic Networks, portable devices such as smartphones, tablets, and wearables
carried by individuals, can communicate and save-carry-forward their messages. The message
transmission is often in the short range supported by communication protocols, such as Bluetooth,
Bluetooth Low Energy, and Zigbee. These devices carried by individuals along with a city’s taxis and
buses represent network nodes. The mobility, buffer size, message interval, number of nodes, and
number of messages copied in such a network influence the network’s performance. Extending these
factors can improve the delivery of the messages and, consequently, network performance; however,
due to the limited network resources, it increases the cost and appends the network overhead. The
network delivers the maximized performance when supported by the optimal factors. In this paper,
we measured, predicted, and analyzed the impact of these factors on network performance using
the Opportunistic Network Environment simulator and machine learning techniques. We calculated
the optimal factors depending on the network features. We have used three datasets, each with
features and characteristics reflecting different network structures. We collected the real-time GPS
coordinates of 500 taxis in San Francisco, 320 taxis in Rome, and 196 public transportation buses in
Münster, Germany, within 48 h. We also compared the network performance without selfish nodes
and with 5%, 10%, 20%, and 50% selfish nodes. We suggested the optimized configuration under
real-world conditions when resources are limited. In addition, we compared the performance of
Epidemic, Prophet, and PPHB++ routing algorithms fed with the optimized factors. The results show
how to consider the best settings for the network according to the needs and how self-sustaining
nodes will affect network performance.

Keywords: opportunistic networks; selfish nodes; buffer size; nodes movement; nodes density

1. Introduction

The Internet of Things (IoT) is an emerging paradigm concerned with bringing the
connectivity of real-world objects and things [1]. Such a situation opens up opportuni-
ties for a large number of various devices or things, such as wearable devices, laptops,
portable devices, and vehicles, to impart, communicate, and interact with one another.
Some applications include, yet are not restricted to, smart healthcare [2], smart cities [3],
smart environmental monitoring systems [4], and Smart Business [5]. In such sophisti-
cated scenarios, there is the possibility of finding heterogeneous static and mobile devices
(e.g., smartphones carried by individuals) equipped with different radios enabling data
transmission that might interact. The communication might occur only during specific
contact opportunities (i.e., depending on the communication protocol and range of cov-
erage) between heterogeneous and possibly disconnected static networks [1]. In a smart
city scenario, due to the high mobility and flexibility, the mobile sinks (e.g., cars, taxis,
and buses) might be utilized to collect the data from the static nodes (e.g., traffic sensors,
environmental monitoring stations) or disseminate control information.

Hence, such data might be relayed by any node and forwarded through other nodes
(e.g., via smartphones) even in the absence of a predefined end-to-end path between

J. Sens. Actuator Netw. 2022, 11, 61. https://doi.org/10.3390/jsan11040061 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan11040061
https://doi.org/10.3390/jsan11040061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0002-4981-9522
https://doi.org/10.3390/jsan11040061
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan11040061?type=check_update&version=2


J. Sens. Actuator Netw. 2022, 11, 61 2 of 30

data sources and sinks, exploiting opportunities through alternative nodes and routes for
communication as soon as they become available.

Therefore, such an Opportunistic Networking might stand at the heart of IoT as a
communication enabler, where the scope of the wireless sensor network (WSN) of static de-
vices might be augmented through new communication possibilities with opportunistically
present mobile devices. Therefore, opportunistic routing paths contribute to connecting the
disconnected networks of devices to the Internet world. This might be of great importance
in situations where a communication infrastructure is unavailable due to, for example,
public disaster in healthcare, which is of priority [6–9]. For such communications, some
fundamental-less networks emerged that could opportunistically transmit data via each
other using short-range communication protocols such as Bluetooth, Bluetooth low energy
(BLE), and Zigbee [10,11]. One of these communication channels is Opportunistic Net-
works (OppNets) [12]. In OppNets, the network topology is unknown, and the connections
are random and unstable [13], mobile nodes use the save-carry-forward method. When
nodes are in the communication range, they exchange messages, save them in their buffers,
and carry them until they visit another suitable node for carrying the message. Then, the
messages are forwarded to the next relay node to bring them closer to the destination [14].

OppNets are delay-tolerant so improving the message delivery probability and reduc-
ing the network overhead [15] is of great importance and a great challenge. Parameters such
as buffer size [16], number of messages, number of nodes [17], and nodes movement [14]
are effective in terms of the network performance. A basic and straightforward method
for forwarding messages is to flood the network. Each node forwards a message copy to
each available node and keeps one copy. This method increases the network overhead and
discards many messages due to the buffer overflow [18].

Despite significant attention to the various aspects of OppNets [14,19,20] so far, max-
imizing the network performance using the optimized and effective parameters using
real-world application has remained unknown. This work identifies and explores the
impact of message copies, buffer size, message interval, and node mobility as significant
parameters on network performance by finding the optimized setting and configuration.

Additionally, we study two use cases exploring the network’s performance using
real-world application data, considering the realistic restricting conditions. We consider
taxis and buses the nodes of the network, equipped with devices with limited buffers
for sending and receiving data. The device can be either the driver’s smartphone or
another smart embedded system (built-in or added to the car/bus) that has the ability to
send and receive messages. In addition, the impact of buffer size as a vital parameter on
network performance has been studied in [21–23]. Despite the usual configuration in only
simulation-based studies that arbitrarily extend the buffer size, we restrict the buffer size of
these devices to mimic the actual network performance. Such an assumption in extending
the buffer size arbitrarily during a simulation study does not sound like an actual case
in daily living since smartphones and other devices have a limited buffer size. Hence,
we have calculated the optimal parameters in both cases to provide an overview of the
actual scenarios.

Furthermore, in the second use case, we study the presence of selfish nodes in the
network. Several works in the literature have addressed the selfish node as a parameter
severely impacting the network performance [24,25]. Selfish nodes can be devices that are
not cooperating in the network and refuse to carry messages or delete them in their buffer
without reason. The motivation of these malicious nodes is not to use their resources, such
as battery and buffer, but to use other nodes to send their messages. This can compromise
the network performance. Therefore, we evaluated the network’s performance with the
presence of selfish nodes (10, 20, and 50 percent of nodes were selfish) as well as when they
were not present in the network (all nodes were trusted).

We collected data from three real-world scenarios in three cities using GPS coordinates
of taxis and buses. We extended the results by applying machine learning (ML) regression



J. Sens. Actuator Netw. 2022, 11, 61 3 of 30

models. As the output, we found the optimized parameters to estimate the network
performance using networks with limited resources and the simulation output.

The results showed that the network structure influenced by the node density and
node mobility impacts the optimized parameters and the network performance. We also
predicted the impact of malicious nodes in the network and considered the necessary
security measures. The contribution of this paper is as follows:

• Performing a comprehensive evaluation of the network’s performance and the impact
of the most influential parameters, such as the number of message copies, the node’s
buffer size, messages interval, number of nodes, and node movement, on the network
performance allocated in terms of messages delivery probability, dropped messages
probability, and network overhead;

• Applying ML in OppNet in large networks extends the simulation results for predict-
ing the effective, optimized parameters;

• Specifying and customizing the appropriate optimized parameters in real-world
applications with limited resources;

• Constructing a database based on the movement of buses in Münster, Germany;
• Comparing the network performance under three different routing algorithms in the

presence and absence of selfish nodes in three real-world nodes’ movements.

The rest of the paper is organized as follows: In Section 2, related works are reviewed.
Materials and methods are discussed in Section 3. Section 3.4 describes the optimized
parameters. Then, Section 4.3 presents the simulation results, and Section 5 discusses the
results. Lastly, Section 6 presents the paper’s conclusion.

2. Related Work

Exploring the impact of influential factors such as message copies, buffer size, message
interval, and node mobility on network performance is challenging. Considering each of
these factors as a dimension, simultaneous multidimensional evaluation of the impact of
all factors is complex and less known. Thus, the majority of the related work is focused on
one or two-dimensional evaluation. This section presents some existing studies on these
challenges. We have outlined their main characteristics and specified the results obtained
from each. These papers evaluated the boundary of the number of nodes, messages, buffer
size, and node mobility on network performance utilizing the most prevalent routing
algorithms. Additionally, regarding the number of available copies of messages, solutions
to improve network performance have been proposed in addition to examining its impact.

The effect of number of message copies in the network are studied in [26–28]. The
authors in [26] evaluated the effect of the number of message copies in two different areas
in terms of delivery probability, average latency, overhead ratio, hop count, average buffer
time, and the number of contacts. According to their results, the lower-size region showed
better performance. The number of nodes in this paper (25 pedestrian and 25 cars) are not
enough for the wide-area selected for simulation. Additionally, a concrete node movement
was not chosen for the simulation.

In [27], message distribution on the network is examined, and the number of message
copies is controlled comparatively. The authors aimed to increase the message delivery
rate and reduce network overhead and delay. The structure estimated the probability
of a successful message leaving the intermediate node and the extent of the network to
determine the replication and forwarding strategy. For simulations, the authors did not
consider any specific circumstances.

In order to control the number of message copies in the network, the authors in [28]
suggested a feedback mechanism. When the destination node receives a message, it sends
a feedback message to all other network nodes such that they can delete the message
from their buffer. It could improve the message transmission success rate, overhead, and
delay. Nodes in this research move randomly within the simulation environment, which is
considered small (400 × 400).



J. Sens. Actuator Netw. 2022, 11, 61 4 of 30

The authors of [6] considered the number of nodes, messages, and message size to
check their impact on the network performance in OppNets. Epidemic, Prophet, MaxProp,
and Time to Return routing algorithms are used for this evaluation. The results of the
network performance of each of these routing algorithms are compared. The simulation
environment in this paper is also considered small (zone1 = 700 × 600, zone2 = 50 × 50).

The effect of buffer size on the OppNets’ performance is evaluated in [22,23,29].
Likewise, the effect of increasing the buffer size in different routing algorithms is studied
in [29]. The authors considered the number of vehicular and terminal nodes to change the
buffer size in this paper. As the buffer increased, the performance of nodes in the Epidemic
and MaxProp algorithms also increased, and only vehicle nodes improved in the Spray and
Wait algorithm. The number of nodes in this paper was limited to 25 stationary nodes and
6 mobile nodes.

In [22], the effect of buffer size on the Epidemic algorithm is evaluated, and an optimal
buffer scheme is presented to improve the efficiency of this algorithm. In this paper, nodes
move randomly in a square of 1000 m × 1000 m. The proposed algorithm improved the
message delivery and end-to-end delay in the Epidemic algorithm.

The authors of [23] examined the effect of buffer size on packet delivery and showed
how buffer size could affect the network performance. They also evaluated the inverse
effect of buffer size on network overhead and packet delivery rate. As the buffer size
decreases, the delivery rate and network overhead increase, and with a large buffer size,
the proposed algorithms have better message delivery and less network overhead. In this
paper, the authors did not take a specific movement situation into account.

The effect of message generation interval and buffer size on the message delivery
probability, delay, and network overhead were studied in [30]. This paper compared the
results for OBSBM (their proposed algorithm), Epidemic, Binary Spray, and Wait routing
algorithms. The results show that by increasing messages interval, the message delivery
increased, messages delay decreased slightly, and network overhead increased a little.
Additionally, increasing the buffer size from 20 to 40 messages does not affect the network
performance.

Node density is evaluated in [31–33]. The authors of [31] evaluated the effect of node
density and messages TTL on network performance in vehicular delay-tolerant networks
in terms of messages delivery probability, network overhead, average latency, and the
average number of hops. The results showed that raising the density of the nodes enhanced
network performance; on the other hand, it may increase the delay. They also showed
that increasing TTL did not affect improving network performance. The authors of this
paper concluded that a single-copy protocol has more hops and latency than multiple-copy
protocols.

The effect of node density on different routing algorithms was evaluated in [32].
The environments they evaluated included extremely sparse environment (3–5 nodes per
km2), sparse environment (6–15 nodes per km2), average environment (16–25 nodes per
km2), populated environment (26–400 nodes per km2), and dense environment (more than
400 nodes per km2). The results showed that the Spray-and-Wait algorithm works better in
a dense environment. TheRandom Waypoint movement is also used in this article for node
movements.

The effect of node density on message delivery probability, latency, and network
overhead is examined in [33]. Based on the paper results, by increasing the number of
nodes, messages delivery probability and network overhead are increased, and message
latency decreases. The authors employed the random movement model in this paper
without taking into account the actual database. Additionally, they made the supposition
that every node in the network was trustworthy and free of malicious nodes.

In [34], an OppNet with fixed and moving nodes was examined. This paper showed
that the mobility of the nodes does not have much effect. Moreover, increasing the number
of moving nodes can increase efficiency, which was not seen in fixed nodes.



J. Sens. Actuator Netw. 2022, 11, 61 5 of 30

The impact of malicious nodes on the network was evaluated in [24,25,35]. The authors
of [24] analyzed the impact of selfish nodes on the network performance and proposed a
routing mechanism to manage such nodes in the network. They discussed that increasing
the number of selfish nodes can effectively decrease the network performance.

In [25] the effect of selfish nodes on network performance based on data memory size
is estimated. The authors took advantage of social knowledge to detect the selfish nodes to
mitigate this destructive effect of selfish nodes.

The authors of [35] analyzed the impact of the malicious nodes on messages delivery
probability, dropped messages, and average latency in the network. The outcomes of
this paper indicate that by increasing the number of malicious nodes in the network, the
message delivery decreases, the number of messages dropped increases, and the message
latency increases. The simulation environment was limited to 1000 mt × 1000 mt in this
research, the authors did not use actual movement data set, and they considered a large
buffer size (100 M) for nodes.

The nodes’ mobility, buffer size, message interval, number of nodes, and number of
messages copied in OppNets influence the network’s performance. The main disadvantages
of the previous works are as follows:

• The majority of the previous works suffer from the lack comprehensive evaluation
method in which they often consider a limited number of the influential factors on the
network performance (ca. two);

• These works usually do not use the actual dataset collected from the real-world
scenarios. Therefore, the works are restricted to a limited number of nodes which do
not reflect the actual output in the simulation;

• Lacking the actual data from the actual scenario forces the authors to use the random
node’s movement in the environment. In some cases, such as pedestrians (carrying
the wearable devices such as smartphones and wearable devices), this could be a valid
assumption, but in many other cases, such as, for example, an individual riding a bus
or taxi, the requirements cannot be met.

In this work, we conducted a comprehensive evaluation study by considering all
influential factors in network performance. Additionally, we have used concrete datasets
to make the results less error-prone.

3. Materials and Methods

To show the network resources’ limitations in real-world applications, we used three
datasets collected the GPS coordinates of taxis and buses in public transportation in three
different cities. The datasets differ in network structure, mobility, and density coping with
the requirements of our study.

The rest of this section describes the databases and routing algorithms used in this
paper, the simulator environment, and finally, how optimized parameters are determined.

3.1. Scenarios

Providing a model requires data based on individual daily activity and movement,
but such data are often unavailable in large sizes. During daily mobility, people make
different decisions in various situations and may choose routes based on rush hour and
traffic. This point is often missed in simulators. Therefore, for a solid overview, we used
datasets with GPS coordinates of public transportation (bus) and taxis during routine daily
work rather than the preset defaults in the simulator. We used three datasets, of which two
are the mobility of taxis over some time based on passenger requests in the cities of San
Francisco and Rome, and one is the mobility of buses in the city of Münster in Germany on
a daily schedule. We chose these cities as they differ in urban structures (Figure 1). San
Francisco is categorized as a modern urban structure with stylish and structured streets.
Rome is a city with an old texture that has expanded irregularly. Münster is a town with
an irregular street structure. We aimed to obtain the mobility of taxis and buses in San
Francisco, Rome, and Münster, respectively. While taxis’ restrictions are less than those for



J. Sens. Actuator Netw. 2022, 11, 61 6 of 30

buses, and some taxis drive on the streets without following all traffic regulations, buses
in Münster have to follow specific routes, instructions, and driving regulations in the city.
This reflects departing at a particular time from predetermined routes and stopping at
specific points at a predefined time. With such structural differences in datasets, we expect
changes in the mobility and density of the network nodes caused by the structure (city)
and nature of the nodes (bus/taxi). We will describe the features and characteristics of each
data set in the following subsections.

(a) (b)

(c)

Figure 1. The structure of the city of (a) San Francisco (b) Rome (c) Muenster.

3.1.1. San Francisco Taxis

The first scenario is taxi mobility in San Francisco, USA [36]. This dataset contains
GPS coordinates of 500 taxis during 30 days in the San Francisco Bay Area. The data were
collected from Exploratorium—the science, art, and human perception museum, through
the cab spotting project. Each taxi was equipped with a GPS receiver that sent the location
of each taxi to a server. The time interval for sending data was less than 10 s (i.e., the status
update of the taxi location). During the simulation studies, we used the GPS coordinates of
100 to 500 taxis and their timestamps for two days.

3.1.2. Rome Taxis

The second scenario is taxi mobility in Rome, Italy [37]. This dataset contains the GPS
coordinates of 320 taxis during 30 days in Rome. This dataset was collected in February
2014. In the simulation studies, we used the GPS coordinate of 50 to 198 taxis and their
timestamps for two days (1 February 2014 and 2 February 2014). We used the data of only
198 taxis because only 198 taxis were active within these two days.



J. Sens. Actuator Netw. 2022, 11, 61 7 of 30

3.1.3. Muenster Buses

To consider a scenario for public transportation, we created a novel dataset containing
the route of buses following the schedule of public transportation in the city of Münster.
We collected and converted data from Münster public utilities, live data website http:
//api.busradar.conterra.de/demo/. We collected the data on 4 July 2021 and 5 July 2021.
There were 149 buses operating, but not all were active simultaneously. For example, only
a limited number of buses were active at night.

3.2. Routing Algorithms

The most prevalent routing algorithms in OppNets are flooding-based, prediction-
based, and history-based algorithms. Therefore, to measure and compare the performance
of the networks under various conditions, we have used three routing algorithms of
Epidemic, Prophet, and PPHB++ which are flooding, prediction, and history-based, respec-
tively. In addition, PPHB++ is flexible in changing the number of message copies in the
network. The performance is addressed in terms of Message Delivery Probability (MDP),
Dropped Message Probability (DMP), and Network Overhead (NetO). In the following, we
explain these algorithms briefly.

Epidemic algorithm: is the most straightforward algorithm in which messages are
broadcast to all available neighbors [18]. This process is repeated until the message reaches
the destination or expires (end of its Time To Live (TTL)). The network suffers a high
overhead in this algorithm, and there is no optimal routing algorithm.

Prophet algorithm: is the most well known prediction-based algorithm [38]. The
contact history of nodes is used to calculate MDP. Then, nodes with higher MDP carry the
messages. When nodes are within the communication range of each other, they update
their predictability list. Furthermore, nodes that are often in the communication range of
each other will receive higher MDP.

PPHB++ algorithm: is based on Privacy-Preserving History-Based routing in the
opportunistic networks (PPHB+) [39]. We have upgraded this algorithm to PPHB++ by
restricting the Number of Message Copies (NumMC). In Prophet and Epidemic algorithms,
when a node wants to send a message to a neighbor, it will send a message copy to the
neighbor, and a copy remains in its buffer. While this is not the case in the PPHB++
algorithm, the nodes do not keep a copy for themselves.

Each node produces a polynomial in this algorithm, and the root of the polynomial
is considered the node’s nickname. When a node constantly detects a neighbor in its
communication range, it multiplies its polynomial to the neighbor’s polynomial and
updates and delivers its new polynomial. When a node decides on carrying a message, it
checks whether the message’s receiver nickname is the root of its polynomial. Suppose the
message’s receiver nickname is the root of a node polynomial. In that case, it means that
this node will most likely meet the receiver of the message, so it is a suitable candidate for
carrying a message, and it can bring the message nearer to the destination.

3.3. Simulation Environment

We used the Opportunistic Network Environment (ONE) [40] to simulate and evaluate
scenarios. Additionally, we used Matlab to calculate the outputs and depict the graphs and
charts.

We imported the datasets into ONE. Each scenario continuance was 48 h, and the
updating interval was 100 ms. Node mobility is according to the recorded GPS coordinate
data in the datasets. The First-In, First-Out (FIFO) method is used for queuing models in
buffers. The following parameters were configured and remained the same in all scenarios
and simulations:

• Message size: 500 k to 1 M;
• Message Time To Live (TTL): 5 h;
• Transmission interface: Bluetooth is the transmission interface in all simulations;

http://api.busradar.conterra.de/demo/
http://api.busradar.conterra.de/demo/


J. Sens. Actuator Netw. 2022, 11, 61 8 of 30

• Transmission range: The maximum distance of forwarding a message from a node to
a neighbor is 23 m. This range is based on experiments performed in [41].

We evaluated the performance of networks in the different scenarios, using the algo-
rithms in terms of MDP, DMP, and NetO. We explicitly define these parameters in the ONE
simulator as follows:

• MDP: specifies the probability of delivering messages to the destination; Where:

MDP =
Delivered messages
Created messages

(1)

• DMP: specifies the probability of deleting messages in the nodes’ buffer due to the
buffer saturation or TTL messages; Where:

DMP =
Dropped messages

Started messages + Created messages
(2)

Started messages are the number of message copies produced in the network. Nodes
for forwarding a message to a neighbor in usual routing algorithms in ONE produce
a copy of the message, forward it to the neighbor and retain a copy for themselves.
Therefore, a considerable number of messages are started in the network.

• NetO: is the ratio of passed relayed nodes subtracted by delivered messages to deliv-
ered messages; Where:

NetO =
Passed relayed nodes − Delivered messages

Delivered messages
(3)

3.4. Optimized Parameters

In order to investigate the network performance, we performed a two-phase study:
(i) We considered the San Francisco dataset due to the nodes’ mobility and PPHB++ algo-
rithm due to higher flexibility. We conducted the simulations to investigate the effect of
different configurations of parameters on the network’s performance by calculating the
optimized parameters for this particular dataset and algorithm. (ii) During the second
phase, we used the optimized parameters obtained from the first phase to calculate the
network performance under the other datasets and algorithms discussed earlier. We have
identified the five most influential parameters on network performance: The Number of
Message Copies (NumMC), Number of Nodes (NumN), Buffer Size (BuffS), Messages
Interval (MI), and Node Mobility (NM). The first four parameters are configurable, while
the fifth one is correlated with the structure of the dataset, collected data, and network
topology. We configured these five parameters to observe their impact on the network
performance (Table 1). Due to simulation restrictions, we considered four NumMC (1, 5, 10,
and 50), three NumN (100, 250, and 500), three BuffS (5, 10, and 15), and three MI intervals
with appropriate configurations (see Table 1). The rest of the states of these parameters
were restricted to 50, 500, 15, and 25 to 35 for NumMC, NumN, BuffS, and MI, respec-
tively. We used Machine Learning (ML) techniques, including decision tree, multiple linear,
polynomial, random forest, and support vector regression (Reg), to predict the optimal
outputs (Table 2). The Radial Basis Function (RBF) was used for the kernel of Support
vector regression. We predict the optimized parameters for the extended versions of the
configurations and network using ML. Furthermore, to mimic the real-world application
and consider the restrictions, we have assumed that nodes in the network have limited
resources, and the buffer size is 5 Mb.



J. Sens. Actuator Netw. 2022, 11, 61 9 of 30

Table 1. Configuring the effective parameters ONE.

Parameter Amount

NumMC [1, 5, 10, 50]
NumN [100, 250, 500]
BuffS [5, 10, 15]

MI [5 to 15, 15 to 25, 25 to 35]

While changing a parameter according to Table 1, the rest of the parameters remain
constant and set as NumMC: 1, NumN: 100, BuffS: 5, MI: 25 to 30, Map: San Francisco,
routing algorithm: PPHB++.

Table 2. Parameter setting for regression algorithms.

Parameter Amount

NumMC
[1, 2, 3, ..., 50]

(from 1 to 50 and step is 1)

NumN
[100, 150, 200, ..., 500]

(from 100 to 500 and step is 50)
BuffS [5, 10, 15]

MI [5 to 15, 15 to 25, 25 to 35, 35 to 45, 45 to 55, 55 to 65]

We evaluated the network’s performance using the regression score based on the
coefficient of determination (R2). We only considered those with a score of above 0.9 for no
less than three influencing terms of the performance. We used two different algorithms to
predict the optimized parameters for each regression algorithm.

Algorithm 1: In each regression model, (i) the first row is the result (R1 = 1), (ii) in ith
row of regression the following condition is checked: (iii) if the MDP i is greater than MDP
in R1 and DMP i is less than the DMP in R1, and the NetO i is less than the NetO in R1, (iv)
the R1 changes to i (R1 = i).

Algorithm 1 Regression model

Require: R, i
Ensure: Alg1 result

1: Initialization :
2: Mechanism Initialization
3: Read the value R from row i
4: R1 = 1
5: for i = 2 to the end of the array do
6: if MDP(i) > MDP(R1) and DMP(i) < DMP(R1) and NetO(i) < NetO(R1) then
7: R1 = i
8: end if
9: end for

10: Alg1=NumMC(R1),NumN(R1),BuffS(R1),MI(R1)
11: return Alg1

In Algorithm 2, with the inverse MDP, as well as with DMP and NetO as the influencing
terms of network performance, the minimum X should be delivered in order to obtain the
maximum performance. In this equation, we considered a = 100, and b = 1/10. Depending
on the application and the aim of the study, the user can change the coefficients.



J. Sens. Actuator Netw. 2022, 11, 61 10 of 30

Algorithm 2 Regression model

Input: X, i
Output: Alg2 result

1: Initialization :
2: Mechanism Initialization
3: Read X from row i of the performance terms
4: X(i) = 1

MDP(i) + a ∗ DMP(i) + b ∗ NetO(i) . a and b are the coefficient

5: a = 100 and b = 1
10

6: R2=IndexMin (X)
7: Alg2=NumMC(R2),N(R2),B(R2),MI(R2)
8: return Alg2

Additionally, we considered the network with and without malicious nodes (Section 4.3.2).
In order to compare the networks, we varied the NumN as: San Francisco: 100 to 500 nodes,
Rome: 50 to 200 nodes, Münster: 50 to 150 nodes.

We set all networks based on the obtained optimized simulation results.

4. Results
4.1. Influencing Parameters and the Network Performance

Table 3 represents the effect of the aforementioned parameters on the network perfor-
mance. We elaborate the impact of each parameter (NumMC, BuffS, MI, NumN, and NM)
on network performance (MDP, DMP, NetO) as follows:

Table 3. Influencing parameters and the network performance.

Parameter Amount/City MDP (%) DMP (%) NetO

Number of
messages copy

(NumMC)

1 75.59 2.17 9.905

5 73.88 2.13 11.52

10 72.03 2.23 12.74

50 74.85 1.13 23.7

No limited 74.58 1.13 23.7

Buffer size
(BuffS)

5 75.59 2.17 9.905

10 76.44 1.87 9.968

15 76.44 1.83 9.968

Message
Interval

(MI)

5 to 15 68.34 3.64 9.425

15 to 25 74.96 2.48 9.302

25 to 35 75.59 2.17 9.905

Number
of Nodes
(NumN)

100 75.59 2.17 9.905

250 77.02 1.6 13.22

500 78.97 1.16 16.57

Nodes
Movement

(NM)

San Francisco 76.92 1.63 11.47

Rome 10.41 31.52 12.53

Münster 7.79 44.37 10.19



J. Sens. Actuator Netw. 2022, 11, 61 11 of 30

4.1.1. NumMC and Network Performance

Reducing the NumMC on the network has a limited and negligible effect on the
MDP. The maximum value of MDP (75.59%) occurs when there is only one message on
the network, and the minimum MDP value (72.03%) is delivered in the presence of ten
message copies on the network. Although increasing the NumMC from one to ten causes a
descending change in MDP, further increasing NumMC, does not necessarily follow this
pattern. Removing the restrictions of NumMC delivers the NumMC value of 74.58%. The
difference between the Min and Max NumMC (i.e., 1 < NumMc < unlimited) is only 1%.

Yet, NumMC causes a reduction in the DMP. The lowest value (1.13%) occurs when
there are 50 messages on the network, and the highest value (2.23%) occurs when there
are 10 message copies on the network. Although the DMP values are small, increasing the
NumMC from 1 to 50 can reduce DMP up to 50% of the primary value, which is significant.
As the number of delivered messages increases, the number of messages dropped in the
buffer decreases.

We expected increasing NumMC impacts NetO, inversely. The results show a signif-
icant increase in NetO with greater NumMC. The Min NetO (9.905%) is reached when
NumMC is one, and the Max NetO is delivered (23.7%) when there are 50 message copies
on the network. The results did not change much after increasing the messages to more
than 50 (no limit to the number of messages).

In summary, although NumMC has a minor effect on MDP and DMP, it can signifi-
cantly enhance NetO. Furthermore, when there are more than 50 messages (No limited),
the result does not change in this routing algorithm.

4.1.2. BuffS and Network Performance

Increasing the BuffS from 5 to 15 and observing its impact on the network parameters
delivers 1% improvement in MDP, 16% reduction in DMP, and NetO worsening by 0.64%.

Therefore, BuffS does not significantly affect the MDP, DMP, and NetO. Increasing the
buffer volume can reduce the number of dropped messages because messages are deleted
either when the buffer is full or when it expires. Considering the network size, further
increasing the BuffS beyond a certain point cannot significantly change the network’s
performance (saturation).

4.1.3. MI and Network Performance

Increasing MI reduces the number of messages in the network. When the number of
messages generated in the network decreases (greater MI), the messages are more likely
to reach the destination. By changing MI from 5 to 15 to 25 to 35, MDP increases by 89%.
Moreover, the probability of deleting messages dropped by 40%. Having more messages in
the network leads to deleting them in the buffer earlier than sending them out to the other
nodes. Increasing MI increases the NetO by 5%.

Therefore, we can conclude that MI mainly affects MDP and DMP, while there is not
much change in NetO.

4.1.4. NumN and Network Performance

As the number of nodes increases from 100 to 500, the MDP rate increases by 4%, the
DMP rate decreases by 46%, and the NetO increases by 67% as more nodes connect.

As expected, increasing the number of nodes in the network can outstandingly enhance
DMP, have a negligible effect on MDP, and cause NetO to be worse.

4.1.5. NM and Network Performance

The last row of Table 3 displays the effect of NM on the network performance. In San
Francisco, taxis have a wide range of mobility and travel in different directions. In Rome,
taxis also have a wide range of mobility, but our data show a limited number of movements
during the selected time.



J. Sens. Actuator Netw. 2022, 11, 61 12 of 30

In Münster, the range of buses is limited. They can only travel on restricted routes and
stop at bus stops at specific times. Therefore, fewer nodes have the opportunity to meet
each other and exchange data.

The MDP is higher because more nodes are connected in Table 3 in San Francisco. On
the other hand, the amount of DMP in Rome and Münster is high due to the expiration of
packets’ TTL and the saturation of the nodes’ buffer.

Regarding MDP and DMP, San Francisco has the best performance as a result of having
many stimulus nodes, and Münster has the worst. The San Francisco network is better than
Münster by around 9 times and 96% in MDP and DMP, respectively. NetO in Münster is
less than San Francisco 12% due to fewer messages being exchanged in the network.

As a result, we can conclude that the node movement in the network can significantly
impact MDP and DMP.

A closer look at Table 3 reveals that node mobility influences MDP and DMP changes.
Considering the mobility of the nodes in the three datasets shows the noticeable changes
under different conditions.

According to Equations (1) and (2), MDP and DMP are inversely related (not linear).
Using the same analysis, the Münster dataset with the highest DMP and the San Francisco
dataset with the lowest DMP behave as expected. NetO, unlike DMP and MDP, is influenced
by several dominant parameters. NumMc, NumN, NM have the most significant impact
on NetO, while BuffS and MI can be excluded from the factors affecting NetO. We can
conclude that nodes and their related features, such as the number of messages of a node,
the number of nodes, and the degree of mobility of the nodes, have the most significant
impact on network performance. Similarly, in the real world, node types (taxis, buses,
or pedestrians) and their characteristics (speed, route, and mobility) have the greatest
influence on network performance.

4.2. Extending the Simulation Results Based on ML and Regression Models

Table 4 shows the results of the regression score based on the coefficient of determina-
tion (R2). Having scored one as the maximum, we omitted the Multiply linear regression
from the list of qualifiers.

Table 4. Evaluating the models performance.

Regression MDP DMP NetO

Decision tree reg. 0.9698 0.9194 0.9918
Multiple linear reg. 0.6456 0.6337 0.8254

Polynomial reg. 0.9092 0.9195 0.9903
Random forest reg. 0.9192 0.8987 0.9901
Support vector reg. 0.8861 0.9066 0.9141

4.2.1. Obtaining the Optimized Influencing Parameters (OIP)

Comparing Tables 4 and 5 indicates that the Decision Tree regression is the best
performer. Comparing Algorithms 1 and 2 in the Decision Tree with a higher regression
score delivers the optimized parameters: NumMC = 1, NumN = 100, BuffS = 10, MI = 15 to
25 s.



J. Sens. Actuator Netw. 2022, 11, 61 13 of 30

Table 5. The optimal results based on Algorithms 1 and 2 for different regression algorithms.

Regression Num MC NumN BuffS MI MDP DMP NetO

Decision
tree Reg

Alg 1 1 100 10 15 0.7679 0.0229 9.0613

Alg 2 1 200 15 15 0.8125 0.0125 10.7556

Multiple
linear Reg

Alg 1 1 100 15 15 0.7818 0.0194 10.5568

Alg 2 1 500 15 55 0.9257 −0.0055 16.4405

Polynomial
Reg

Alg 1 1 100 10 15 0.7747 0.0217 9.0857

Alg 2 6 500 15 35 −0.0010 0.1740 20.3078

Random
forest Reg

Alg 1 1 100 15 5 0.7532 0.0275 8.5692

Alg 2 1 400 15 25 0.8384 0.0089 15.1324

Support
vector Reg

Alg 1 1 100 10 15 0.7669 0.0225 9.1527

Alg 2 5 350 10 25 0.8407 0.0082 14.6739

4.2.2. Obtaining the Optimized Influencing Parameters with Limited Resources (OIPL)

We summarize the optimal results according to Algorithms 1 and 2 for different
regression algorithms in Table 6.

Similar to the previous subsection, we compared the different regression algorithms,
but for the network with limited resources. Comparing Table 4 and Table 6 indicates
Decision Tree regression as the best performer. Comparing the Algorithms 1 and 2 in
Decision Tree with the higher regression score delivers the optimized parameters: NumMC
= 1, NumN = 100, BuffS = 5, MI = 55 to 65 s.

We have also simulated and calculated Decision Tree regression for Epidemic and
Prophet algorithms based on these parameters. The results are illustrated in Figure 2. For
PPHB++, Prophet, and Epidemic algorithms in Decision Tree regression, the average MDP
is 80.2244%, 25.1400%, and 19.6533%, respectively; the average DMP is 1.52%, 99.9200%,
and 100.1644%, respectively; and the average NetO is 12.8047, 712.6886, and 953.9167,
respectively. As the number of nodes increases, the number of messages in the network
grows and, as a result, raises the network overhead in Prophet and Epidemic algorithms.
The least overhead by PPHB++ is addressed by its fundamental difference with two other
algorithms to avoid copying the message while forwarding it to a neighbor.

Table 6. The optimal results by BuffS = 5 based on Algorithms 1 and 2 for regression algorithms.

Regression NumMC NumM BuffS MI MDP DMP NetO

Decision
tree Reg

Alg 1 1 100 5 55 0.7496 0.02360 9.968

Alg 2 1 400 5 25 0.8266 0.0108 15.2620

Multiple
linear Reg

Alg 1 1 100 5 55 0.8169 0.0108 13.4976

Alg 2 1 500 5 55 0.8787 0.0007 16.7598

Polynomial
Reg

Alg 1 50 500 5 35 −0.3305 0.2048 21.0490

Alg 2 28 450 5 35 −0.0062 0.1793 16.5158

Random
forest Reg

Alg 1 1 100 5 55 0.7359 0.0278 9.8348

Alg 2 1 400 5 25 0.8264 0.0107 15.2470

Support
vector Reg

Alg 1 21 200 5 35 0.7768 0.01561 16.0337

Alg 2 1 400 5 25 0.8295 0.01001 14.8948



J. Sens. Actuator Netw. 2022, 11, 61 14 of 30

100 150 200 250 300 350 400 450 500

Number of Nodes

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
es

sa
g
e 

d
el

iv
er

y

Decision Tree, buffer=5, int=25

PPHB++

Prophet

Epidemic

(a)

100 150 200 250 300 350 400 450 500

Number of Nodes

0

0.2

0.4

0.6

0.8

1

1.2

D
ro

p
p
ed

 m
es

sa
g
es

Decision Tree, buffer=5, int=25

PPHB++

Prophet

Epidemic

(b)

100 150 200 250 300 350 400 450 500

Number of Nodes

0

200

400

600

800

1000

1200

1400

1600

1800

N
et

w
o
rk

 o
v
er

h
ea

d

Decision Tree, buffer=5, int=25

PPHB++

Prophet

Epidemic

(c)

Figure 2. Decision Tree regression for PPHB++, Epidemic, and Prophet algorithms. (a) Messages De-
livery Probability (MDP). (The y-axis parameter is normalized to a scale between 0 and 1). (b) Dropped
Messages Probability (DMP). (The y-axis parameter is normalized to a scale between 0 and 1). (c) Net-
work Overhead.

4.3. Network Performance

We evaluated the network performance for three concrete datasets by the optimized
parameters obtained from the previous section. We also compared the network performance
under three algorithms of PHHB++, Epidemic, and Prophet during the simulations.

4.3.1. Network Performance without the Malicious Nodes

Figures 3–5 demonstrate the network’s performance without malicious nodes. We
assumed all nodes were trusted and forwarded messages without any sabotage.

Figure 3 presents the MDP for all three datasets. The average MDP in different cities for
PPHB++, Prophet, and Epidemic in San Francisco are 81%, 31.17%, and 23.70%, respectively;
in Rome, they are 9.9900%, 8.6275%, and 6.0975%, respectively; in Münster, they are 7.19%,
8%, and 0.0635%, respectively.

In San Francisco and Rome, the output patterns are relatively similar; the highest
delivery is by the PPHB++ algorithm, followed by the Prophet and Epidemic. PPHB++
improved MDP compared to Prophet and Epidemic 159.9337% and 241.9468%, respectively,
in San Francisco; and 15.7925% and 63.8376% respectively in Rome. The higher MDP of
PPHB++ in San Francisco and Rome is due to the larger number and greater flexibility
of taxis. This causes the chance of meeting two taxis to exchange a message to increase.
Furthermore, in the Prophet algorithm, the messages are sent to the neighbors with higher
MDP, but in the Epidemic algorithm, messages are broadcast blindly, which reduces MDP.



J. Sens. Actuator Netw. 2022, 11, 61 15 of 30

100 150 200 250 300 350 400 450 500

Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
es

sa
g
es

 D
el

iv
er

y
 P

ro
b
ab

il
it

y

Messages Delivery Probability (San Francisco)

PPHB++

Prophet

Epidemic

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0.05

0.06

0.07

0.08

0.09

0.1

0.11

M
es

sa
g
es

 D
el

iv
er

y
 P

ro
b
ab

il
it

y

Messages Delivery Probability(Rome)

PPHB++

Prophet

Epidemic

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
es

sa
g
es

 D
el

iv
er

y
 P

ro
b
ab

il
it

y

Messages Delivery Probability (Muenster)

PPHB++

Prophet

Epidemic

(c) Münster

Figure 3. Messages delivery probability (MDP) for the three cities of San Francisco, Rome, and
Münster (The y-axis parameter is normalized to a scale between 0 and 1).

100 150 200 250 300 350 400 450 500

Nodes

0

0.2

0.4

0.6

0.8

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (San Francisco)

PPHB++

Prophet

Epidemic

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (Rome)

PPHB++

Prophet

Epidemic

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (Muenster)

PPHB++

Prophet

Epidemic

(c) Münster

Figure 4. Dropped message probability (DMP) for the three cities of San Francisco, Rome, and
Münster (The y-axis parameter is normalized to a scale between 0 and 1).



J. Sens. Actuator Netw. 2022, 11, 61 16 of 30

100 150 200 250 300 350 400 450 500

Nodes

0

500

1000

1500

2000

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (San Francisco)

PPHB++

Prophet

Epidemic

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0

200

400

600

800

1000

1200

1400

1600

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (Rome)

PPHB++

Prophet

Epidemic

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0

50

100

150

200

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (Muenster)

PPHB++

Prophet

Epidemic

(c) Münster

Figure 5. Network overhead (NetO) for the three cities of San Francisco, Rome, and Münster.

In Münster, the best MDP is delivered by the Prophet algorithm, then the PPHB++ and
Epidemic algorithms. The Prophet algorithm yields a better result than PPHB++ (11.2193%)
and Epidemic (25.9318%) in terms of MDP. Furthermore, Figure 3 supports the results in
Table 3; in San Francisco, the MDP is between 23% and 81% due to a large number of active
taxis with an extensive range of movement; in Rome, it is lower and between 6% and 10%
because the number of active taxis and the mobility are smaller; in Münster, this value is
between 7% and 8% because the type of node is changed to bus. Consequently, the number
of buses is smaller than the other two previous scenarios, and their movement range in the
city is limited.

A limited number of buses driving on particular routes following local public trans-
portation regulations restricts mobility and flexibility. In contrast, the other two cities
with taxis are more expansive in quantity, the radius of movement, and flexibility. As
a result, messages have a better chance of reaching the destination directly or through
intermediate nodes in San Francisco and Rome rather than Münster. Figure 4 represents
the DMP for San Francisco, Rome, and Münster datasets. The average DMP in different
cities for PPHB++, Prophet, and Epidemic are 1.15%, 99.10%, and 99.27%, respectively, in
San Francisco; they are 32.4975%, 94.5500%, and 94.7000%, respectively, in Rome; and they
are 50.8733%, 95.0767%, and 95.4100%, respectively, in Münster.

The output patterns in all three cities are similar, with Epidemic and Prophet algo-
rithms on top, giving the highest value of DMP, and PPHB++ with the least. Furthermore,
Epidemic and Prophet behave the same way, giving an overlap output in Figure 4. Ap-
plying PPHB++ outperforms Prophet and Epidemic in DMP by 98.8396% and 98.8416%,
respectively, in San Francisco; 65.6293% and 65.6837%, respectively, in Rome; and 46.4923%
and 46.6792%, respectively, in Münster.

Under a high density of nodes, the PPHB++ algorithm delivers a better output, and
with a low density of nodes, Prophet works better than the other two algorithms. The reason
is the approach of forwarding the message from the source to a neighbor or destination
in different algorithms. Having only one copy of a message in PPHB++ demands a
higher density of the network, enabling message delivery. In contrast, in the Prophet
algorithm, broadcasting the message to a neighbor or several is less restricted under certain



J. Sens. Actuator Netw. 2022, 11, 61 17 of 30

conditions (higher probability of message delivery by a neighbor compared to the node
itself). Therefore, MDP improves at the expense of NetO.

Figure 5 demonstrates the NetO for the San Francisco, Rome, and Münster datasets.
The average NetO for PPHB++, Prophet, and Epidemic are 14.2523, 738.2193, and 1067.8,
respectively, in San Francisco; they are 14.4179, 472.1325, and 721.5618, respectively, in
Rome; and they are 8.9616, 66.2785, and 107.8029, respectively, in Münster.

Epidemic in all three datasets has the highest NetO, while PPHP++ is at the bottom
and Prophet is in between these two. The low DMP and NetO in the PPHB++ algorithm are
due to minimal NumMC. Epidemic broadcasts the messages to all neighboring nodes and
generates a copy message each iteration. This significantly increases the NetO by saturating
the network and using the resources. Although in Prophet, the broadcasting is limited to
specific nodes that satisfy the message probability requirements, the number of message
copies is still noticeable. PPHB++ overcomes Prophet and Epidemic in NetO by 98.0694%
and 98.6653%, respectively, in San Francisco; by 96.9462% and 98.0018%, respectively, in
Rome; and by 86.4788% and 91.6870%, respectively, in Münster.

4.3.2. Network Performance with Malicious Nodes

Figures 6–8 present the network’s performance in the presence of the malicious nodes.
We have considered the network with 5%, 10%, 20%, and 50% malicious nodes.

100 150 200 250 300 350 400 450 500

Nodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
es

sa
g
es

 D
el

iv
er

y
 P

ro
b
ab

il
it

y

Messages Delivery Probability (San Francisco)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
es

sa
g

es
 D

el
iv

er
y

 P
ro

b
ab

il
it

y

Messages Delivery Probability (Rome)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
es

sa
g

es
 D

el
iv

er
y

 P
ro

b
ab

il
it

y

Messages Delivery Probability(Muenster)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(c) Münster

Figure 6. Message delivery probability (MDP) for the three cities of San Francisco, Rome, and Münster
with the presence of malicious nodes in the network (the y-axis parameter is normalized to a scale
between 0 and 1).



J. Sens. Actuator Netw. 2022, 11, 61 18 of 30

100 150 200 250 300 350 400 450 500

Nodes

0.75

0.8

0.85

0.9

0.95

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (San Francisco)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (Rome)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
ro

p
p
ed

 M
es

sa
g
es

 P
ro

b
ab

il
it

y

Dropped Messages Probability (Muenster)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(c) Münster

Figure 7. Dropped message probability (DMP) for the three cities of San Francisco, Rome, and
Münster with the presence of malicious nodes in the network (the y-axis parameter is normalized to
a scale between 0 and 1).

100 150 200 250 300 350 400 450 500

Nodes

0

500

1000

1500

2000

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (San Francisco)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(a) San Francisco

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Nodes

0

1000

2000

3000

4000

5000

6000

7000

8000

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (Rome)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(b) Rome

50 60 70 80 90 100 110 120 130 140 150

Nodes

0

100

200

300

400

500

600

700

800

900

N
et

w
o
rk

 O
v
er

h
ea

d

Network Overhead (Muenster)

PPHB++ 5%MN

Prophet 5%MN

Epidemic 5%MN

PPHB++ 10%MN

Prophet 10%MN

Epidemic 10%MN

PPHB++ 20%MN

Prophet 20%MN

Epidemic 20%MN

PPHB++ 50%MN

Prophet 50%MN

Epidemic 50%MN

(c) Münster

Figure 8. Network overhead (NetO) for the three cities of San Francisco, Rome, and Münster with
the presence of malicious nodes.

Figure 6 illustrates MDP for San Francisco, Rome, and Münster datasets. This figure
confirms the results obtained from Figure 3. In San Francisco and Rome, the results are
similar—the largest value is given by the PPHB++ algorithm, followed by the Prophet and
Epidemic algorithms, respectively, for all cases with malicious nodes. In Münster, when
5% of nodes are malicious, the best performance of MDP belongs to Prophet, PPHB++,
and Epidemic algorithms, from top to bottom. When 10% of nodes are malicious, this is
rearranged to PPHB++, Prophet, and Epidemic algorithms. When the malicious nodes
are 20%, the best performance in MDP is for PPHB++, Prophet, and Epidemic algorithms,



J. Sens. Actuator Netw. 2022, 11, 61 19 of 30

respectively. Finally, when 50% of the nodes are malicious, Prophet, Epidemic, and PPHB++
algorithms work best, respectively.

When 10% and 20% of nodes are malicious, PPHB++ works more reliably than the
other two. Whereas, in the case of 5% and 50% of nodes being malicious, the Prophet
algorithm achieves a higher MDP.

Figure 7 shows DMP for San Francisco, Rome, and Münster datasets, and the results
support Figure 4. PPHB++, Epidemic, and Prophet algorithms have the lowest DMP,
respectively, in all scenarios.

Figure 8 displays the DMP for all three datasets. The lowest belongs to PPHB++,
Prophet, and Epidemic algorithms in this figure. The reasons for these results are similar to
what was mentioned in the previous section.

5. Discussion
5.1. Restrictions of the Study

We investigated the effect of NumMC, BuffS, MI, NumN, and NM as the influencing
parameters on OppNets performance. We also evaluated the effect of the presence of
malicious nodes on the network performance. Despite performing an extensive simulation
study using three datasets, our work is limited in the number of datasets (restricted by
node density and mobility), the number of nodes (maximum 500 nodes), and the amount
of collected data (two days).

5.2. Influencing Parameters on the Network Performance

Our study shows that reducing NumMC has little effect on receiving or deleting
messages, but it significantly reduces NetO. Compared to other algorithms, this reduction
in the number of copies of messages has a notable impact on reducing DMP, NetO and
increasing the MDP. Increasing node’s BuffS has little effect on MDP, DMP, and NetO.

Increasing the message generation interval, which produces fewer messages, can
significantly reduce DMP, and increase MDP, but it has little effect on NetO.

Increasing the mobility of the nodes causes a notable increase in MDP and a significant
reduction in DMP.

Increasing the network’s NumN causes more nodes’ interactions and enhances the
MDP and DMP. It can also raise the NetO.

Therefore, as an output and application of our study in real world cases, we would
suggest, for example, that in a VANET approach on a highway which is considered as a
network with a low number of nodes and mobility where network overhead is not the case,
and forwarding emergency and traffic messages has the priority, we should increase the
message generation interval only to produce prioritized massages and increase the number
of messages copy and buffer size in order to achieve the best network performance.

As the other scenario in real-world application, in which the network has a large
number of nodes, low mobility, and a significant message generation, we can decrease the
number of messages copied and prioritize the messages to increase message generation
interval. Consequently, we can decrease the network overhead and improve message
delivery in the network. An example of such a network might be an event such as a
carnival in a city.

5.3. Machine Learning Techniques and Real Work Applications

By examining these parameters in various simulations and regression in ML (decision
tree, multiple linear, polynomial, random forest, and support vector regressions), we found
the optimized parameters for different networks. Utilizing three networks with different
features represented by three datasets in the real world shows that the optimal results are
obtained when NumMC is one, the NumN is 100, the BuffS is 10, and MI is 15 to 25 s. Since
the buffer is one of the limited resources in each node and is considered a severe restriction
in real-world applications, we also calculated the best result when the BuffS is 5. The
optimized parameters under this conditions are obtained as BuffS = 5, the NumMC = 1, the



J. Sens. Actuator Netw. 2022, 11, 61 20 of 30

number of nodes in the network = 100, and the MI = 55 to 65 s. We used these parameters
to set the network. However, to improve the accuracy and efficiency of using the lower
volume of memory, in particular, for the big data including a large number of inputs (i.e.,
if the number of datasets is significantly increased), where the training and testing speed
and time, computational resources, classification, and prediction are crucial, the neural-like
structure of non-iterative models such as the successive geometric transformations model
(SGTM) can be used. These methods usually provide a lower error value for the regression
task. Ito decomposition (Kolmogorov–Gabor polynomial) can be used in combination with
SGTM to extend the inputs of the SGTM [42].

We evaluated the network performance in terms of MDP, DMP, NumN, NM, and NetO
on three concrete datasets with PPHB++, Prophet, and Epidemic routing algorithms. The
results show that PPHB++ has better MDP in San Francisco and Rome because of their free
movement, and Prophet delivers a better MDP in the Münster dataset. PPHB++ is the best
performer in terms of DMP and NetO, followed by the Prophet and Epidemic algorithms.

We also estimated the impact of malicious nodes on network performance. We studied
three algorithms with the presence of different numbers of malicious nodes. Algorithm
PPHB++ has the best performance in MDP, DMP, and NetO with malicious network nodes
without restricting the nodes’ movement. When there are constraints on node paths, the
Prophet algorithm only works better in MDP.

In the San Francisco scenarios, where there are more nodes in the network, they acted
slightly differently in the presence of malicious nodes.

According to the results, each network parameter can be set efficiently to have the
best performance according to the network’s conditions and needs and consider what
percentage of network nodes may be malicious. Our comprehensive study shows that
network performance influences parameters configured based on the applications and
restrictions. Depending on the importance of the terms of performance in each application,
the influencing parameters might be weighted to deliver the output. Using ML techniques
for considering network behavior under various features, influencing parameters, and
datasets representing a real-world application allowed us to extend the study by predicting
different scenarios in a network significantly.

5.4. Comparison of ONE Default Setting with Optimized Parameters

Figures 9–11 present the results of ONE default setting, Optimized Influence Parameter
(OIP), and Optimized Influencing Parameters with Limited resources (OIPL) under the
specified conditions stated earlier. More details regarding these results are provided in
Appendix A. Furthermore, we have compared OIP and OIPL results with the default
setting to calculate the network performance’s enhancement (if any). We performed this
experiment and compared all influencing parameters for the San Francisco, Rome, and
Münster datasets. Thus, the results are represented as Improved OIP Improved OIPL for
MDP, DMP, NetO.

For the Prophet algorithm, MDP increased by an average of 17% in San Francisco and
32% in the Rome and Münster datasets. For the Epidemic algorithm, increasing the number
of nodes in all conditions reduces the MDP at different rates; however, in general, MDP
increased by an average of 15% in San Francisco and 34% in the Rome and Münster dataset.
OIP and OIPL are significantly positive in average improvement in all datasets under the
Epidemic algorithm. Although OIP for 250 nodes in San Francisco delivers the lowest MDP,
no meaningful pattern is observed.

The impact of DMP for OIP and OIPL is negligible in the Prophet and Epidemic
algorithms in all datasets. This effect under PPHB++ has quite the inverse negative impact
on San Francisco and Rome, and it is, on average, an increase of 20% in the Münster dataset.

The results indicate an improvement of NetO in all datasets and algorithms; however,
the improvement in the PPHB++ algorithm is greater (for example, 84% in the Rome
dataset). Under PPHB++, NetO decreased by an average of 18% for OIP, but it also
experienced an average of 15% for OIPL in San Francisco. It presents an average of 60%



J. Sens. Actuator Netw. 2022, 11, 61 21 of 30

decrease in the San Francisco dataset. For the Prophet algorithm, NetO decreased by an
average of 25% for OIP, but increased by an average of 21% for OIPL in Rome. NetO
decreased by an average of 4% for OIP, but increased by an average of 36% for OIPL in
Rome for the Epidemic algorithm. NetO is decreased by an average of 19% for Prophet and
Epidemic algorithms in the Münster dataset. Analyzing the results shows that the presented
solution influences MDP and NetO significantly in all three datasets and algorithms (there
are some exceptions) and remains neutral for DMP.

(a) Message Delivery Probability (b) Dropped Message Probability

(c) Network Overhead

Figure 9. Comparison of ONE default setting with Optimized parameters for San Francisco dataset
(The MDP and DMP parameters are normalized to a scale between 0 and 1).

(a) Message Delivery Probability (b) Dropped Message Probability

(c) Network Overhead

Figure 10. Comparison of ONE default setting with optimized parameters for Rome dataset (The
MDP and DMP parameters are normalized to a scale between 0 and 1).



J. Sens. Actuator Netw. 2022, 11, 61 22 of 30

(a) Message Delivery Probability (b) Dropped Message Probability

(c) Network Overhead

Figure 11. Comparison of ONE default setting with optimized parameters for Münster dataset (The
MDP and DMP parameters are normalized to a scale between 0 and 1).

6. Conclusions

In real-world applications, wearable devices, taxis, and buses might be the nodes of
opportunistic networks to save-carry-forward a message from the source to the destination,
particularly when facing a lack of infrastructure or sending an emergency alert from
an injured involved in an accident to a hospital or rescue team. Albeit with various
weights, NumMC, BuffS, MI, NumN, and NM influence the network’s performance. To
explore the real-world applications’ restrictions and impact of resources on the network
performance, we deployed three datasets that differed in features and structures to represent
the characteristics of such networks. Extensive simulations and analyses are required to
show the impact of each factor on the network’s performance. We found that the nodes
and the respective features are the most significant influences on the network performance
represented by MDP, DMP, and NetO. This means that NumN, NM, and NumMC have
greater weights than BuffS and MI. In the real world, this is mapped to the type of node
(taxi or bus), its speed (NM), and the route it follows. All these factors are impacted by the
route and regulation features determined by the dataset represented by the algorithm used
in the simulation.

In a vast network, this requires specific configuration and tests. Thus, we used
regressions techniques of machine learning to predict the optimized parameters for both
networks with(out) resource restrictions.

We showed that obtaining the optimized parameters in each scenario rather than
general configuration improves the network performance under different routine algo-
rithms (i.e., PPHB++, Prophet, and Epidemic). Applying the optimized parameters to the
network, MDP improved by an average of 17% in San Francisco and 32% in Rome and
Münster (Prophet algorithm). In the same manner, MDP was enhanced by an average of
15% in San Francisco and 34% in Rome and Münster (Epidemic algorithm). In all datasets,
the impact of DMP is negligible for the Prophet and Epidemic algorithms. Still, it has an
inverse negative impact on PPHB++ in San Francisco and Rome and increases by 20% in
the Münster dataset. NetO was improved across all datasets and algorithms, although the
PPHB++ algorithm gained the most.

A dense network may improve the probability of delivering a message, but increase
the NetO. We concluded that public transportation could be used in OppNets depending
on the purpose of the application. However, care must be taken to choose the appropriate



J. Sens. Actuator Netw. 2022, 11, 61 23 of 30

means (wearables/taxis/bus) depending on the purpose and structure of the environment
(city). Our study showed that buses with lower NetO are appropriate in OppNets if the
message is time-tolerant.

The results indicated that using taxis in modern texture cities with a higher network
overhead (e.g., several taxis in the same area and direction), greater speed (NM), and fewer
restrictions on driving are suitable.

The datasets’ features restrict our work in terms of data acquisition (two days) and
node characterizations (limited by node density and mobility and 500 nodes). For future
work, we plan to consider pedestrians included in our dataset. Therefore, we plan to
implement an OppNet on several wearable devices deployed in real situations with true-
to-life scenarios. In addition, we would like to compare these results with the simulation
outcomes and improve the ML algorithms in terms of performance, speed, and time to train.

Author Contributions: Conceptualization, S.R.; methodology, S.R. and T.H.; software, S.R.; valida-
tion, S.R. and T.H.; formal analysis, S.R. and T.H.; investigation, S.R.; resources, S.R.; data curation,
S.R.; writing—original draft preparation, S.R. and T.H.; writing—review and editing, S.R. and T.H.;
visualization, S.R.; supervision, T.H.; project administration, T.H.; funding acquisition, T.H. All
authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge support from the Open Access Publishing Fund of University of Muenster.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

OppNet Opportunistic Networks
ML Machine Learning
Reg Regression
MDP Message Delivery Probability
DMP Dropped Message Probability
NetO Network Overhead
ONE Opportunistic Network Environment
FIFO First In First Out
TTL Time To Live
NumMC Number of Messages Copies
NumN Number of Nodes
BuffS Buffer Size
MI Messages Interval
NM Node Mobility
OIP Optimized Influencing Parameters
OIPL Optimized Influencing Parameters with Limited resources

Appendix A

The detail of the results illustrated in Figures 9–11 are provided in Tables A1–A3,
respectively, in the followings. The MDP and DMP parameters are normalized in these
tables between 0 and 1.



J. Sens. Actuator Netw. 2022, 11, 61 24 of 30

Table A1. Comparison of ONE default setting with Optimized parameters for San Francisco dataset.

NumN Routing alg. Parameters MDP DMP NetO

100

PPHB++

Default 0.7577 0.0099 26.2536
OIP 0.7731 0.0193 9.2411

Improved
OIP 2% 95% −65%

OIPL 0.7740 0.0153 11.8901
Improved

OIPL 2% 55% −55%

Prophet

Default 0.2631 0.9891 205.5978
OIP 0.2970 0.9868 166.3056

Improved
OIP 13% −0.23% −19%

OIPL 0.3080 0.9888 233.8289
Improved

OIPL 17% −0.03% 14%

Epidemic

Default 0.2221 0.9903 255.9415
OIP 0.2685 0.9878 190.4832

Improved
OIP 21% −0.25% −26%

OIPL 0.2601 0.9907 295.1669
Improved

OIPL 17% 0.04% 15%

250

PPHB++

Default 0.8497 0.0038 38.5818
OIP 0.8144 0.0126 11.8671

Improved
OIP −4% 231% −69%

OIPL 0.8182 0.0098 14.9696
Improved

OIPL −4% 157% −61%

Prophet

Default 0.2647 0.9922 561.5886
OIP 0.2984 0.9907 449.7669

Improved
OIP 13% −0.15% −20%

OIPL 0.3177 0.9921 631.2182
Improved

OIPL 20% −0.01% 12%

Epidemic

Default 0.2142 0.9933 728.2462
OIP 0.2369 0.9919 588.7030

Improved
OIP 11% −0.16% −19%

OIPL 0.2246 0.9939 953.7604
Improved

OIPL 5% 0.06% 30%



J. Sens. Actuator Netw. 2022, 11, 61 25 of 30

Table A1. Cont.

NumN Routing alg. Parameters MDP DMP NetO

500

PPHB++

Default 0.9135 0.0014 48.7044
OIP 0.8236 0.0100 14.7644

Improved
OIP −10% 614% −70%

OIPL 0.8451 0.0068 17.8872
Improved

OIPL −7% 385% −63%

Prophet

Default 0.2514 0.9933 1247.9009
OIP 0.2928 0.9916 949.0570

Improved
OIP 16% −0.17% −24%

OIPL 0.3095 0.9922 1349.6107
Improved

OIPL 23% −0.11% 8%

Epidemic

Default 0.1866 0.9943 1758.3541
OIP 0.2170 0.9926 1326.3259

Improved
OIP 16% −0.17% −0.24%

OIPL 0.2262 0.9936 1954.4749
Improved

OIPL 21% −0.07% 11%

Table A2. Comparison of ONE default setting with optimized parameters for Rome dataset.

NumN Routing alg. Parameters MDP DMP NetO

50

PPHB++

Default 0.0591 0.4697 13.0696
OIP 0.0911 0.5879 3.3213

Improved
OIP 54% 25% −75%

OIPL 0.1000 0.4866 5.2172
Improved

OIPL 15% 4% −60%

Prophet

Default 0.0553 0.9428 67.4149
OIP 0.0677 0.9401 60.0234

Improved
OIP 22% −0.28% −11%

OIPL 0.0804 0.9323 75.1202
Improved

OIPL 45% −1% 11%

Epidemic

Default 0.0459 0.9425 78.2687
OIP 0.0485 0.9432 92.7646

Improved
OIP 6% 0.07% 19%

OIPL 0.0624 0.9367 100.0608
Improved

OIPL 36% −0.61% 28%



J. Sens. Actuator Netw. 2022, 11, 61 26 of 30

Table A2. Cont.

NumN Routing alg. Parameters MDP DMP NetO

100

PPHB++

Default 0.0643 0.2148 41.5878
OIP 0.1056 0.3997 7.6695

Improved
OIP 64% 86% −82%

OIPL 0.1099 0.3236 11.1034
Improved

OIPL 71% 51% −73%

Prophet

Default 0.0648 0.9476 224.3087
OIP 0.0780 0.9485 182.6512

Improved
OIP 20% 0.09% −19%

OIPL 0.0903 0.9417 262.5534
Improved

OIPL 39% −0.62% 17%

Epidemic

Default 0.0460 0.9446 276.0037
OIP 0.0523 0.9490 294.1793

Improved
OIP 14% 0.46% 7%

OIPL 0.0589 0.9422 381.0702
Improved

OIPL 28% −0.25% 38%

198

PPHB++

Default 0.0719 0.1203 74.0166
OIP 0.1032 0.3281 11.7825

Improved
OIP 44% 173% −84%

OIPL 0.0968 0.2358 21.8399
Improved

OIPL 35% 96% −70%

Prophet

Default 0.0633 0.9524 727.1995
OIP 0.0762 0.9554 392.5911

Improved
OIP 20% 0.31% −46%

OIPL 0.0830 0.9499 978.1411
Improved

OIPL 31% −0.26% 34%

Epidemic

Default 0.0463 0.9516 1007.6753
OIP 0.0519 0.9547 621.9957

Improved
OIP 12% 0.32% −38%

OIPL 0.0634 0.9527 1422.5815
Improved

OIPL 37% 0.11% 41%



J. Sens. Actuator Netw. 2022, 11, 61 27 of 30

Table A3. Comparison of ONE default setting with optimized parameters for Münster dataset.

NumN Routing alg. Parameters MDP DMP NetO

50

PPHB++

Default 0.0413 0.7478 4.3154
OIP 0.0459 0.7696 2.2808

Improved
OIP 11% 3% −47%

OIPL 0.0517 0.7222 2.9400
Improved

OIPL 25% −3% −32%

Prophet

Default 0.0397 0.9520 28.7069
OIP 0.0555 0.9389 23.3992

Improved
OIP 40% −1% −18%

OIPL 0.0648 0.9267 20.9415
Improved

OIPL 63% −3% −27%

Epidemic

Default 0.0337 0.9562 38.4416
OIP 0.0418 0.9500 38.3757

Improved
OIP 24% −0.64% −0.17%

OIPL 0.0555 0.9371 30.9627
Improved

OIPL 65% −2% −19%

100

PPHB++

Default 0.0499 0.4296 20.1438
OIP 0.0645 0.5474 7.4186

Improved
OIP 29% 27% −63%

OIPL 0.0682 0.4551 11.3838
Improved

OIPL 37% 6% −43%

Prophet

Default 0.0475 0.9658 102.2734
OIP 0.0725 0.9588 70.9595

Improved
OIP 53% −0.72% −31%

OIPL 0.0820 0.9558 69.2689
Improved

OIPL 73% −1% −32%

Epidemic

Default 0.0395 0.9642 121.0390
OIP 0.0529 0.9618 105.3774

Improved
OIP 34% −0.02% −13%

OIPL 0.0651 0.9572 102.2169
Improved

OIPL 65% −0.72% −16%



J. Sens. Actuator Netw. 2022, 11, 61 28 of 30

Table A3. Cont.

NumN Routing alg. Parameters MDP DMP NetO

149

PPHB++

Default 0.0676 0.3226 23.2323
OIP 0.0802 0.4431 9.7300

Improved
OIP 19% 37% −58%

OIPL 0.0805 0.3613 14.8462
Improved

OIPL 19% 12% −36%

Prophet

Default 0.1043 0.9718 152.1774
OIP 0.0825 0.9676 117.5335

Improved
OIP −21% −0.43% −23%

OIPL 0.0974 0.9656 109.0989
Improved

OIPL −7% −0.63% −28%

Epidemic

Default 0.0488 0.9724 205.9755
OIP 0.0664 0.9695 169.3973

Improved
OIP 36% −0.29% −18%

OIPL 0.0726 0.9724 196.8863
Improved

OIPL 49% 0% −4%

References
1. Pozza, R.; Nati, M.; Georgoulas, S.; Moessner, K.; Gluhak, A. Neighbor discovery for opportunistic networking in internet of

things scenarios: A survey. IEEE Access 2015, 3, 1101–1131. [CrossRef]
2. Haghi, M.; Neubert, S.; Geissler, A.; Fleischer, H.; Stoll, N.; Stoll, R.; Thurow, K. A flexible and pervasive IoT-based healthcare

platform for physiological and environmental parameters monitoring. IEEE Internet Things J. 2020, 7, 5628–5647. [CrossRef]
3. Orlowski, A.; Romanowska, P. Smart Cities Concept: Smart Mobility Indicator. Cybern. Syst. 2019, 50, 118–131. [CrossRef]
4. Haghi, M.; Danyali, S.; Ayasseh, S.; Wang, J.; Aazami, R.; Deserno, T.M. Wearable devices in health monitoring from the

environmental towards multiple domains: A survey. Sensors 2021, 21, 2130. [CrossRef]
5. Sestino, A.; Prete, M.I.; Piper, L.; Guido, G. Internet of Things and Big Data as enablers for business digitalization strategies.

Technovation 2020, 28, 102173. [CrossRef]
6. Martín-Campillo, A.; Crowcroft, J.; Yoneki, E.; Martí, R. Evaluating opportunistic networks in disaster scenarios. J. Netw. Comput.

Appl. 2013, 36, 870–880. [CrossRef]
7. Cuka, M.; Elmazi, D.; Bylykbashi, K.; Spaho, E.; Ikeda, M.; Barolli, L. Implementation and performance evaluation of two

fuzzy-based systems for selection of IoT devices in opportunistic networks. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 519–529.
[CrossRef]

8. Conti, M.; Giordano, S.; May, M.; Passarella, A. From opportunistic networks to opportunistic computing. IEEE Commun. Mag.
2010, 48, 126–139. [CrossRef]

9. Boldrini, C.; Lee, K.; Önen, M.; Ott, J.; Pagani, E. Opportunistic networks. Comput. Commun. 2014, 48, 1–4. [CrossRef]
10. Aguilar, S.; Vidal, R.; Gomez, C. Opportunistic sensor data collection with bluetooth low energy. Sensors 2017, 17, 159. [CrossRef]
11. Aloi, G.; Caliciuri, G.; Fortino, G.; Gravina, R.; Pace, P.; Russo, W.; Savaglio, C. Enabling IoT interoperability through opportunistic

smartphone-based mobile gateways. J. Netw. Comput. Appl. 2017, 81, 74–84. [CrossRef]
12. Pelusi, L.; Passarella, A.; Conti, M. Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE

Commun. Mag. 2006, 44, 134–141. [CrossRef]
13. Ferretti, S. Shaping opportunistic networks. Comput. Commun. 2013, 36, 481–503. [CrossRef]
14. Huang, C.M.; Lan, K.C.; Tsai, C.Z. A survey of opportunistic networks. In Proceedings of the 22nd International Conference on

Advanced Information Networking and Applications-Workshops (Aina Workshops 2008), Gino-wan, Japan, 25–28 March 2008;
pp. 1672–1677.

15. Ali, A.H.K.; Lenando, H.; Chaoui, S.; Alrfaay, M.; Tawfeek, M.A. A Dynamic Resource-Aware Routing Protocol in Resource-
Constrained Opportunistic Networks. CMC Comput. Mater. Contin. 2022, 70, 4147–4167.

http://doi.org/10.1109/ACCESS.2015.2457031
http://dx.doi.org/10.1109/JIOT.2020.2980432
http://dx.doi.org/10.1080/01969722.2019.1565120
http://dx.doi.org/10.3390/s21062130
http://dx.doi.org/10.1016/j.technovation.2020.102173
http://dx.doi.org/10.1016/j.jnca.2012.11.001
http://dx.doi.org/10.1007/s12652-017-0676-0
http://dx.doi.org/10.1109/MCOM.2010.5560597
http://dx.doi.org/10.1016/j.comcom.2014.04.007
http://dx.doi.org/10.3390/s17010159
http://dx.doi.org/10.1016/j.jnca.2016.10.013
http://dx.doi.org/10.1109/MCOM.2006.248176
http://dx.doi.org/10.1016/j.comcom.2012.12.006


J. Sens. Actuator Netw. 2022, 11, 61 29 of 30

16. Khalil, A.; Abou Haidar, N.; Bassil, G.; Chbeir, R. Adaptive Resource Management Solution for Ad-Hoc Opportunistic Networks.
Wirel. Pers. Commun. 2021, 117, 1931–1958. [CrossRef]

17. Garg, K.; Giordano, S.; Förster, A. A study to understand the impact of node density on data dissemination time in opportunistic
networks. In Proceedings of the 2nd ACM Workshop on High Performance Mobile Opportunistic Systems, Barcelona Spain, 3–8
November 2013; pp. 9–16.

18. Vahdat, A.; Becker, D. Epidemic routing for partially connected ad hoc networks. Tech. Rep. CS-200006 2000. [CrossRef]
19. Jesús-Azabal, M.; Herrera, J.L.; Laso, S.; Galán-Jiménez, J. OPPNets and Rural Areas: An Opportunistic Solution for Remote

Communications. Wirel. Commun. Mob. Comput. 2021, 1–11. [CrossRef]
20. Kuppusamy, V. Performance analysis of epidemic routing in destination-less oppnets. In Proceedings of the 2018 IEEE 19th

International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June
2018; pp. 1–3.

21. Candra, R.A.; Ilham, D.N.; Suherman, S.; Sani, A.; Tarigan, D. The Impact of Buffer Queue Interface Size to The 802.11 Ad Hoc
Network Performances. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK,
2019; Volume 506, p. 012039.

22. Shen, J.; Moh, S.; Chung, I.; Sun, X. Buffer scheme optimization of epidemic routing in delay tolerant networks. J. Commun. Netw.
2014, 16, 656–666. [CrossRef]

23. Kang, M.W.; Seo, D.Y.; Chung, Y.W. An efficient delay tolerant networks routing protocol for information-centric networking.
Electronics 2020, 9, 839. [CrossRef]

24. Socievole, A.; Caputo, A.; De Rango, F.; Fazio, P. Routing in mobile opportunistic social networks with selfish nodes. Wirel.
Commun. Mob. Comput. 2019, 2019, 1–15. [CrossRef]

25. Ciobanu, R.I.; Dobre, C.; Dascalu, M.; Trausan-Matu, S.; Cristea, V. Collaborative selfish node detection with an incentive
mechanism for opportunistic networks. In Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network
Management (IM 2013), Ghent, Belgium, 27–31 May 2013; pp. 1161–1166.

26. Hossen, M.S. DTN routing protocols on two distinct geographical regions in an opportunistic network: An analysis. Wirel. Pers.
Commun. 2019, 108, 839–851. [CrossRef]

27. Xiao, Y.; Wu, J. Data transmission and management based on node communication in opportunistic social networks. Symmetry
2020, 12, 1288. [CrossRef]

28. Huang, C.; Jiang, P. Message Cache Management Optimization Research for Community-based Opportunistic Network.
In Proceedings of the 3rd International Conference on Computer Engineering, Information Science & Application Technology,
Chongqing, China, 30–31 May 2019.

29. Soares, V.N.; Farahmand, F.; Rodrigues, J.J. Evaluating the impact of storage capacity constraints on vehicular delay-tolerant
networks. In Proceedings of the 2009 Second International Conference on Communication Theory, Reliability, and Quality of
Service, Colmar, France, 20–25 July 2009; pp. 75–80.

30. Goudar, G.; Batabyal, S. Optimizing bulk transfer size and scheduling for efficient buffer management in mobile opportunistic
networks. IEEE Trans. Mob. Comput. 2021, 1–16. [CrossRef]

31. Bylykbashi, K.; Spaho, E.; Barolli, L.; Xhafa, F. Impact of node density and TTL in vehicular delay tolerant networks: Performance
comparison of different routing protocols. Int. J. Space-Based Situated Comput. 2017, 7, 136–144. [CrossRef]

32. Garg, P.; Dixit, A.; Sethi, P.; Pinheiro, P.R. Impact of Node Density on the QoS Parameters of Routing Protocols in Opportunistic
Networks for Smart Spaces. Mob. Inf. Syst. 2020, 1–18. [CrossRef]

33. Ge, L.; Jiang, S. An Efficient Routing Scheme Based on Node Attributes for Opportunistic Networks in Oceans. Entropy 2022, 24,
607. [CrossRef]

34. Herrera-Tapia, J.; Förster, A.; Hernández-Orallo, E.; Udugama, A.; Tomas, A.; Manzoni, P. Mobility as the main enabler of
opportunistic data dissemination in urban scenarios. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless;
Springer: Cham, Switzerlands, 2017; pp. 107–120.

35. Kandhoul, N.; Dhurandher, S.K. An efficient and secure data forwarding mechanism for opportunistic IoT. Wirel. Pers. Commun.
2021, 118, 217–237. [CrossRef]

36. Piorkowski, M.; Sarafijanovic-Djuki, N.; Grossglauser, M. A Parsimonious Model of Mobile Partitioned Networks with Clustering.
In Proceedings of the First International Conference on COMmunication Systems and NETworkS (COMSNETS), Bangalore, India,
5–10 January 2009. [CrossRef]

37. Bracciale, L.; Bonola, M.; Loreti, P.; Bianchi, G.; Amici, R.; Rabuffi, A. CRAWDAD Dataset Roma/Taxi (v. 2014-07-17). 2014.
Available online: https://crawdad.org/roma/taxi/20140717/ (accessed on 5 August 2022).

38. Lindgren, A.; Doria, A.; Schelén, O. Poster: Probabilistic routing in intermittently connected networks. In Proceedings of the
Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing, Annapolis, MD, USA, 1–3 June 2003;
pp. 90–100.

39. Rashidibajgan, S.; Hupperich, T.; Doss, R.; Förster, A. Secure and privacy-preserving structure in opportunistic networks. Comput.
Secur. 2021, 104, 102208. [CrossRef]

40. Keränen, A.; Ott, J.; Kärkkäinen, T. The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, Rome, Italy, 2–6 March 2009; p. 55.

http://dx.doi.org/10.1007/s11277-020-07952-5
http://dx.doi.org/10.15783/C7QC7M.
http://dx.doi.org/10.1155/2021/8883501
http://dx.doi.org/10.1109/JCN.2014.000112
http://dx.doi.org/10.3390/electronics9050839
http://dx.doi.org/10.1155/2019/6359806
http://dx.doi.org/10.1007/s11277-019-06431-w
http://dx.doi.org/10.3390/sym12081288
http://dx.doi.org/10.1109/TMC.2021.3075993
http://dx.doi.org/10.1504/IJSSC.2017.089003
http://dx.doi.org/10.1155/2020/8868842
http://dx.doi.org/10.3390/e24050607
http://dx.doi.org/10.1007/s11277-020-08010-w
http://dx.doi.org/10.15783/C7J010
https://crawdad.org/roma/taxi/20140717/
http://dx.doi.org/10.1016/j.cose.2021.102208


J. Sens. Actuator Netw. 2022, 11, 61 30 of 30

41. Rashidibajgan, S.; Hupperich, T.; Doss, R.; Pan, L. Opportunistic Tracking in Cyber-Physical Systems. In Proceedings of the 19th
International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Guangzhou, China,
29 December–1 January 2020; pp. 1672–1679.

42. Tkachenko, R.; Izonin, I.; Vitynskyi, P.; Lotoshynska, N.; Pavlyuk, O. Development of the Non-Iterative Supervised Learning
Predictor Based on the Ito Decomposition and SGTM Neural-Like Structure for Managing Medical Insurance Costs. Data 2018,
3, 46. [CrossRef]

http://dx.doi.org/10.3390/data3040046

	Introduction
	Related Work
	Materials and Methods
	Scenarios
	San Francisco Taxis
	Rome Taxis
	Muenster Buses

	Routing Algorithms
	Simulation Environment
	Optimized Parameters

	Results
	Influencing Parameters and the Network Performance
	NumMC and Network Performance
	BuffS and Network Performance
	MI and Network Performance
	NumN and Network Performance
	NM and Network Performance

	Extending the Simulation Results Based on ML and Regression Models
	Obtaining the Optimized Influencing Parameters (OIP)
	Obtaining the Optimized Influencing Parameters with Limited Resources (OIPL)

	Network Performance
	Network Performance without the Malicious Nodes
	Network Performance with Malicious Nodes


	Discussion
	Restrictions of the Study
	Influencing Parameters on the Network Performance
	Machine Learning Techniques and Real Work Applications
	Comparison of ONE Default Setting with Optimized Parameters

	Conclusions
	Appendix A
	References

