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Abstract: Background: the increasing adoption of smart and wearable sensors in the healthcare
domain empowers the development of cutting-edge medical applications. Smart hospitals can employ
sensors and applications for critical decision-making based on real-time monitoring of patients and
equipment. In this context, quality of service (QoS) is essential to ensure the reliability of application
data. Methods: we developed a QoS-aware sensor middleware for healthcare 4.0 that orchestrates
data from several sensors in a hybrid operating room. We deployed depth imaging sensors and real-
time location tags to monitor surgeries in real-time, providing data to medical applications. Results:
an experimental evaluation in an actual hybrid operating room demonstrates that the solution can
reduce the jitter of sensor samples up to 90.3%. Conclusions: the main contribution of this article relies
on the QoS Service Elasticity strategy that aims to provide QoS for applications. The development
and installation were demonstrated to be complex, but possible to achieve.

Keywords: healthcare 4.0; internet of things; sensors; middleware; quality of service

1. Introduction

Healthcare 4.0 is coming [1,2]. Hospitals are already adopting sensor devices of many
types to monitor medical processes. Patients and medical staff can now wear sensors that
provide movement and health conditions information in near-real time. Additionally, many
sensors can monitor physical settings generating information about the environment and
medical equipment. This set of sensors has the potential to provide information to support
decision-making processes and medical data analytics [1,3]. Currently, the analysis of data
from medical settings takes place reactively [4]. Medical staff take action to tackle problems
with the patients’ health only when critical situations occur. A physician decides the actions
to take based solely on traditional examination data from the patient.

This situation exemplifies the reactiveness of medical processes taking action only
after an emergency. Further, this process is individual for each patient. It does not contain a
centralized analysis of the medical environment. Ideally, decision making should employ a
global analysis of the medical processes, generated in real time using data from all patients
and the medical environment. In this context, patient remote health monitoring becomes
crucial [5]. That would allow proactive data analysis to predict critical situations before
they occur.

On top of such infrastructures, it is feasible to employ artificial intelligence technolo-
gies [2,5,6]. Among many strategies, three stand out: (i) data prediction [7]; (ii) pattern
recognition [8]; and (iii) data correlation [9]. Data prediction allows to forecast measure-
ments and situations, anticipating problems and the required countermeasures. In turn,
pattern recognition offers strategies to identify situations that have already occurred in the
past. Lastly, data correlation combines information from multiple parameters to identify
the source of specific situations. For instance, data correlation strategies are currently

J. Sens. Actuator Netw. 2022, 11, 33. https://doi.org/10.3390/jsan11030033 https://www.mdpi.com/journal/jsan

https://doi.org/10.3390/jsan11030033
https://doi.org/10.3390/jsan11030033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jsan
https://www.mdpi.com
https://orcid.org/0000-0001-6129-0548
https://orcid.org/0000-0001-5080-7660
https://orcid.org/0000-0003-3859-6199
https://orcid.org/0000-0002-9388-492X
https://doi.org/10.3390/jsan11030033
https://www.mdpi.com/journal/jsan
https://www.mdpi.com/article/10.3390/jsan11030033?type=check_update&version=1


J. Sens. Actuator Netw. 2022, 11, 33 2 of 15

employed for ICU patients with Coronavirus Disease 2019 (COVID-19) to identify the
relation between many indicators [10].

Figure 1 presents an overview of future medical processes. Internet of Things (IoT)
is spreading among several areas, paving the way to a new industrial revolution [6,11].
In hospitals, this is not different [4]. This context encompasses the numerous sensor
devices scattered all over the hospital setting generating information from various assets,
including the patient and the medical team. Currently, artificial intelligence applications
emerge to handle an increasing data volume. It supports the medical team by providing
information to help them perceive dangerous situations and patient condition deterioration.
Medical processes are highly critical, and errors or delays in handling critical situations
may harm the patient and even lead to death. With a wide variety of data provided by IoT
technology, centralized systems provide a global analysis of data from patients improving
healthcare services.

SENSING
COLLECTION & 

TRANSMISSION
MANAGEMENT CENTER INFORMATION

80 92

ACTUATOR: REAL-TIME FEEDBAK, PREDICTION, 

PATTERN RECOGNITION, RISK MANAGEMENT, ALARMS, ...

NFC

RFID

Figure 1. Real-time data acquisition, analysis, and feedback in healthcare. Sensors close to the patient
and medical staff generate numerous information collected and transmitted for remote processing.
Several applications can profit from this information for further analysis and real-time feedback
to actuators.

Although positive, centralized systems suffer from scalability problems which may
increase the delay in data transmission. Scalability is the ability of a system to maintain its
performance and quality of service (QoS) regardless of the input workload and internal
processing [12]. Centralized systems concentrate data processing at a single point. As the
number of sensors and applications connected increases, the system can lose performance
due to network overload. That would cause instabilities in the data flow to different
systems, which can be critical depending on the application. Therefore, a sensor data
middleware for medical settings must provide QoS to the applications. Currently, some
studies are focusing on improving network performance using routing protocols [13,14].
However, they still suffer from problems such as network node overload [13] or lack of
focus on acute care environments such as the operating room [14].

Focusing on providing QoS for such infrastructures, this article presents the design
and implementation of a sensor middleware for medical settings called Healthstack. Health-
Stack introduces techniques to automatically adapt itself to workload changes to deliver the
same QoS to applications. HealthStack works as a wrapper for applications to access data
from many devices installed in many medical settings between the sensors and applications.
The main contributions of the current article are listed as follows:

• It presents a middleware model for healthcare 4.0 with automatic QoS support for
real-time data transmission;

• It defines a QoS strategy based on artificial neurons to choose which QoS services to
deliver for each middleware component;
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• It demonstrates several lessons learned in the actual deployment of the system in a
real hybrid operating room.

The self-adaptative strategies of the HealthStack are agnostic to the applications’
point of view. HealthStack performs reconfigurations to accommodate all applications
transparently. Its leading role is to access data from several sensors and provide these
data to applications with QoS, not requiring from them any adaptions to profit from the
QoS strategy. In addition to the technical contributions, it is also essential to mention
contributions outside the scientific scope. By employing our strategy, hospitals can offer
even more reliable and secure services that directly impact the population. Therefore,
citizens can benefit from the solution when seeking healthcare services.

2. Related Work

This section presents related studies proposing solutions employing QoS in healthcare
applications. Table 1 summarizes the main articles published in the last four years and
their goal and QoS strategy. Among different QoS methods, studies focus mainly on
four common strategies: (i) scheduling protocols [15,16]; (ii) data prioritization [15–22];
(iii) routing protocols [22–27]; (iv) resource management [16,21]. Studies have examined
the use of data prioritization to reduce transmission time. This strategy encompasses
distinct classes for each data type, prioritizing high-priority packets. Some approaches use
admission control algorithms to ensure a network’s quality. Thus, an algorithm checks
the current network state and estimates the future state to decide whether to allow new
connections. Cloud environments commonly use resource elasticity, and some researchers
use it as a way to provide QoS. During overloaded conditions, such strategies use VM
allocation and migration strategies to enhance the performance of some modules. Finally,
some authors also employ routing and scheduling protocols to improve the performance
of networks and reduce transmission delays. The routing algorithms determine the most
optimal route for transmitting data based on network conditions. On the other hand,
scheduling protocols control the time slot assignment for each data transmission and their
order based on the amount and type of data.

Table 1. Summary of the research and QoS strategies in healthcare solutions.

Paper Year Real
Time QoS Strategy Description

[28] 2019 X Video smoothing QoS control algorithm to 5G telemedicine.

[18] 2019 Data prioritization Slicing framework for eHealth media ap-
plications over 5G networks.

[19] 2019 Service differentiation, data categorization
and prioritization Medical grade QoS solution.

[15] 2019 X Service differentiation, routing protocol QoS-aware multipath algorithm for medi-
cal data transmission in a SDN.

[29] 2019 Clock synchronization Protocol for QoS and energy efficiency in
WBAN.

[20] 2019 X Traffic differentiation IoT architecture for data access.

[21] 2020 X
Data prioritization and data rate adapta-
tion IoT architecture for data access.

[25] 2020 X Channel selection
Dynamic channel and superframe selec-
tion scheme in IEEE 802.15.6 WBANs to
avoid interference.

[26] 2020 X Routing protocol Strategy for selecting an optimal end-to-
end route in WBAN.

[27] 2020 Routing protocol Routing protocol for WBAN medical data.

[22] 2020 Routing protocol and data prioritization WBAN architecture.

[23] 2021 Routing protocol QoS optimization in IoMT remote health
monitoring.
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Table 1. Cont.

Paper Year Real
Time QoS Strategy Description

[24] 2021 Routing protocol Routing algorithm for WBAN health mon-
itoring.

[16] 2021
Data prioritization, energy control, packet
scheduling protocol and data rate adapta-
tion

Patient monitoring using WBAN.

[17] 2021 X Data prioritization OpenFlow traffic shaping in the Fog using
SDN for e-health services.

[30] 2022 X Dynamic resource allocation Private cloud with dynamic resource man-
agement for health services.

[31] 2022 X Communication protocol IoT architecture employing edge and fog
computing for health services.

Several studies present QoS strategies for Wireless Body Area Network (WBAN)
infrastructures [16,22,24–27,29]. A WBAN comprises a private network of connected
sensors transmitting data to a master node that relays the information to upper network
layers. Energy consumption and interference are the main problems studies seek to resolve
by employing routing protocols and channel selection strategies. Their primary focus is
to improve network transmission from the WBAN to the upper network layers. Such
strategies can solve the internal problems of WBANs; however, they do not focus on
multiple WBANs simultaneously. In other words, initiatives focusing on WBAN propose
QoS strategies only within the WBAN boundaries and not the higher level which consumes
data. Recent advances employ fog computing as a new solution to bridge the gap between
the sensors and the cloud to decrease response time. Some strategies employ fog to provide
data processing closer to the sensors and, therefore, remove network hops needed to reach
the cloud [30,31]. Despite its advantages, fog solutions still require data extraction and
transmission from the sensors and the fog nodes. Depending on the infrastructure, the
volume of data and the quality of the transmission channel can still impose restrictions and
impact the QoS.

Within a hospital, there are many critical locations, such as operating rooms, in which
a system can provide helpful data from patients and physicians. Most strategies focus on
remote health sites, like nursing homes, and only WBANs for patient health monitoring.
In addition, a healthcare system has two main actors: the sensors at the hardware level,
generating information, and the users at the application level, which consume and process
data from the system. Strategies focus mainly on the first level to provide QoS in data
transmission from the sensor to the network. Furthermore, although some initiatives
present concerns regarding real time, they do not focus intensely on this issue. In general,
solutions that focus on real time only consider improving time delay from priority packets
or providing an architecture that supports real-time data transmissions.

3. Materials and Methods

Our strategy focuses on integrating data from many devices in the hospital settings
and providing it in a standard format for applications. Therefore, applications do not
need to implement different APIs (Application Programming Interfaces) to acquire data
from different devices. They can easily connect to the middleware and request data from
different sensors in real time.

The strategy consists of placing software units, the Data Gateway instances, close
to the devices to extract data and provide QoS services individually. The Middleware
Core is the main component that collects the data from each Gateway and provides it to
the applications. Therefore, it can collect data from many different locations as long as
they have Gateway instances deployed. The Core provides data to applications through a
publish–subscribe interface [32]. Applications connect to the Core, requesting data from a
specific sensor. The Core supports additional parameters in the requests besides the target
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sensor. The applications can provide a desirable limit for jitter and delay. If the application
does not provide these limits, the Core assumes default values according to the type of
the target sensor. For instance, for image sensors, the default maximum accepted delay is
50 milliseconds (ms), and the jitter is 25 ms.

In addition to the architecture, the middleware provides a QoS strategy, called QoS
Service Elasticity, to improve performance for applications. The QoS Service Elasticity
consists of individual elastic service stacks for each Gateway instance. The Core manages
them according to the applications’ requirements and the current performance of the
middleware. The Core periodically monitors whether the applications’ limits are respected
or not. Once a limit violation occurs, the Core stacks different QoS services for the sensor
devices to address the issue. Therefore, the service stacks are elastic, and the Core changes
them when needed. The middleware comprises four different QoS services: (i) Data
Prioritization; (ii) Data Compression; (iii) Adapting Frame Rate; and (iv) Resource Elasticity.
Figure 2 illustrates the middleware model showing the Core in more detail. The Middleware
Core is responsible for four main tasks: (i) Data Provisioning; (ii) Performance Tracking;
(iii) QoS Service Elasticity; and (iv) Data Persistence.

Middleware Core

Data 

Provisioning

Performance 

Tracking

QoS Service

Elasticity

Applications

Data Acquisition
Performance 

Monitoring

QoS MonitoringData Dispatcher
Services 

Estimation

Elastic Service 

Stacking

Data

Control

Data 

Gateway j

Service

Service

Service

Sensor j

Data 

Gateway i

Service

Service

Service

Sensor i

...
Data 

Gateway l

Service

Service

Service

Sensor l

Data 

Gateway k

Service

Service

Service

Sensor k

...
...

Data

Persistance

Database

Area nArea 1

Figure 2. Middleware model and its components. The model comprises n hospital areas equipped
with several sensors. A Data Gateway component extracts its data and sends them to the Core for
each sensor. The Gateway instances have individual dynamic service stacks that contain QoS services
employed to the sensor data. In turn, the Core is the main component responsible for providing data
to applications, monitoring applications and Gateway instances’ performance, and orchestrating the
QoS service stacks.

Figure 3 depicts the flowchart representing the QoS Service Elasticity decision loop.
After starting, the Core periodically collects several metrics (1) from each Gateway: CPU
consumption (C), memory consumption (M), network consumption (N), delay (D), jitter (J),
and the number of applications (A) requesting data. The Core and Gateways implement a
control message protocol which the Core uses to request the metrics from each Gateway.
Gateways collect CPU, memory and network consumption metrics from the node running
them. On the other hand, as applications connect to the Core, it registers the number
of applications consuming data each Gateway produces. In addition, each data packet
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the Gateways send to the Core contains a sensor timestamp. Therefore, on receiving a
new packet, the Core computes the current delay of that Gateway using the current times
and the packet timestamp. Finally, the Core also computes the jitter for each Gateway
based on the interval between packet arrivals. With all metrics collected, the Core packs
them in a metric vector M = {C, M, N, D, J, A} for each Gateway, which it will use in the
decision-making process. After computing M for each Gateway, the Core checks for QoS
violations (2) to verify whether it needs to deliver services or not. When an application
connects to the Core, it provides a QoS limit value for delay or jitter. When checking for
QoS violations, the Core compares the current delay/jitter (M[3] and M[4] collected in
phase (1) the system is performing for each application with their respective limits. If this
value is higher than the application limit, then the QoS strategy must take place to deliver
QoS services. However, more than one application can have its current QoS violated. As a
QoS service can only be exclusively delivered (e.g., Data Prioritization), the Core should
select one application from all applications that have their QoS violated. In such a case,
it analyzes the metrics (3) for each application by combining them in a weighted sum to
compute their Potential of Adaptation (PA).

1. Collect metric

measurements

3. Analyze

metrics

4. Perform the

QoS Service 

Elasticity

2. QoS

violations?

6. Wait until next

monitoring cicle

Start

YES

NO Gateway 1

Resource Elasticity

Adapting Frame Rate

Data Compression

Data Prioritization

...

QoS Service Stacks

Gateway j

Resource Elasticity

Adapting Frame Rate

Data Compression

Data Prioritization

5. Should

stop?
Stop

YES

NO

Figure 3. QoS Service Elasticity decision loop depicting the steps the Core performs to deliver QoS
services.

Equation (1) represents the PA computation where it receives two vectors of size m:
a parameterized weight vector W and the computed metric vector M for that particular
Gateway. In the current version, m = 5 since the Core collects five metrics; however,
future versions can consider more or fewer metrics. When configuring the middleware,
the administrator can provide five weight parameters in the interval [0, 1] to be applied
by the PA computation. Each weight is applied to its corresponding metric as follows:
W = {cpuw, memoryw, networkw, delayw, jitterw, applicationsw} This particular metric is
essential to define the criticality of each Gateway. Some QoS services, such as the Data
Prioritization, can be active for only a single Gateway at the same time. Therefore, when two
Gateways need QoS services, PA defines which one receives this type of service. Before the
analysis, the Core first normalizes the values from M that do not represent a consumption
level by dividing them by the highest metric measurement from all Gateways. For instance,
with two Gateways with a delay of 50 ms and 100 ms, the values are converted to 0.5 and 1,
respectively. Following, the Core stacks a single QoS service for each application (4), using
the PA to decide which application will receive an exclusive QoS service if it is the case. The
Core sends a control message to the particular Gateways activating or deactivating QoS
services on them. Finally, Figure 3 also covers the Core workflow if any violations occur in
phase 2. In that case, the Core checks if it is still active (5) to decide if it keeps running or
finishes. If true, it then waits for a time interval (6) until it starts the workflow again.
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PA(W, M) =
m

∑
i=0

W[i]×M[i] (1)

To illustrate an actual deployment of the model, Figure 4 depicts an actual operating
room with the middleware installed. The figure shows three Data Gateway instances, each
on a dedicated computer. In each computer, a Microsoft Kinect v2 [33] camera device
produces image frames. Additionally, several location tags are attached to people in the
operating room. These tags provide the location of each person in a 3D coordinate space.
Therefore, it is possible to track the location of each individual during the procedures.
Finally, the Core runs on a dedicated server connected to all three computers.

Application

Operating Room

Control Room

tags

cameras

Data 

Gateway 2

Data 

Gateway 3

Core

Application
Application

Application
Application

Gigabit

Ethernet

anchors

Data 

Gateway 1

Megabit

Ethernet

Figure 4. Deployment of the architecture in a real operating room. Three camera devices and several
tags track the surgery workflow.

We deployed a prototype of HealthStack in a clinical partner of the project, the Cardi-
ology Institute—University Foundation of Cardiology (Porto Alegre, Rio Grande do Sul,
Brazil). They provided us with access to an actual hybrid operating room, which primarily
accommodates cardiac procedures. Figure 5 demonstrates the hardware employed and
how we deployed them in the surgical suite. We installed three Microsoft Kinect v2 devices
on three different walls to provide different points of view. Kinects are camera devices
that provide different types of image data. However, due to privacy restrictions related
to surgical procedures, we only collect depth images from them. Depth images are data
matrices in which each pixel represents the distance between that point and the camera
sensor [33]. Therefore, it is impossible to see a color image and identify people as traditional
camera images. Instead, this type of data allows 3D data visualization of the procedures. It
permits artificial intelligence techniques to reconstruct the scenes and recognize human
bodies, equipment and actions.

Besides the image devices, we also installed an Ultra-wideband (UWB) Real-Time
Location System (RTLS) solution from Sewio [34]. We installed five UWB anchors in the
ceiling that read several UWB tags. Each person involved in the procedures carries one
tag with previous identification. A server software combines the readings of all anchors to
locate the tags in a 3D coordinate space. It provides an API that delivers the 3D positions
in real time. Therefore, it is possible to track each person’s position and the movement
patterns of the medical staff and the patient. We installed individual mini-computers to
acquire data from the camera devices that run a Data Gateway instance. The Gateway
instances extract information from the device attached to its computer. In the RTLS server
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case, a virtual machine runs at the computer processing the anchors’ information. A Data
Gateway connects the virtual machine through its API and extracts tag positions in the
same computer.

Sewio UWB Anchor
Camera: 

Microsoft Kinect v2

Camera: 

Microsoft Kinect v2

Dell Optiplex

3050 Mini

Virtual Machine

Data 

Gateway 1

Data 

Gateway 2

(a) Equipment installed in the walls

S
e
w

io
U

W
B
 T

a
g

s

80 mm

4
5
 m

m

(b) UWB tags people carry on

Figure 5. Deployment in a real hybrid operating room. The Sewio RTLS Studio runs in a virtual
machine in a physical machine connected to the same network as the anchors. The figure depicts only
two of three Data Gateways. The Core runs in a separate room and does not appear in the image.

Each node connects to a Gigabit Ethernet switch; therefore, communication between
the Gateways and the Core occurs in a private network. Additionally, Sewio requires
the UWB anchors to communicate with each other through a wired network. Therefore,
the RTLS server node also connects to the anchors’ network, which means that this node
connects both the anchor network and the main network to reach the Core. Finally, the
Core server node has two network cards: (i) one to connect the private network and reach
the Gateway nodes; and (ii) a second to connect a Gigabit Ethernet switch to serve the
client applications.

4. Results

At the time of our research, we did not find any workload benchmark for real-time
medical applications in the literature. Therefore, we modeled a scenario composed of
48 applications that connect the HeathStack sequentially, one at every six seconds. Each
new application connection requests a different data type than the previous one. Specifically,
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Application 1 requests depth data, Application 2 position data, Application 3 depth data, etc.
Additionally, the applications define their target QoS threshold in a round-robin fashion:
delay 50 ms, delay 50 ms, jitter 25 ms and jitter 25 ms. In other words, Applications 1 and 2
define delay to 50ms, Applications 3 and 4 determine jitter to 25 ms, and the sequence
repeats for the subsequent applications. We extract these values from some studies on
telemedicine [35–38].

Regarding the infrastructure, we used two Data Gateway instances. One of them
extracts depth data from one Microsoft Kinect v2 device. The other extracts tag location
data from the Sewio RTLS solution. The Data Gateway instance 1 runs in a dedicated node
that runs the Sewio RTLS Server and API. The Data Gateway instance 2 runs in a different
node with the Kinect device connected through a USB 3.0 port. Finally, a third node runs the
Middleware Core and receives connections from remote applications. Figure 6 depicts an
end-to-end overview of the network employed in the experiments. Two Gateways extract
information directly from sensors using different connections. Gateway 1 connects the RTLS
anchors through a private Megabit Ethernet IPv4 network, while Gateway 2 connects the
Microsoft Kinect using a USB cable. Both Gateways connect to a private Gigabit Ethernet
IPv4 network, to which the Core also connects. Finally, the Core connects to an external
Gigabit Ethernet IPv4 network that applications use to connect the middleware.
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Figure 6. End-to-end network structure employed in the experiments.

The evaluation consisted of observing the execution of the middleware and the ap-
plications in ten minutes. Time zero represents the instant the HealthStack starts running.
We started the middleware and the script to run the applications simultaneously. This
particular script starts each application respecting the interval described above (one at
every six seconds). In the beginning, the script sleeps for six seconds and then starts the
first application at the time 00:06 (mm:ss). Consequently, the last application connects at
the time 4:42 (m:ss). We kept the applications and the HealthStack running until minute
ten to visualize more data when all applications are connected. We executed this appli-
cation scenario under two different configurations to provide a vision of the benefits of
employing the QoS Service Elasticity. We executed the HealthStack and applications in the
first scenario without enabling the QoS Service Elasticity strategy. Following, we executed
it again but now, enabling the strategy. Additionally, in the experiments, we implemented
the Data Prioritization and the Frame Rate Adaptation services.

Figure 7 illustrates the variation in average delay for each application when enabling
the QoS Service Elasticity. Negative values represent a lower average delay, which is an
improvement. As the application requested different data types, we segmented the results
according to the data type to see if they were relevant to the results.

Figure 7a demonstrates that most of the applications that consume depth data ex-
perienced improvements, but not all of them. Comparing diagrams (a) and (b), the data
size transmitted to applications from the first set is considerably higher than the second
set’s data. Depth data requires more processing and transmission time than position
data. Therefore, the changes represent a smaller percentile than the improvements in the
second set.

Figure 8 depicts the variation in average jitter for each application when enabling the
QoS Service Elasticity. Here, the variations are more expressive than the ones for the delay.
However, different data types resulted in contrasting results. Figure 8b shows that all
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applications that consume position data had considerable high improvements. Considering
the 24 applications of this diagram, the mean of their average jitter was 2.1 when enabling
QoS Service Elasticity versus 21.7 ms when disabling it. It represents a substantial decrease
of 90.3%. The main reason is that the RTLS system does not provide tag position samples
at a stable rate. It has a direct impact on jitter. The Frame Rate Adaptation service plays
an essential role in this scenario because it stabilizes the frame rate to a lower value.
It stabilizes jitter since the Data Gateway acquires samples at a lower rate. Comparing both
Figures 7 and 8, it is possible to note that the data type makes a difference in the results.
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Figure 7. Variation in the average delay of each application. The figures represent the results for
the applications that consume depth data (a) and position data (b). The black arrow represents the
direction for better results.
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Figure 8. Variation in the average jitter of each application. The figures represent the results for
the applications that consume depth data (a) and position data (b). The black arrow represents the
direction for better results.

Figure 9 compares the average resource consumption of each node when enabling
and disabling the QoS Service Elasticity. For most cases, the QoS Service Elasticity has a
positive effect on decreasing the required resources. The only exceptions are the memory
consumption of Gateway 1, and the CPU consumption of Gateway 2. All other cases yield
good results. Enabling the QoS Service Elasticity strategy dramatically reduces network
consumption. The reason for that is the Frame Rate Adaptation QoS service since both
Gateway 1 and Gateway 2 received it during execution. This QoS service reduces data
transmission from both nodes to the Core, resulting in a decrease for all nodes.
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Figure 9. Comparison of resource consumption of each node with the QoS Service Elasticity enabled
and disabled.

5. Discussion

Here, we discuss the aspects of our experience in performing the study in a real
hospital. We bring to discuss some lessons learned in many aspects, from building the
partnership to performing experiments.

5.1. Lesson 1: Build a Strong Partnership

Bringing scientific research to real deployments in the healthcare scenario is, at the
same time, challenging and essential. As a first step, establishing a partnership requires
many meetings, including hospital and university staff, to clarify the project’s aspects. Once
the project is approved, technical details should be well discussed between the hospital’s
technical team and the scientific team. That is important since different technology and
engineering sectors manage the whole hospital infrastructure. Thanks to that, hardware
and software deployment details within the hospital settings must be discussed with both
sectors. That spotlights the necessity of negotiating the best solutions to install equipment
without causing problems to the current systems running in the operating room.

With all details solved, the installation process also requires people from different
hospital sectors and even the scientific team to coordinate. The process demonstrates that
forming a partnership and making it happen requires several persons’ commitment and
proper communication. Although complicated, the process results in a partnership with
outstanding outcomes for both sides. The ideas developed for the hospital can improve
their services for patients, which also benefits from it. It is an excellent opportunity for
researchers to grow and evolve new ideas with constant feedback from real settings.

5.2. Lesson 2: Consider the Complexity of the Environment in Your System Design

Medical settings are highly critical environments that encompass complex processes.
Such complexity includes a variety of equipment and medical roles performed by several
persons simultaneously. On top of that, the patients are the central focus, and their well-
being is the ultimate goal of the process. As a result of all this complexity, implementing
new techniques requires awareness of multiple aspects. On the one hand, depending on the
technology, it is crucial not to have an adverse effects on the current technologies already
used in the hospitals. On the other hand, as medical processes involve legal issues, privacy
concerns should also be considered. Thus, there is a limitation on what we can do or not
do in the hospital facilities.

Considering all of that, we deployed our solution as carefully as possible. Hence, we
opted to install our network infrastructure. We did that for two main reasons. First, as
we consider that some sensors generate a considerable amount of data, this could impact
the network and other services already running in the operating room. Second, a private
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network only for the middleware data exchange prevents raw data transmission through
the hospital network due to several privacy concerns. Moreover, this also prevents network
sniffers from capturing the middleware packets and corrupting them. As a bonus, we have
more control over the experimental environment, enabling customization and improving
our tests’ reliability.

5.3. Lesson 3: Tailor Your Technology to the Target Environment

Here, we define what is necessary to bring such technology to modern hospitals. We
can divide it into two main steps: deploy the architecture and design the applications. As
mentioned before, the first step requires installing some equipment dedicated to running
the middleware architecture. The hardware capacity will depend on the type of sensors. For
instance, more robust sensors, such as Microsoft Kinect v2, impose specific requirements
on the Data Gateway nodes. In particular, USB 3.0 interfaces and the Microsoft Kinect API
will be required so that the Gateway can extract image frames from the Kinect. In this case,
gateways must be compatible with the demands of computer vision techniques.

On the other hand, as Sewio RTLS, some lightweight sensors only require the node to
be capable of running its virtual machine. Some sensors even only require the compatibility
of the node with some specific language to run their APIs. Besides the nodes, the network
must be private. The technology and performance should suit the amount of data to be
transmitted. All nodes running the Data Gateway instances and the Core server should
connect to this private network. The server requires at least two network interfaces: one for
the private network and another to connect to the hospital network. Therefore, hospital
applications can process data streams from the server in any hospital area, including
remote locations.

Concerning the application’s design, nowadays, there are already many well-known
publish-subscribe platforms that provide easy-to-use APIs for real-time data. Our mid-
dleware is designed to be compatible with such technologies. Thus, applications are only
required to use our middleware wrapper, which adds QoS arguments to the subscription
calls. The applications do not need to implement any additional code but only add their
parameters. As the middleware has default delay and jitter limits, the application will still
be compatible if the user does not inform them.

5.4. Lesson 4: Critically Analyze the Results to Find Solutions

One of the main problems when running a distributed system is a bottleneck. This
problem occurs when a system provides services for many clients through the same node
or module. As the number of clients increases, the node workload also increases. However,
due to hardware limitations, this node can experience a performance loss due to overload
periods. The node cannot handle the amount of work, which affects its performance directly.
We removed this problem from the sensors by dividing the amount of work among several
Data Gateway instances. Each Gateway serves only one client connection from the Core.
Additionally, the QoS Service Elasticity strategy brings benefits directly to the sensors,
improving data collection performance.

Looking at the evaluation we performed, we still suffered from a bottleneck at the
Core level. As we experimented with the middleware with only one core instance, we could
visualize the delay increase according to client applications’ growth. On the bright side, the
services stacked at the sensors level helped to improve the results, even when the ascending
delay occurred. Additionally, our middleware model also comprises resource elasticity,
although we did not include it in the experiments. Including an additional QoS service
can resolve directly the increasing effect: admission control. This strategy is common in
network QoS solutions. Its main benefit is to prevent too many connections in the system.
Instead of accepting all connections, client applications can only connect while the system
supports them. Therefore, the system can deliver a stable performance for applications that
are already connected.
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As a final point, the analysis of results must consider the medical point of view.
Presenting results to the medical team is an important step. They can provide a different
vision of the information the research team can extract from the results. Workshops and
meetings with the medical partner are part of this process. In such moments, discussion
raise possible customization to guide the next steps. It highlights the main aspects that the
research team should address to achieve different outcomes.

6. Conclusions

The main contribution of this article relies on the QoS Service Elasticity strategy that
aims to provide QoS for applications. The development and installation demonstrated
to be complex but possible to achieve. In addition to technical benefits, it also provides
contributions to the hospital and patients on behalf of society. Envisioning the hospitals of
the future, we provide strategies to guarantee performance for real-time applications that
process data from medical processes. More importantly, future real-time applications will
require reliability in data flows from surgeries to perform correctly. Many actuators will
support surgeries according to real-time data processing. Through our experiments, we
demonstrated some QoS strategies and a proposal architecture. Future works can derive
from our architecture and include many other QoS services and data types.
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