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Abstract: This paper studies the gradient-based adversarial attacks on cluster-based, heterogeneous,
multi-agent, deep reinforcement learning (MADRL) systems with time-delayed data transmission.
The structure of the MADRL system consists of various clusters of agents. The deep Q-network
(DQN) architecture presents the first cluster’s agent structure. The other clusters are considered
as the environment of the first cluster’s DQN agent. We introduce two novel observations in
data transmission, termed on-time and time-delay observations. The proposed observations are
considered when the data transmission channel is idle, and the data is transmitted on time or delayed.
By considering the distance between the neighboring agents, we present a novel immediate reward
function by appending a distance-based reward to the previously utilized reward to improve the
MADRL system performance. We consider three types of gradient-based attacks to investigate the
robustness of the proposed system data transmission. Two defense methods are proposed to reduce
the effects of the discussed malicious attacks. We have rigorously shown the system performance
based on the DQN loss and the team reward for the entire team of agents. Moreover, the effects of the
various attacks before and after using defense algorithms are demonstrated. The theoretical results
are illustrated and verified with simulation examples.

Keywords: multi-agent system; deep Q-network (DQN); data transmission; gradient-based attack;
defense

1. Introduction

The reinforcement learning (RL) algorithm is the process of learning, mapping states
to actions, and ultimately maximizing a reward signal through the interaction of an agent
with a specific environment [1,2]. Deep reinforcement learning (DRL) is characterized by
a combination of RL and deep learning (DL) algorithms, two subdivisions of machine
learning (ML) [3–5]. The DRL’s advantage is that it addresses the high-dimensional prob-
lems that RL algorithms encounter [4,6,7]. Q-learning, as a type of RL algorithm, learns
action values in a specific state [1]. Despite Q-learning’s technological advances, it has
one major flaw—similarly to dynamic programming, Q-learning can only update data
within a two-dimensional array {state × action} [8]. The deep Q-network (DQN) algorithm
is introduced, which merges Q-learning, and deep neural networks (NN) [7,9]. To cope
with the two-dimensional array problem arising from the Q-learning algorithm, the DQN
has been used in a wide range of applications [10–12]. There are two main reasons for
using the DQN algorithm instead of other DRL approaches in this work: (i) the stability
in performing complicated tasks. The discussed stability is the consequence of utilizing
randomly sampled experience replay and a target network; (ii) the ability to predict the
Q-value function.
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1.1. Contributions

We studied the time-delayed data transmission problem between agents in a cluster-
based, heterogeneous, multi-agent deep reinforcement learning (MADRL) system under
adversarial attacks. The paper contributions are: (i) in addition to the leaderless multi-
agent system (MAS), we proposed a leader-follower MAS, such that the preassigned leader
in each cluster communicates with the leader of other clusters as well as the agents of its
own cluster; (ii) we considered two novel observations in data transmission, called on-time
and time-delay observations, and we investigated their effects on the DQN loss and team
reward; (iii) we proposed a novel immediate reward function that considers the package
length, packet header size, and distance between neighboring agents to improve the MAS
performance in terms of approximated cumulative team discounted reward during time-
delayed data transmission; (iv) we considered the fast gradient sign method (FGSM),
fast gradient method (FGM), and basic iterative method (BIM) adversaries (gradient-
based attacks) to attack the DQN algorithm. Then we investigated the effects of such
attacks on MAS performance and time-delayed data transmission; (v) we introduced two
defense algorithms against the performed adversarial attacks. In the proposed defense
methods, the DQN agent’s deep NN learns from a state that produces the maximum
perturbation value and uses its negative feedback to improve the system performance
during an adversarial attack.

1.2. Related Research

DQN algorithm has been used in data transmission between multiple agents. The
transfer learning (TL) approach is combined with the DQN algorithm, and a multi-source
transfer double DQN (MTDDQN) is introduced in [13]. The MTDDQN is based on actor
learning and enables the collection, summarization, and transfer of action knowledge by
the RL agent between multiple agents [13]. Compared to [13], the current paper uses
one DQN agent in a cluster-based, heterogeneous, MAS for on-time and time-delayed
data transmission.

Data transmission in MAS has been investigated in various scenarios and for linear
and nonlinear systems [14]. For instance, periodic event-triggered output regulation for
linear MAS by considering a leader-follower topology is proposed in [15]. An adaptive
event-triggered consensus control of linear MAS with directed leader-follower topology
in the presence of a cyber-attack that affects the control input without modification in
communication topology is developed in [16].

A dynamic event-triggered asynchronous control integrating fuzzy models with di-
rected topology is presented in [17]. A new adaptive event-triggered leaderless consensus
control of nonlinear MAS, including directed topology, can be found in [18]. Moreover,
some researches address data exchanges between linear and nonlinear systems as a het-
erogeneous MAS, e.g., a leaderless and a leader-follower consensus of heterogeneous
second-order MAS on time scales using an asynchronous impulsive approach, is presented
in [19]. The previous studies have shown that there is little research on data transmission
within homogeneous or heterogeneous MADRL systems, and the majority of the research
has been focused on linear and nonlinear MAS. A heterogeneous MAS based on carrier-
sense multiple access (CSMA) that utilizes DRL algorithm in data transmission, termed
carrier-sense deep reinforcement learning multiple access (CS-DLMA), is introduced in [20].
The CS-DLMA uses α-fairness objective to measure system performance. Inspired by [20]
and using CS-DLMA, we study time-delayed data transmission between agents of a leader-
less MADRL system. The same study is carried out for a leader-follower MADRL system.
Note that CSMA is an access control protocol in which an agent in the network checks the
state of the data channel for data transmission.

Cyber-attacks can happen to any system, especially those that transmit data. Vari-
ous adversarial attacks pose a threat to ML algorithms and DL systems [21,22]. The ML
algorithms are misled by adversarial attacks that manipulate input data to undermine algo-
rithm performance, access the ML model, and modify model behavior [23,24]. Therefore,
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it is important to study the effects of various attacks on ML algorithms [25]. This paper
uses three types of gradient-based adversarial attacks, termed FGSM [26], FGM [27,28],
and BIM [27,29] to investigate their effects on the DQN algorithm, and consequently,
MADRL system performance. Paper [20] is devoid of any information on cyber-attack
on the system. The authors of [30] have examined the adverse effects of FGSM attack on
DRL-based traffic signal control for a single-intersection and multiple intersection cases;
however, its effects are not investigated on sending and receiving data. Hence, the FGSM
attack plus FGM and BIM attacks, that try to fool the NN, are considered in this paper to
check their impacts on the data transmission robustness. The authors of [31] have used the
discussed attacks to target the observation set provided by the RL algorithm environment;
as a result, we have applied the three types of adversarial attacks to target the produced
environmental state of the DRL algorithm.

There are various defense techniques for ML algorithms, and these adversarial defense
methods are used to improve the robustness of a designed model [32]. Among all the pre-
sented methods [33–36], the best defense procedure occurs when the adversarial examples
are fed to the NN training process [28]. In this regard, we use the worst perturbation as the
input of the NN to train the model and reach the robustness against malicious attacks.

This paper scrutinizes adversarial attack issues facing ML algorithms and studies
the time-delayed data transmission robustness due to three types of gradient-based ma-
licious attacks– FGSM, FGM, and BIM adversaries– between agents of a cluster-based,
heterogeneous MADRL system. This study shows how the leaderless or leader-follower
MAS performs due to time-delayed data transmission. After an attack on a leader-follower
MADRL system, this paper presents two adversarial attack defense approaches against
gradient-based attacks. This paper does not study the detectability of attacks, but how to
reverse the attacks.

A potential application of this research is to use the proposed system in smart grids to
make the grid more reliable, secure, and efficient. Moreover, by converting static agents
to mobile agents and considering relevant contributions to the novel architecture, this
system can be used for data transmission between the agents of all types of multi-agent
autonomous vehicles, e.g., multi-rescue robots.

After giving a brief introduction on various aspects of this research in Section 1,
the background is explained in Section 2. The methodology of the proposed approach is
offered in Section 3. Results and discussion on the introduced system and its behavior
during adversarial attacks are provided in Section 4. The conclusion and future works are
presented in Section 5. A preliminary conference version of this manuscript was submitted
and accepted previously [37]. New results on data transmission robustness of the proposed
leader-follower MAS due to adversarial attacks are presented for additional comparison
and evaluation in this paper.

2. Background

Decision-making is based on the information received from the environment by an RL
or DRL agent. It is considered that the finite Markov decision process (MDP) represents the
dynamics of the environment for decision-making. The 5-tuple M =

〈
s, a, T, R, γ

〉
presents

an MDP for an RL and DRL system, where s is a finite set of environmental states, and a
is a finite action set. Moreover, T(st, at, st+1) → [0, 1] is the state-transition probability
function that agent takes action at in the state st, and is transferred to the state st+1 to do the
next action. Further, R(st, at, st+1) , ∑∞

k=0 γkrt+k+1 → IRn is a cumulative reward function,
where rt+k+1 shows the immediate reward, with discount factor γ that is the trade-off
between an immediate reward and potential future reward.

In the leaderless MAS scenario, all agents communicate with their cluster-mates,
as well as agents of other clusters. In the leader-follower MAS scenario, in each cluster,
only the preassigned leader communicates with the other agents in the same cluster as
well as leaders of different clusters. Thus, data transmission occurs between the leader
and the followers of one cluster as well as leaders of clusters. The leaderless and leader-
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follower MAS are considered as the graph G = (V , E), where V is the set of all agents,
and E ⊆ {(i, j)|i ∈ V , j ∈ V} is the set of all communication links between agents. The
agents i and j communicate if and only if (i, j) ∈ E [38].

3. Methodology

In this Section, the leaderless and leader-follower topologies are introduced. Then,
the components of the DQN algorithm (observation, action, state, and reward) are explained.
Afterward, the DQN loss for on-time and time-delayed data transmission is justified. Three
types of adversarial attacks to target the proposed leader-follower MAS (state of the DQN
agent) are extended and explained. Finally, two defense methods against performed
adversarial attacks are introduced.

3.1. Leaderless and Leader-Follower Topologies

A generic illustration of the MADRL system topology including N static, heteroge-
neous agents, and P clusters is shown in Figure 1. The leaderless and leader-follower MAS
scenarios can be envisioned from the presented topology in Figure 1. The goal of each static
agent in this topology is to transfer data with the maximum average reward.

Figure 1. An illustration of the MADRL system topology, including N static, heterogeneous agents,
and P clusters.

3.2. Observation

In this paper, observation describes the state of the data transmission channels that are
either idle or busy [20]. If the channel between each pair of agents is busy at time step t, no
data can be transmitted at time step t + 1 due to data transition by another agent. However,
if this channel is idle, data can be transmitted. The transmitted data either reaches its
destination successfully or collides along the way, gets corrupted, and does not reach the
goal. Therefore, the defined observation set by [20] is ot = {busy, idle, successful, collided}.

We propose a modified observation set to use in our MADRL system. We add on-time
and time-delayed arrival states to the observation set. As in [20], it is first checked that
the data channel between each pair of agents is either idle or busy. If the channel is idle,
the data can be transferred successfully on-time, successfully with time-delay, or collided.
Therefore, in the introduced scenarios of this paper, the novel observation set ot = {busy,
idle, on-time, time-delay, collided} is proposed.

The lengths of the transferred packets in the network are different and belong to the
set of Rc ∈ {1, 2, . . . , Rc max}. When the observation is on-time, it means that each agent in
the network transmits the packet at the next Rc mini-slot, with the action time duration
in the set of Td(at) ∈ {1, 2, . . . , Rc max}. With the time-delay observation, each agent in the
network transmits the packet at the next Rc mini-slot, with the action time duration in the
set of T′d(at) ∈ {Rc max + 1, Rc max + 2, . . .}. In both on-time and time-delay observations,
when an agent transmits a packet in a data transmission channel, no other agent sends the
data at that specified channel to avoid a collision. In the following, Td(at) and T′d(at) are
abbreviated as Td and T′d, respectively. When the observation collides, it means that the
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agent transmits the packet at the next Rc mini-slot; however, another agent transmits data
in at least one of the Rc mini-slots. Note that each mini-slot is a required time to perform
CSMA. In this paper, each mini-slot is considered a time step.

3.3. Action

Action is one of the significant components of RL and DRL algorithms [39]. In general,
the agent receives the corresponding state from the environment at time step t and performs
the appropriate action accordingly. Due to the quality of the performed action at time step
t, the agent receives the reward associated with that action at time step t + 1. According to
the observation set in this paper, the agent first checks whether the data channel is idle or
busy. This stage should be done at less than one mini-slot. The performed actions in this
paper are based on [20], as follows:

• No Selection: If the channel is busy at time step t (checked at less than one mini-slot),
the DQN agent does not take any action at the next time step. Hence, at+1 = 0.

• Uniform Selection with Probability ε: If the channel is idle at time step t, the DQN agent
chooses an action (transfer or not to transfer a packet) at time step t + 1. If the agent at
the next Rc mini-slot transmits packets with the length of Rc, then the action at time
step t + 1 is at+1 = Rc, where Rc ∈ {0, 1, 2, . . . , Rc max}. This action selection method is
a uniform random selection with probability ε (exploration) using ε-greedy algorithm.

• Non-uniform Selection with Probability 1− ε: If the channel is idle at time step t, an action
to transfer or not to transfer a packet at time step t + 1 can be chosen by the DQN
agent. According to the conventional ε-greedy DQN algorithm, the action will be the
maximum Q-value {Q(s, a; θ)|a ∈ A}, where Q is a parametric function including state
s, action a, and parameter θ as a vector, including the weights in the NN. Moreover, A
is the set of actions. Therefore, the action at time step t + 1 is

at+1 = arg max
at∈{0,1,2,...,Rcmax }

N

∑
i=1

Qi(st+1, at; θ−
)
, (1)

where θ− denotes the target Q-value weight. This action selection method is a non-
uniform selection with probability 1− ε (exploitation) using ε-greedy algorithm.

Note that the ε-greedy algorithm is a widely used policy-based exploration approach
in RL and DRL algorithms [1,40].

3.4. State

In this paper, there are two types of states; channel state cs
t+1, and DQN algorithm

state st+1 [20]. The DQN algorithm state used in the DRL process is based on the channel
state. The channel state at time step t + 1 is cs

t+1 =∆ (at, ot). Hence, the DQN algorithm
state at time step t + 1 is st+1 =∆ [cs

t−L+2, ..., cs
t , cs

t+1], where L is the state history length that
describes the number of past time steps to be tracked by the DQN algorithm.

3.5. Reward

Selecting a reward function is usually based on what the RL and DRL systems are
supposed to do [41]. In this paper, first, the selection of the reward function depends
on the data specifications, including the length of a sent package and the packet header
size [20]. The larger the packet header size, the more problems it causes in sending data
in the channel (time-delay data transmission or data collision). Therefore, the oversize
packet header causes the DQN agent to receive less reward. Afterward, we propose another
component to obtain each agent’s more precise average reward. Distances between agents
may be significant for sending and receiving data and maintaining distances between
clusters. Additionally, the distance between two mobile agents is crucial to avoid collisions
(the study of mobile agents is beyond the scope of this paper). Hence, we consider the
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length of a sent package, the packet’s header size, and the distance between a couple of
agents in determining the immediate reward function.

In this paper, the utilized rewards are:

• At time step t, if the transferred package does not reach the destination (another agent
from another cluster or the agent from the same cluster) successfully, and collides on
the way, the immediate reward for i-th agent at time step t + 1 is ri

t+1 = 0.
• Using the observation set of [20], if the data packet successfully transferred by each

agent in the network, the immediate reward for i-th agent at time step t + 1 is

ri
t+1 = Ri

c − Hi
p, (2)

where Hp is the packet’s header and is a part of each mini-slot.
• By proposing on-time and time-delay observations, we append other components

to the immediate reward and present a new immediate reward for each agent. Con-
sidering constant κ ∈ R+

∗ and κ ∈ [1, ∞), the new immediate reward for i-th agent is
introduced by

ri
t+1 = Ri

c − (κ · Hi
p), (3)

where κ = 1 if the data packet is transferred by each agent in the network successfully
and on-time, and κ > 1 if the data packet is transferred by each agent in the network
successfully and with time-delay.

• Considering the distance between agents who transmit data to each other, we propose
another type of immediate reward for i-th agent using the combined immediate reward
function [41]. If the data packet successfully transferred by i-th agent to j-th agent
(on-time), we propose the novel distance-based immediate reward for i-th agent at
time step t + 1 as

ri
t+1 = Ri

c − Hi
p −

N−1

∑
j=1

Crij
t+1. (4)

If the data packet transferred by i-th agent to j-th agent successfully and time-delayed,
the distance-based immediate reward for i-th agent at time step t + 1 when κ > 1 is
given by

ri
t+1 = Ri

c − (κ · Hi
p)−

N−1

∑
j=1

Crij
t+1, (5)

where Crij
t+1 = max(Mrij

t+1, Erij
t+1, Črij

t+1, Nrij
t+1) is the combined immediate reward

function such that Mrij
t+1, Erij

t+1, Črij
t+1, and Nrij

t+1 are Manhattan, Euclidean, Cheby-
shev, and n−norm immediate reward functions, respectively [41]. In this paper,
the combined immediate reward function is obtained based on positions (xi, yi) and
(xj, yj) of i-th and j-th agents, respectively. Nevertheless, the original combined imme-
diate reward function, defined by [41], is based on the current position and the desired
position of i-th agent in the MARL system.

Typically the formal definition of the DQN target Q-value of a state-action pair (st, at)
is provided by

TarQ = R(st, at, st+1) + γ max
at+1

Q
(
st+1, at+1; θ−

)
, (6)
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using the cumulative reward function R(st, at, st+1), discount factor γ ∈ (0, 1), and target
Q-value weight θ−. According to [20], the DQN target Q-value of a state-action pair (st, at)
is given by

TarQ =
rt+1 · (1 + γ + ... + γTd−1)

Td
+ γTd max

at+1
Q
(
st+1, at+1; θ−

)
=

rt+1 · (1 + γ + ... + γTd−1)

Td
· 1− γ

1− γ
+ γTd max

at+1
Q
(
st+1, at+1; θ−

)
=

rt+1

Td
· 1− γTd

1− γ
+ γTd max

at+1
Q
(
st+1, at+1; θ−

)
.

(7)

The Q-value function Q(st, at; θ) is defined by

Q(st, at; θ) = Est+1∼T(st ,at ,st+1)

[
R(st, at, st+1) + γ max

at+1
Q
(
st+1, at+1; θ−

)]
, (8)

using the state-transition probability function T(st, at, st+1) that defines the conditional
probabilities between the states. Furthermore, θ is the Q-value weight. According to the
gradient method, the parameter θ is updated as

θt+1 ← θt + α
(
TarQ−Q(st, at; θ)

)
∇θQ(st, at; θ), (9)

where α is the learning rate.
Both immediate reward choices (2)–(5) and the final Q-value function, obtained by

updating the parameter θ of (9), are connected to the actual data transmission by considering
two options: (i) characteristics of transferred packets including the package length and
packet header size; (ii) specifications of neighboring agents’ distances in such a way that
unregulated distance between agents delays data transmission.

Remark 1. Learning process in DQN algorithm is more stable than Q-learning process since the
update rule introduces a delay between the time when Q-value Q(st, at; θ) is updated and the time
when target network Q(st+1, at+1; θ−) is updated [42]. Therefore, the target network remains
unchanged due to the time-delay.

Theorem 1. Suppose that the MAS including N agents is modeled by a graph G, and the learning
process is performed by the DQN algorithm. If the i-th agent transfers data to the j-th agent
successfully and with time-delay then the average approximated cumulative team discounted reward
of a state-action pair (st, at) satisfies the following

1
N

N

∑
i=1

Qi(st, at; θ)

κ>1

<
1
N

N

∑
i=1

Qi(st, at; θ)

κ=1

. (10)

Proof. To avoid time-delay, we consider the action time duration Td ∈ {1, 2, . . . , Rc max}.
With the time-delay, we assume that the action time duration is unbounded above and
T′d ∈ {Rc max + 1, Rc max + 2, . . .}. Therefore, the time-delay occurs when T′d ≥ Rc max + 1.
We set the constant κ ∈ R+

∗ in such a way that κ ∈ [1, ∞). From (3) it follows

N

∑
i=1

Ri
c − (κ · Hi

p)

T′ id
T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

Ri
c − Hi

p

Ti
d

Ti
d∈{1,2,...,Rc max}

. (11)
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By considering a specific value of γ ∈ (0, 1), we have

N

∑
i=1

Ri
c − (κ · Hi

p)

T′ id
· 1− γT′ id

1− γ
<

T′ id∈{Rc max+1,Rc max+2,...}

N

∑
i=1

Ri
c − Hi

p

Ti
d
· 1− γTi

d

1− γ

Ti
d∈{1,2,...,Rc max}

. (12)

By considering a specific value of γ ∈ (0, 1), for high values of T′d the following is given

γT′d → 0
T′d∈{Rc max+1,Rc max+2,...}

, (13)

while for Td ∈ {1, 2, . . . , Rc max} we have

0 < γTd

Td∈{1,2,...,Rc max}
< 1. (14)

Using (13) and (14), for i-th agent the following is achieved

N

∑
i=1

γT′ id

T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

γTi
d

Ti
d∈{1,2,...,Rc max}

. (15)

According to Remark 1, by considering the maximum target network among the
possible actions that can be taken from the next state and using (15), the following is valid

N

∑
i=1

γT′ id max
at+1

Qi(st+1, at+1; θ−
)

T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

γTi
d max

at+1
Qi(st+1, at+1; θ−

)
Ti

d∈{1,2,...,Rc max}

. (16)

Utilizing (12) and (16) yields

N

∑
i=1

(Ri
c − (κ · Hi

p)

T′ id
· 1− γT′ id

1− γ
+ γT′ id max

at+1
Qi(st+1, at+1; θ−

)
T′ id∈{Rc max+1,Rc max+2,...}

)

<
N

∑
i=1

(Ri
c − Hi

p

Ti
d
· 1− γTi

d

1− γ
+ γTi

d max
at+1

Qi(st+1, at+1; θ−
)

Ti
d∈{1,2,...,Rc max}

)
.

(17)

Therefore,
N

∑
i=1

TarQi

T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

TarQi

Ti
d∈{1,2,...,Rc max}

. (18)

To achieve the least amount of training loss `(θ, s, a), the difference between the target
Q-value and predicted Q-value should converge to zero. Hence, the below equation can be
considered for i-th agent,

lim
t→t0

Qi(st, at; θ) = TarQi . (19)

Substituting (19) in (18) yields

N

∑
i=1

lim
t→t0

Qi(st, at; θ)

T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

lim
t→t0

Qi(st, at; θ)

Ti
d∈{1,2,...,Rc max}

. (20)
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According to the monotone convergence condition, the following is given

N

∑
i=1

lim
t→t0

Qi(st, at; θ) = lim
t→t0

N

∑
i=1

Qi(st, at; θ). (21)

By considering (21), the inequality (20) is modified as below

lim
t→t0

N

∑
i=1

Qi(st, at; θ)

T′ id∈{Rc max+1,Rc max+2,...}

< lim
t→t0

N

∑
i=1

Qi(st, at; θ)

Ti
d∈{1,2,...,Rc max}

(22)

N

∑
i=1

Qi(st0 , at0 ; θ)

T′ id∈{Rc max+1,Rc max+2,...}

<
N

∑
i=1

Qi(st0 , at0 ; θ)

Ti
d∈{1,2,...,Rc max}

. (23)

By averaging each side of inequality (23), and redistribute each side of the inequality
to time t, the following is given

1
N

N

∑
i=1

Qi(st, at; θ)

T′ id∈{Rc max+1,Rc max+2,...}

<
1
N

N

∑
i=1

Qi(st, at; θ)

Ti
d∈{1,2,...,Rc max}

. (24)

{
Ti

d ∈ {1, 2, . . . , Rc max} if κ = 1,

T′ id ∈ {Rc max + 1, Rc max + 2, . . .} if κ > 1.
(25)

Therefore, by considering inequality (24) and condition (25) for MAS, including N
agents, the inequality (10) is proven as follows

1
N

N

∑
i=1

Qi(st, at; θ)

κ>1

<
1
N

N

∑
i=1

Qi(st, at; θ)

κ=1

. (26)

Theorem 2. Suppose that graph G as a MAS includes N agents. The distance between i-th agent
and j-th agent is dij in such a way that ξ ≤ dij ≤ λ, where ξ and λ ∈ R+

∗ are constant values
and ξ 6= λ. Using the results of [41], it is expected that by considering ξ ≤ dij ≤ λ the distance-
based immediate reward (5) improves the DQN learning process and compensates for the negative
effect of the time-delayed data transmission. Therefore, the average approximated cumulative team
discounted reward of a state-action pair (st, at) satisfies the following

1
N

N

∑
i=1

Qi(st, at; θ)

κ>1

≥ 1
N

N

∑
i=1

Qi(st, at; θ)

κ=1

. (27)

Proof. In the case of time-delayed data transmission, distance-based immediate reward,
which is calculated based on the distance dij between i-th and j-th neighboring agents, as-
sists the learning process of the DQN agent. Therefore, this immediate reward compensates
for the negative effect of time-delayed data transfer at time step t and causes to take more
appropriate action at the next time step t + 1.

Since the agents are static and the distance dij between them is constant, the distance-
based immediate reward (in combination with the package length and packet header size)
helps the DQN agent to adjust the learning process over time in terms of data transmis-
sion speed. Hence, the Q-value is improved at each time step by speeding up the data
transmission. This trend will continue in which, at higher time steps, the approximated
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cumulative team discounted reward of time-delayed data transmission increases more than
the on-time data transmission conditions.

3.6. DQN Loss

The output layer loss function of the DQN algorithm’s NN is the mean squared error
(MSE) loss function. By decreasing the DQN loss, the DQN reward increases. Therefore,
by observing the DQN loss behavior, the DQN reward performance is predicted. In [43],
for uniform action selection, the DQN loss function is given by

`(θ, s, a) =
1

Be · N
N

∑
i=1

∑
et

(
ri

t+1 + γ max
at+1

Qi(st+1, at+1; θ−
)
−Qi(st, at; θ)

)2
, (28)

where Be is the experience replay mini-batch size. Using the non-uniform action (1),
containing the set of Rc ∈ {0, 1, 2, . . . , Rc max} as possible actions, and applying target
Q-value (7) as well as predicted Q-value, the DQN loss function for non-uniform action
selection with action time duration Td ∈ {1, 2, . . . , Rc max} is defined as

`(θ, s, a) =
1

Be · N
N

∑
i=1

∑
et

( ri
t+1
Td
· 1− γTd

1− γ

Td∈{1,2,...,Rc max}

+ γTd max
at+1

Qi(st+1, at+1; θ−
)
−Qi(st, at; θ)

)2
,

(29)
where et = (st, at, Td, rt+1, st+1) is the experience at time t that is obtained from

et = (cs
t , at, Td, rt+1, cs

t+1).

Note that the Equation (28) is derived from Equation (29) if Td = 1. Moreover, the time-
delayed DQN loss function for action time duration T′d ∈ {Rc max + 1, Rc max + 2, . . .} is
given by

`(θ, s, a) =
1

Be · N
N

∑
i=1

∑
e′t

( ri
t+1
T′d
· 1− γT′d

1− γ

T′d∈{Rc max+1,Rc max+2,...}

+ γT′d max
at+1

Qi(st+1, at+1; θ−
)
−Qi(st, at; θ)

)2
,

(30)
for experience e′t = (st, at, T′d, rt+1, st+1) at time t that is achieved from e′t = (cs

t , at, T′d, rt+1, cs
t+1).

Note that average loss calculations based on experience et and experience e′t are performed
from m = 1 to Be as the experience replay mini-batch size.

3.7. Adversarial Attacks

Three types of gradient-based adversarial attacks are considered to benchmark the
data transmission robustness of the proposed leader-follower MAS by considering the new
observation set and the proposed distance-based immediate reward (Figure 2). The changes
made by this type of attack are very subtle, but they can also affect the system’s performance.
Before occurring an attack, the DQN algorithm aims to reduce the average training loss in
a given time step and enhance the average reward.

Figure 2. A DQN agent’s structure affected by an adversarial attack.
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3.7.1. FGSM Adversarial Attack

The FGSM is a type of attack proposed in [26]. Our methodology involves attacking
the system’s state by causing the FGSM adversary to make very few changes to the state
over a period of time to increase the system’s average training loss. Using the gradient of
the loss function with respect to the state, FGSM maximizes the perturbation and minimizes
the difference between the perturbed and original inputs [26,30,44]. In this regard, using
(29) and (30), for on-time and time-delayed data transmission, respectively, the FGSM
attack signal (perturbation) is obtained by

η = ε · sign(∇s`(θ, s, a)), (31)

where ε is the attack magnitude to ensure the perturbations are small, and sign() is the sign
function. Further, ∇s is the gradient of the loss function related to model state s as well as
correct action a, ` is the loss function of the DQN agent, and θ is the model parameters. After
adding the attack signal to the state s, the adversarial input sadv is calculated as follows

sadv = s + η

= s + ε · sign(∇s`(θ, s, a)),
(32)

where L∞-norm bound ‖η‖∞ ≤ ε for optimal perturbation η. Using (30) and (32), the ad-
versarial input sadv for time-delayed data transmission is given by

sadv = s + ε · sign

(
∇s

1
Be · N

N

∑
i=1

∑
e′t

( ri
t+1
T′d
· 1− γT′d

1− γ

T′d∈{Rc max+1,Rc max+2,...}

+ γT′d max
at+1

Qi(st+1, at+1; θ−
)
−Qi(st, at; θ)

)2
)

.

(33)
Once sadv is calculated, it is fed to the NN and replaces the primary input s of the NN.

The NN is fooled and trained based on the adversarial input sadv.

3.7.2. FGM Adversarial Attack

The FGM attack signal is a generalization of the FGSM attack signal and is calculated as:

η = ε · ∇s`(θ, s, a)
‖∇s`(θ, s, a)‖2

. (34)

Using (34), the adversarial input sadv is calculated by

sadv = s + η

= s + ε · ∇s`(θ, s, a)
‖∇s`(θ, s, a)‖2

,
(35)

where L2-norm bound ‖η‖2 ≤ ε for optimal perturbation η. By substituting (30) in (35),
the adversarial input sadv for time-delayed data transmission is given. The training proce-
dure is performed similarly to the FGSM adversarial attack.

3.7.3. BIM Adversarial Attack

The BIM attack is a simple and straight extension of the FGSM attack proposed by [29].
This method uses a fast gradient multiple times by considering small step size instead of
applying the perturbation in a single step. The BIM attack signal and the adversarial input
sadv are given by

η = β · sign
(
∇sadv

t
`(θ, sadv

t , a)
)

, (36)

sadv
t+1 = sadv

t + η

= sadv
t + β · sign

(
∇sadv

t
`(θ, sadv

t , a)
)

,
(37)
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where β = ε
T is a small step size and T is the number of iterations. Using (30) in (37),

the adversarial input sadv
t+1 for time-delayed data transmission is provided.

3.8. First Adversarial Attack Defense

We provide a simple but effective approach to defend against adversarial attacks and
mitigate their destructive effects on the MADRL system performance (Figure 3).

Figure 3. A DQN agent’s structure affected by an adversarial attack and defense algorithm.

In the proposed Algorithm 1 that is based on NN behavior, we consider the argmax
operation on perturbation vector η to find the argument that gives the maximum value
from η. In other words, we desire to find a state that provides the maximum perturbation
value. We assume that the FGSM, FGM, or BIM adversarial attacks are detectable. Once one
of the FGSM, FGM, or BIM adversarial attacks is detected, the state vector s∗ is calculated
based on the set of states (inputs) and substituted with perturbation vector η as follows

~s∗
n×1

= arg max
s

( ~η
n×1

), (38)

~η
n×1
←− ~s∗

n×1
, (39)

where η and s∗ are n× 1 vectors. The state vector s∗, which determines the maximum
perturbation value, has the worst effect on the MAS performance; however, the deep
NN learns from the state vector s∗ and uses its negative feedback to improve the system
performance during an adversarial attack. For BIM adversarial attack the Equation (38) is
presented as ~s∗

n×1
= arg max

sadv
t

( ~η
n×1

).

3.8.1. FGSM Adversarial Attack Defense

Using (31) and (32), the state vector s∗ and the adversarial input sadv are calculated to
defend against the FGSM adversarial attack as follows

s∗ = arg max
s

(ε · sign(∇s`(θ, s, a))), (40)

ε · sign(∇s`(θ, s, a))←− s∗, (41)

sadv = s + η

= s + ε · sign(∇s`(θ, s, a))
= s + s∗.

(42)
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Algorithm 1 First Adversarial Attack Defense

Input: s, sadv
t , θ, T, Tmax, ε, β

Output: sadv, sadv
t+1

for T = 0, 1, 2, . . . , Tmax do
if attack = FGSM then

η = ε · sign(∇s`(θ, s, a));
else if attack = FGM then

η = ε · ∇s`(θ,s,a)
‖∇s`(θ,s,a)‖2

;

else if attack = BIM then
β = ε

T ,

η = β · sign
(
∇sadv

t
`(θ, sadv

t , a)
)

;

end if
while attack = True do

if attack = FGSM OR attack = FGM then
s∗ = arg max

s
(η),

η ←− s∗,
sadv = s + η;

else if attack = BIM then
s∗ = arg max

sadv
t

(η),

η ←− s∗,
sadv

t+1 = sadv
t + η.

end if
end while

end for

3.8.2. FGM Adversarial Attack Defense

Utilizing (34) and (35), the state vector s∗ and the adversarial input sadv are computed
to defend against the FGM adversarial attack as below

s∗ = arg max
s

(
ε · ∇s`(θ, s, a)
‖∇s`(θ, s, a)‖2

)
, (43)

ε · ∇s`(θ, s, a)
‖∇s`(θ, s, a)‖2

←− s∗, (44)

sadv = s + η

= s + ε · ∇s`(θ, s, a)
‖∇s`(θ, s, a)‖2

= s + s∗.

(45)

3.8.3. BIM Adversarial Attack Defense

Using (36) and (37), the state vector s∗ and the adversarial input sadv
t+1 are calculated to

defend against the BIM adversarial attack as follows

s∗ = arg max
sadv

t

(
β · sign

(
∇sadv

t
`(θ, sadv

t , a)
))

, (46)

β · sign
(
∇sadv

t
`(θ, sadv

t , a)
)
←− s∗, (47)

sadv
t+1 = sadv

t + η

= sadv
t + β · sign

(
∇sadv

t
`(θ, sadv

t , a)
)

= sadv
t + s∗.

(48)



J. Sens. Actuator Netw. 2022, 11, 45 14 of 25

3.9. Second Adversarial Attack Defense

We provide another effective method to mitigate the gradient-based attacks’ destruc-
tive effects on the MADRL system performance and defend against the discussed adver-
sarial attacks. We assume that the FGSM, FGM, or BIM adversarial attacks are detectable.
In Algorithm 2, that is an extension of Algorithm 1, once one of the FGSM, FGM, or BIM
adversarial attacks is detected, a convert function changes the sign of the state. Hence,
before the attacker can confuse the NN, the state is modified and replaced with the correct
state that was fed to the NN. This is done to mislead the attacker so that the attacker
generates the attack signal η based on the converted state. Changing the state sign not
only fools the attacker and reduces its destructive effects but also causes the generated
attack signal by the attacker to be used for appropriate NN training. The remainder of the
Algorithm 2 performs similarly to the Algorithm 1.

Algorithm 2 Second Adversarial Attack Defense

Input: s, sadv
t , θ, T, Tmax, ε, β

Output: sadv, sadv
t+1

for T = 0, 1, 2, . . . , Tmax do
if attack = FGSM then

η = ε · sign(∇s`(θ, s, a));
else if attack = FGM then

η = ε · ∇s`(θ,s,a)
‖∇s`(θ,s,a)‖2

;

else if attack = BIM then
β = ε

T ,

η = β · sign
(
∇sadv

t
`(θ, sadv

t , a)
)

;

end if
while attack = True do

if attack = FGSM OR attack = FGM then
function convert(s)

return −s
end function
s←− −s,
attacker generates η,
s∗ = arg max

s
(η),

η ←− s∗,
sadv = s + η;

else if attack = BIM then
function convert(sadv

t )
return −sadv

t
end function
sadv

t ←− −sadv
t ,

attacker generates η,
s∗ = arg max

sadv
t

(η),

η ←− s∗,
sadv

t+1 = sadv
t + η.

end if
end while

end for

4. Results and Discussion

We illustrate results for on-time and time-delayed data transmission between agents
of heterogeneous MAS with and without a leader, using the DQN algorithm. Additionally,
the impacts of FGSM, FGM, and BIM attacks, as well as the consequences of the defense
algorithms on the proposed leader-follower system, are illustrated and shown numerically.
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Two types of graphs G are considered: complete (leaderless) and connected (leader-
follower) graphs. The leaderless and leader-follower scenarios, including N = 5 static,
heterogeneous agents, and P = 3 clusters, are illustrated in Figure 4.

(a) (b)

Figure 4. Two heterogeneous MAS, including N = 5 agents in P = 3 different clusters. (a) Com-
munication topology of a complete graph G without any leader. (b) Communication topology of a
connected graph G with a leader at each cluster.

The adjacency matrices of the leaderless (left) and leader-follower (right) MAS are
given by

AG
5×5

=


0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

, AG
5×5

=


0 1 0 1 0

1 0 1 1 0

0 1 0 0 0

1 1 0 0 1

0 0 0 1 0

.

The degree matrices of the leaderless (left) and leader-follower (right) MAS are

DG
5×5

=


4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

, DG
5×5

=


2 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 3 0

0 0 0 0 1

.

In both types of graphs, the DQN agent’s internal structure consists of feed-forward
NN architecture for training, including 36 layers with Adam optimizer and MSE loss
function. Note that we have used the trial and error method to choose the number of
NN hidden layers. To select any number of layers, we performed the learning process
five times to reach a definite result about the number of layers. The activation function
of all 36 layers is rectified linear unit (ReLU) function. The DQN agent learning rate is
α = 0.01, the discount factor is γ = 0.999, the experience replay mini-batch size is Be = 64,
and the constant positive real number to calculate immediate reward ri

t+1 is κ = 4 if the
data packet is transferred in the network with time-delay. The packet’s header for all
agents is considered as Hp = 0.5. The threshold to determine the on-time or time-delayed
data transmission is 11 mini-slots. To compute the attack signal, the attack magnitude is
ε = 0.6, and the number of iterations is Tmax = 30, 000. The five agents’ two-dimensional
positions are

(xi, yi) = {(0.1, 0.22), (0.3, 0.27), (0.21, 0.9), (0.3, 0.23), (0.2, 0.4)},

where i ∈ {1, 2, ..., 5}. The positions, which are used to obtain the distance-based immediate
rewards of (4) and (5), remain constant during the total time steps due to the static agents.
As opposed to this, when agents are mobile, their positions should be updated and added
to the list of former positions at any time step, as we will investigate in the subsequent
research. Moreover, the returned values of the novel observation set are
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[0, 0, 0, 0, 1] = busy,

[0, 0, 0, 1, 0] = idle,

[0, 0, 1, 0, 0] = on-time,

[0, 1, 0, 0, 0] = time-delay,

[1, 0, 0, 0, 0] = collided.

(49)

All scenarios are carried out during the 20,000 timesteps for the data transmission
part of the experiment. The experiments are performed during the 30,000 timesteps while
investigating the data transmission robustness due to various adversarial attacks. The
results are shown after five times training to ensure the reliability of the results.

We have used, modified, and extended a part of the code given in [45] as a part of our
implementation. Furthermore, for algorithm’s execution, a system with 3.60 GHz Intel Core
i7-7700 processor, 16 GB installed RAM, 64-bit operating system, and x64-based processor
is used.

4.1. Multi-Agent Performance Analysis

According to Table 1, without considering distance-based reward and time-delay, both
leaderless and leader-follower MAS scenarios achieve the superior team reward compared
to the case when the packets transfer in the network with time-delay. In this case and for
leaderless MAS, by considering time-delay, the team reward has been reduced by −27.04%.
In a similar situation and for leader-follower MAS, by considering time-delay, the team
reward has been decreased by −9.91%. Figure 5 illustrates the reward convergence of a
heterogeneous MAS, including N = 5 agents in P = 3 different clusters, during 20,000 time
steps for leaderless and leader-follower scenarios by considering on-time and time-delay
observations. Based on the results in Table 1 and Figure 5, delay in sending data reduces
team rewards for both leaderless and leader-follower scenarios.

Table 1. Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS,
including N = 5 agents in P = 3 different clusters, during 20,000 time steps without considering the
distance-based reward.

Various Graphs
Rewards and Loss Agent 1 Reward Agent 2 Reward Agent 3 Reward Agent 4 Reward Agent 5 Reward Team Reward DQN Loss

Leaderless MAS 0.0047 0.0332 0.0665 0.1330 0.0997 0.3372 3411.58
Leaderless MAS with time-delay 0.0227 0.0427 0.0427 0.0380 0.0997 0.2460 6924.71
Leader-follower MAS 0.0147 0.0475 0.0570 0.0760 0.0902 0.2855 7325.22
Leader-follower MAS with time-delay 0.0340 0.0475 0.0237 0.0617 0.0902 0.2572 8400.12

(a) (b) (c) (d)

Figure 5. Reward convergence of a heterogeneous MAS, including N = 5 agents in P = 3 different
clusters, during 20,000 time steps. (a) Average reward of a leaderless MAS. (b) Average reward of a
leaderless MAS by considering time-delay. (c) Average reward of a leader-follower MAS. (d) Average
reward of a leader-follower MAS by considering time-delay.
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As can be seen from Tables 1 and 2, the simulation confirms the claim of Theorem 2
in such a way that the distance-based immediate reward has improved the system per-
formance despite the time-delayed data transmission (regardless of whether the system
is leaderless or leader-follower). Moreover, according to Table 1, without considering
distance-based reward and time delay, the DQN algorithm in both leaderless and leader-
follower MAS scenarios achieves less average loss compared to the case when the packets
transfer in the network with time-delay. For leaderless MAS, by considering time-delay,
the average DQN loss has been increased by +102.97%. For leader-follower MAS, by con-
sidering time-delay, the average DQN loss has been enhanced by +14.67%. Figure 6 shows
the DQN loss convergence of a heterogeneous MAS, including N = 5 agents in P = 3
different clusters, during 20,000 timesteps for leaderless and leader-follower scenarios by
considering on-time and time-delay observations. The large fluctuations in the amount of
loss after 10,000 timesteps in Figure 6b,d are due to delay in data transmission.

Table 2. Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS,
including N = 5 agents in P = 3 different clusters, during 20,000 time steps by considering the novel
distance-based reward.

Various Graphs
Rewards and Loss Agent 1 Reward Agent 2 Reward Agent 3 Reward Agent 4 Reward Agent 5 Reward Team Reward DQN Loss

Leaderless MAS 0.0202 0.0438 0.0485 0.0930 0.0735 0.2792 6037.81
Leaderless MAS with time-delay 0.0290 0.0438 0.0533 0.1028 0.1275 0.3566 6493.40
Leader-follower MAS 0.0095 0.0674 0.0288 0.0671 0.0768 0.2498 4116.27
Leader-follower MAS with time-delay 0.0322 0.0626 0.0336 0.0959 0.1008 0.3252 7983.38

Regarding Table 2, by considering distance-based reward and time-delay, both lead-
erless and leader-follower MAS scenarios achieve a higher team reward compared to the
criteria when the packets transfer in the network on time. In this case and for leaderless
MAS, by considering time-delay, the team reward has been increased by +27.72%. In
a comparable status and for leader-follower MAS, by considering time-delay, the team
reward has been enhanced by +30.18%. Figure 7 shows the reward convergence of a
heterogeneous MAS, including N = 5 agents in P = 3 different clusters, during 20,000 time
steps for leaderless and leader-follower scenarios by considering on-time and time-delay
observations as well as distance-based reward. Based on the results in Table 2 and Figure 7,
the proposed distance-based immediate reward, in combination with the previous immedi-
ate reward, cover the negative effects of data transmission delays for both leaderless and
leader-follower topologies.

(a) (b) (c) (d)

Figure 6. Loss convergence of the DQN algorithm in a heterogeneous MAS, including N = 5 agents
in P = 3 different clusters, during 20,000 time steps. (a) DQN average loss in a leaderless MAS.
(b) DQN average loss in a leaderless MAS by considering time-delay. (c) DQN average loss in a
leader-follower MAS. (d) DQN average loss in a leader-follower MAS by considering time-delay.
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(a) (b) (c) (d)

Figure 7. Reward convergence of a heterogeneous MAS, including N = 5 agents in P = 3 different
clusters, during 20,000 time steps by considering the novel distance-based reward. (a) Average reward
of a leaderless MAS. (b) Average reward of a leaderless MAS by considering time-delay. (c) Average
reward of a leader-follower MAS. (d) Average reward of a leader-follower MAS by considering
time-delay.

Based on Table 2, by considering distance-based reward and time-delay, the DQN
algorithm in leaderless and leader-follower MAS scenarios achieves a higher loss com-
pared to the case when the packets transfer in the network on-time. For leaderless MAS,
by considering time-delay, the average DQN loss has been increased by +7.54%. In similar
criteria and for leader-follower MAS, by considering time-delay, the average DQN loss has
been enhanced by +93.94%. Figure 8 demonstrates the DQN loss convergence of a hetero-
geneous MAS, including N = 5 agents in P = 3 different clusters, during 20,000 time steps
for leaderless and leader-follower scenarios by considering on-time and time-delay obser-
vations as well as distance-based reward. The time-delayed data transmission has caused
large fluctuations in the amount of loss after 10,000 timesteps in Figure 8b,d. As can be
seen from Tables 1 and 2, in scenarios that data is transmitted with time-delay, the average
loss of DQN is increased compared to the cases where data is transferred on-time.

(a) (b) (c) (d)

Figure 8. Loss convergence of the DQN algorithm in a heterogeneous MAS, including N = 5 agents
in P = 3 different clusters, during 20,000 time steps by considering the novel distance-based reward.
(a) DQN average loss in a leaderless MAS. (b) DQN average loss in a leaderless MAS by considering
time-delay. (c) DQN average loss in a leader-follower MAS. (d) DQN average loss in a leader-follower
MAS by considering time-delay.

Note that the percentage increase of average loss and reward are calculated by

% Inc = 100× (With Time-Delay - Without Time-Delay)
|Without Time-Delay | . (50)

Moreover, the percentage decrease of average loss and reward are computed by

% Dec = 100× (Without Time-Delay - With Time-Delay)
|Without Time-Delay | . (51)

4.2. Performance Analysis of the Proposed MAS under Adversarial Attacks

According to Table 3, by considering time-delayed data transmission and distance-
based reward, the team reward of the leader-follower MADRL system including N = 5
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agents in P = 3 various clusters without adversarial attack equals to 0.3415 (Figure 9a).
Moreover, in similar conditions, the DQN loss of the discussed MADRL system is 6996.28
(Figure 10a). Under FGSM adversarial attack, the team reward of the leader-follower
MADRL system is decreased to 0.3236 by −5.24% (Figure 9b), and the DQN loss is in-
creased to 20920.10 by +199.01% (Figure 10b). Furthermore, under FGM adversarial attack,
the MADRL system team reward is reduced to 0.3054 by −10.57% (Figure 9c), and the
DQN loss is enhanced to 60232.71 by +760.92% (Figure 10c). Under BIM adversarial attack,
the team reward of the leader-follower MADRL system is declined to 0.2929 by −14.23%
(Figure 9d), and the DQN loss is increased to 27949.57 by +299.49% (Figure 10d). Hence, it
is evident that the time-delayed data transmission of the proposed leader-follower MADRL
system is not robust under three types of adversarial attacks during 30,000 timesteps,
meaning that its team reward is reduced after an attack, and the DQN loss is enhanced.

Table 3. Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS,
including N = 5 agents in P = 3 different clusters, during 30,000 time steps by considering time-
delay and distance-based reward under FGSM, FGM, and BIM adversarial attacks.

Various Attacks
Rewards and Loss Agent 1 Reward Agent 2 Reward Agent 3 Reward Agent 4 Reward Agent 5 Reward Team Reward DQN Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0353 0.0626 0.0432 0.0767 0.1056 0.3236 20,920.10

Leader-follower MAS with FGM attack 0.0315 0.0771 0.0480 0.0719 0.0768 0.3054 60,232.71

Leader-follower MAS with BIM attack 0.0335 0.0385 0.0480 0.0719 0.1008 0.2929 27,949.57

(a) (b) (c) (d)

Figure 9. Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents
in P = 3 different clusters, during 30,000 time steps by considering time-delay and distance-based
reward under FGSM, FGM, and BIM adversarial attacks. (a) Average reward of a leader-follower MAS
without adversarial attack. (b) Average reward of a leader-follower MAS under FGSM adversarial
attack. (c) Average reward of a leader-follower MAS under FGM adversarial attack. (d) Average
reward of a leader-follower MAS under BIM adversarial attack.

(a) (b) (c) (d)

Figure 10. Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, includ-
ing N = 5 agents in P = 3 different clusters, during 30,000 time steps by considering time-delay
and distance-based reward under FGSM, FGM, and BIM adversarial attacks. (a) DQN average loss
in a leader-follower MAS without adversarial attack. (b) DQN average loss in a leader-follower
MAS under FGSM adversarial attack. (c) DQN average loss in a leader-follower MAS under FGM
adversarial attack. (d) DQN average loss in a leader-follower MAS under BIM adversarial attack.
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4.3. Performance Analysis of the Proposed MAS after Applying First Adversarial Attack Defense

Regarding Tables 3 and 4, after using the proposed adversarial attack defense
Algorithm 1, the destructive effects of the FGSM, FGM, and BIM malicious attacks are
mitigated during 30,000 time steps. In this regard, the team reward of the leader-follower
MADRL system reached 0.3433 from 0.3236 by +6.08% after applying the adversarial
attack defense method against the FGSM attack (Figure 11b). Moreover, the DQN loss is
decreased from 20,920.10 to 8081.50 by −61.36% (Figure 12b). For FGM adversarial attack
and after using the introduced defense procedure, the team reward of the MADRL system
is enhanced from 0.3054 to 0.3342 by +9.43% (Figure 11c). The DQN loss is reduced from
60,232.71 to 6966.24 by −88.43% (Figure 12c). Furthermore, the team reward of the MADRL
system under BIM attack is enhanced from 0.2929 to 0.3336 by +13.89%, and the DQN
loss is decreased from 27,949.57 to 3705.51 by −86.74% after utilizing the suggested attack
defense technique (Figures 11d and 12d).

(a) (b) (c) (d)

Figure 11. Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents
in P = 3 different clusters, during 30,000 time steps by considering time-delay and distance-based
reward after adversarial attack defense Algorithm 1. (a) Average reward of a leader-follower MAS
without adversarial attack. (b) Average reward of a leader-follower MAS after defending against
FGSM adversarial attack. (c) Average reward of a leader-follower MAS after defending against
FGM adversarial attack. (d) Average reward of a leader-follower MAS after defending against BIM
adversarial attack.

(a) (b) (c) (d)

Figure 12. Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, includ-
ing N = 5 agents in P = 3 different clusters, during 30,000 timesteps by considering time-delay
and distance-based reward after adversarial attack defense Algorithm 1. (a) DQN average loss in a
leader-follower MAS without adversarial attack. (b) DQN average loss in a leader-follower MAS
after defending against FGSM adversarial attack. (c) DQN average loss in a leader-follower MAS
after defending against FGM adversarial attack. (d) DQN average loss in a leader-follower MAS after
defending against BIM adversarial attack.
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Table 4. Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS,
including N = 5 agents in P = 3 different clusters, during 30,000 time steps by considering time-
delay and distance-based reward after adversarial attack defense Algorithm 1.

Various Attacks
Rewards and Loss Agent 1 Reward Agent 2 Reward Agent 3 Reward Agent 4 Reward Agent 5 Reward Team Reward DQN Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0359 0.0626 0.0480 0.1150 0.0815 0.3433 8081.50

Leader-follower MAS with FGM attack 0.0172 0.0433 0.0720 0.1294 0.0720 0.3342 6966.24

Leader-follower MAS with BIM attack 0.0213 0.0771 0.0384 0.0959 0.1008 0.3336 3705.51

4.4. Performance Analysis of the Proposed MAS after Applying Second Adversarial Attack Defense

Regarding Tables 3 and 5, after using the proposed adversarial attack defense
Algorithm 2, the destructive effects of the FGSM, FGM, and BIM malicious attacks are
mitigated during 30,000 time steps. The team reward of the leader-follower MADRL
system reached 0.3563 from 0.3236 by +10.10% after applying the adversarial attack defense
method against the FGSM attack (Figure 13b). Moreover, the DQN loss is decreased from
20,920.10 to 2905.81 by −86.11% (Figure 14b). For FGM adversarial attack and after using
the introduced defense procedure, the team reward of the MADRL system is enhanced
from 0.3054 to 0.3187 by +4.35% (Figure 13c). The DQN loss is reduced from 60,232.71 to
4100.37 by −93.19% (Figure 14c). Furthermore, the team reward of the MADRL system
under BIM attack is enhanced from 0.2929 to 0.3292 by +12.39%, and the DQN loss is
decreased from 27,949.57 to 4526.58 by −83.80% after utilizing the suggested attack defense
technique (Figures 13d and 14d).

Figure 15a,b shows the team reward and DQN loss before and after defense Algorithm 1
against various adversarial attacks, respectively. Figure 16a,b shows the team reward and DQN
loss before and after defense Algorithm 2 against various adversarial attacks, respectively.

Table 5. Comparison of each agent’s average reward and DQN loss of a heterogeneous MAS,
including N = 5 agents in P = 3 different clusters, during 30,000 time steps by considering time-
delay and distance-based reward after adversarial attack defense Algorithm 2.

Various Attacks
Rewards and Loss Agent 1 Reward Agent 2 Reward Agent 3 Reward Agent 4 Reward Agent 5 Reward Team Reward DQN Loss

Leader-follower MAS without attack 0.0340 0.0674 0.0432 0.0911 0.1056 0.3415 6996.28

Leader-follower MAS with FGSM attack 0.0105 0.0626 0.0480 0.1246 0.1103 0.3563 2905.81

Leader-follower MAS with FGM attack 0.0306 0.0578 0.0288 0.1006 0.1007 0.3187 4100.37

Leader-follower MAS with BIM attack 0.0314 0.0530 0.0528 0.1006 0.0911 0.3292 4526.58

(a) (b) (c) (d)

Figure 13. Reward convergence of a heterogeneous leader-follower MAS, including N = 5 agents
in P = 3 different clusters, during 30,000 time steps by considering time-delay and distance-based
reward after adversarial attack defense Algorithm 2. (a) Average reward of a leader-follower MAS
without adversarial attack. (b) Average reward of a leader-follower MAS after defending against
FGSM adversarial attack. (c) Average reward of a leader-follower MAS after defending against
FGM adversarial attack. (d) Average reward of a leader-follower MAS after defending against BIM
adversarial attack.
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(a) (b) (c) (d)

Figure 14. Loss convergence of the DQN algorithm in a heterogeneous leader-follower MAS, includ-
ing N = 5 agents in P = 3 different clusters, during 30,000 time steps by considering time-delay
and distance-based reward after adversarial attack defense Algorithm 2. (a) DQN average loss in a
leader-follower MAS without adversarial attack. (b) DQN average loss in a leader-follower MAS
after defending against FGSM adversarial attack. (c) DQN average loss in a leader-follower MAS
after defending against FGM adversarial attack. (d) DQN average loss in a leader-follower MAS after
defending against BIM adversarial attack.

(a) (b)

Figure 15. Team reward and DQN loss before and after using defense Algorithm 1 against various
adversarial attacks, during 30,000 time steps. (a) Team reward before and after defense Algorithm 1.
(b) DQN loss before and after defense Algorithm 1.

(a) (b)

Figure 16. Team reward and DQN loss before and after using defense Algorithm 2 against various
adversarial attacks, during 30,000 time steps. (a) Team reward before and after defense Algorithm 2.
(b) DQN loss before and after defense Algorithm 2.

4.5. Variety of Agents

According to [20], in the proposed topology, there are three types of agents assigned to
P = 3 different clusters. The first cluster’s agents use a DQN architecture. The agents in the
second cluster follow the ALOHA protocol [46–48]. Moreover, the time division multiple
access (TDMA) protocol makes up the agents’ architecture of the third cluster [49]. The
concentration of this paper is on DQN agent behaviors (first cluster) and their effects on
the other clusters of agents’ performance of the MADRL system in different situations.
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5. Conclusions

We studied the on-time and time-delayed data transmission of a leaderless (complete
graph), heterogeneous, MADRL system using the DQN algorithm. Moreover, we inves-
tigated the on-time and time-delayed data transmission of a leader-follower (connected
graph), heterogeneous, MADRL system using the DQN algorithm as well. We studied the
MADRL system’s performance under various conditions. We did the data transmission
investigation on a cluster-based MAS. We proposed a novel immediate reward, including a
new version of distance-based reward. We used three types of adversarial attacks to check
the data transmission robustness of the MADRL system. We introduced two approaches
to defend against malicious attacks and mitigate the destructive effects of adversarial
attacks. The results of various scenarios were demonstrated and compared with each
other numerically.

Future work will contain agents including different NN architectures in the MADRL
system to reach the position consensus. Further, adversarial attack detection will be
considered. Moreover, another adversarial attack defense approach will be introduced.
Furthermore, the proposed model will examine obstacle and collision avoidance.
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CS-DLMA Carrier-sense Deep Reinforcement Learning Multiple Access
CSMA Carrier-sense Multiple Access
DQN Deep Q-network
DL Deep Learning
DRL Deep Reinforcement Learning
FGM Fast Gradient Method
FGSM Fast Gradient Sign Method
ML Machine Learning
MSE Mean Squared Error
MADRL Multi-agent Deep Reinforcement Learning
MAS Multi-agent System
MTDDQN Multi-source Transfer Double DQN
NN Neural Network
ReLU Rectified Linear Unit
RL Reinforcement Learning
TDMA Time Division Multiple Access
TL Transfer Learning
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