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Abstract: Data obtained from sensors connected to wireless sensor networks must be stored and
processed to enable environments such as smart cities. However, with the exponential growth in the
number of devices at the edge of the network, it is necessary to implement robust techniques, capable
of selecting reliable data sources and meeting low latency requirements, in order to serve critical
applications. Thus, to overcome these challenges, this research work presents FOCUSeR, a method
for ranking sensors. The method uses the evaluation of data as a criterion for the ranking, allowing
us to identify occurrences of failures in sensors and anomalies in environments. In order to meet
the requirements inherent to WSNs, the proposed method was developed to run in a fog computing
environment, using online learning and constant updating over time to avoid effects such as time
drift. The generated ranking lists are managed through distributed hash tables. To provide reliability
to the experimental results, a real experimental environment was developed. Moreover, using this
developed testbed, a dataset with labels was created, to support the evaluation of the method. In
addition, four other real datasets were used, three of which were labeled through artificial fault
injection. These datasets were labeled in a related work that focused on injecting artificial faults. The
experimental results obtained demonstrate that the proposed approach can provide reliability in the
use of sensor data, using low computational resources and reducing latency in the sensor selection
process. Precision rates are approximately 98% and Accuracy rates are greater than 94% across all
datasets. In addition, the analyses carried out show that the Accuracy has an increasing rate as the
number of samples also increases. Results obtained in the failure data recovery also demonstrate the
feasibility of the proposal in this resource.

Keywords: sensor ranking; online; context-aware; up-to-date; anomaly; matrix profile; latency; fog

1. Introduction

Advances in low-cost sensor manufacturing and the miniaturization of microelectronic
systems are the main factors responsible for the development of sensing, computing, and
communication technologies, represented by smart sensors [1]. Smart sensor nodes are
low-power devices equipped with a power supply, typically a battery, a processor, memory,
a radio, and at least one sensor. Eventually, actuators can be incorporated to allow adjust-
ments in sensor parameters, and sensor the movement or even monitoring of available
energy. As sensors are usually deployed in difficult-to-access places, communication needs
to be done through wireless devices, such as radios, responsible for transferring data to an
access point in a fixed infrastructure [2].
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These sensor nodes collect information about the surrounding environment and trans-
mit this data to the Internet. The demand for environmental monitoring, which, through
the control of critical values, avoids failures and minimizes the impact of extreme events
caused by climate change or human interventions, has leveraged the development of wire-
less sensor networks (WSNs). The development of WSNs began around the 1980s, but it
was only in 2001 that they really became the focus of research and industry interest [3].
Typically, a WSN consists of several sensor nodes (a few tens to thousands) working to-
gether to monitor a region for data about the environment and has little or no infrastructure.
Unlike traditional networks, a WSN typically has resource constraints that include a limited
amount of power, short communication range, low bandwidth, and limited processing and
storage on each node. Design constraints depend on the application and are based on the
monitored environment [2,4]. In the case of IoT, developed in parallel with WSNs [5], a
specific communication technology is not assumed [3].

WSNs are great sources of big data generation due to the large number of nodes
connected to the network. In these networks, large-scale data collected by sensors can be
distributed, processed and used by various services and applications. However, as the
number of objects added to the IoT is approaching 200 billion, and the number of sensors
is already over 50 billion [6], the data generated far exceeds the capabilities of existing IT
architectures and infrastructures. In scenarios where the real-time requirement is present,
the available computing power needs to be even more robust.

The cloud computing model is a great alternative for managing these large volumes
of data, providing greater processing capacity without affecting performance. However,
when it comes to latency-sensitive applications, these characteristics may not be sufficient
to meet services where delay requirements are present [7]. This type of service requires the
network nodes to be close to the end-user, so that the time between the request and the
response is as short as possible [8].

To overcome these obstacles, CISCO Systems, a company specialized in equipment and
services for telecommunications, proposed the creation of the fog computing platform [8].
Fog computing is a horizontal, physical, or virtual resource paradigm that resides between
smart end devices and the cloud or traditional data centers. This paradigm supports latency-
sensitive applications by providing scalable, distributed compute, storage, and network
connectivity [9]. In this architecture, each smart sensor node is connected to a fog computing
device. These devices can be interconnected and are linked to the cloud [10]. By allowing
the use of data produced by sensors, this architecture adds intelligence to environments.
This is made possible by accessing necessary information related to environments, by
collecting and analyzing past and present data. Thus, these data will support optimal
decision-making about people and their environments, preferably in real time [8].

Edge computing (EC), on the other hand, is a paradigm in which communication,
computing, control and storage resources are placed at the edge of the Internet, close to
mobile devices, sensors, actuators, connected things and end users [11]. Applications
running on EC will perform actions locally before connecting to the cloud. However,
the actions that can be performed are limited by the modest computational resources
characteristic of the devices in this layer of the network.

The timeline shown in Figure 1 presents these various technologies, which are related
to the growth in the volume of data produced by sensors, as well as the technologies that
have emerged to meet the demands of services and applications. Analyzing the image, it is
possible to verify that there is a trend towards the miniaturization of the devices and that
data analysis and processing has moved toward these devices.
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and then acting autonomously, requires detection and learning. This is called context-
aware computing. Quality of context (QoC) provides a set of metrics with information 
that helps in resolving conflicts related to contextual information [14]. 

To allow the use of these techniques in the processing of this large volume of data 
produced by sensors, IoT middleware solutions have been adopted [15,16]. An IoT mid-
dleware is used to manage sensor data allowing its use by different applications, thus 
acting as an interface between the user/application and the sensor networks and allowing 
for an abstraction of the heterogeneity inherent in sensor data sources [1]. 

An IoT middleware offers capabilities for acquiring, discovering, indexing, ranking 
and querying sensors and data related to these sensors [1,17]. Indexing consists of storing 
and indexing data about sensors, to speed up the process of selecting a subset of sensors. 
Sensor ranking is performed by prioritizing criteria such as data quality, device availabil-
ity, energy efficiency and network latency. This task can be performed based on the data 
generated by the sensor (content) and on the available information about the conditions 
under which these data were generated (context). Applications such as industry and 
healthcare that require reliability associated with processing and providing data with low 
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Figure 1. Technologies related to the growth of digital data.

It can be said that latency in data transmission is one of the main factors that boosted
this development. As can be seen in Figure 2, there are two factors that directly affect
latency: the network distance and the power of the processing devices. In this way, to
further reduce latency in the use of the service, data processing is performed in the Fog
Computing layer of the network. This provides data processing, analysis and storage close
to endpoints, allowing tools to be deployed outside of the cloud. It also favors the use of
high-performance applications capable of processing and storing data close to where it is
generated, allowing for very low latency and intelligent, real-time responsiveness [12,13].
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In addition, when processing sensor data, it is necessary to understand the context in
which the data was captured, requiring processes to become intelligent. Thus, understand-
ing the context, or the situation in which the capture takes place, using sensor data and
then acting autonomously, requires detection and learning. This is called context-aware
computing. Quality of context (QoC) provides a set of metrics with information that helps
in resolving conflicts related to contextual information [14].

To allow the use of these techniques in the processing of this large volume of data
produced by sensors, IoT middleware solutions have been adopted [15,16]. An IoT middle-
ware is used to manage sensor data allowing its use by different applications, thus acting
as an interface between the user/application and the sensor networks and allowing for an
abstraction of the heterogeneity inherent in sensor data sources [1].

An IoT middleware offers capabilities for acquiring, discovering, indexing, ranking
and querying sensors and data related to these sensors [1,17]. Indexing consists of storing
and indexing data about sensors, to speed up the process of selecting a subset of sensors.
Sensor ranking is performed by prioritizing criteria such as data quality, device availability,
energy efficiency and network latency. This task can be performed based on the data
generated by the sensor (content) and on the available information about the conditions
under which these data were generated (context). Applications such as industry and
healthcare that require reliability associated with processing and providing data with low
latency are examples of usage scenarios [18].

The relevance of the proposed approach is related to the ability to provide a quick way,
and with a high degree of reliability, to select data sources (sensors), for decision making
and control of environments and devices, in addition to carrying out these activities of
distributed form to ensure scalability, an essential requirement in the IoT environment [11].
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The exponential growth in the number of sensors in the IoT environment justifies the need
for this type of activity.

Considering these premises, this paper presents the result of a research work in
which we propose a method for ranking sensors. The proposed method is based on the
fact that solutions for sensor ranking must be feasible considering the heterogeneity, low
computational capacity and high volume of connected devices. Furthermore, it considers
that the real-time requirement is present in several services that make use of sensor data.

The rest of the paper is organized as follows. Section 2 presents the concepts involved,
as well as describes the proposed method and the related works. Section 3 describes the
experimental environment develop and the experimental results. In Section 4, the results
obtained are discussed, and in Section 5, the Conclusions and Future Works are presented.

2. Background

This section describes the basic concepts related to the applied techniques and algo-
rithms. The main concepts described are related to the interquartile range, used in the first
evaluation of the data, as well as those related to the matrix profile method, used in the
second evaluation of the data, to identify anomalous segments in time series. The theory
of quality of context (QoC), from which some parameters are used, and the definition of
distributed hash tables (DHT), which are used to manage distributed ranking lists, are also
presented. After presenting these concepts, the proposed method is described in detail.

2.1. Active Perception Theory

Active perception can be defined as a problem of an intelligent data acquisition process.
This process must define and measure environmental parameters and errors, which, in
turn, can be fed back to control the data acquisition process. The importance of this process
is that time is not spent processing and improving imperfect data, but rather accepting
imperfect and noisy data as a matter of fact and incorporating it into the overall processing
strategy [19]. Thus, perception is not a passive process, but an active one. Perceptions do
not merely fall on sensors as rain falls on the ground. During the act of looking, the pupils
adjust to the level of illumination, the eyes bring the world into sharp focus, converge
or diverge, the heads move to improve the vision of something [19]. This adaptability is
crucial for survival in an uncertain world. Thus, the problem of active perception can be
defined as the use of control strategies applied to the data acquisition process, which, in
turn, will depend on the interpretation of the data and the objective of the task [19].

Whereas perception depends on context, other senses and time, active perception has
four levels: sensation, perception, perception over time and active perception. Sensation
involves the process of capturing the data. After capture, perception interprets and gives
meaning to this data. By observing a process over a period of time, it is possible to improve
the interpretation of this data. This process is called perception over time, indicating that
it is possible to evaluate perception in relation to another perception. The last level is
active perception, which includes reasoning, decision and actions based on the information
received [20–22].

2.2. Interquartile Range

The interquartile range (IQR) metric is useful to indicate whether the values of a
dataset can be considered outliers [23]. Quartiles are the separators that divide a numerical
dataset into four equal parts. The first quartile (Q1) is the value of the set that delimits the
25% smaller values. The second quartile (Q2) is the median itself. The third quartile (Q3)
is the value that delimits the 25% higher values. Thus, the first range of data starts at the
smallest value and goes to Q1. The second range, between 25% and 50% are values greater
than Q1 and less than Q2, and so on [24]. The interquartile range is the difference between
Q3 and Q1. The intention is to create thresholds using the value of the IQR index to allow
the identification of values that are far from the frequent values of the data set.
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2.3. t-Digest

When dealing with time series, many interesting statistics are difficult to calculate. For
example, to find the most common value, or the number of distinct values, or even just
the median without sorting all the data, the most popular approach is to calculate a small
summary of the data (called a digest or a sketch), and then use that summary to estimate
the desired value, such as a median or a quartile. The t-digest provides these statistics with
an order-of-magnitude better accuracy than other existing algorithms, and with very low
computational complexity [25].

2.4. Fault/Outlier Model

Failures in capturing and transmitting data, obtained from sensors, normally occur
in one capture and are normalized in the next (outlier point). The reason is that the
disturbances related to these problems are mostly transient, caused by imbalances that
lead to momentary instabilities [26]. Thus, when interference occurs in a single measure-
ment, generating a single incorrect value, there is a high probability that these data will
be misinterpreted. This kind of problem can be mitigated by analyzing time slices of
data (subsequences).

In this work, the values are first analyzed individually, and they are then evaluated
using comparisons between subsequences of data. Values that are far from frequent values
are considered failures, and the rest of the data are considered events. In the case of a
point outlier, this evaluation is simple. When considering subsequences of data, if any value
of the subsequence is discrepant from the rest of the data, the subsequence is interpreted
as a failure (collective outlier), otherwise, as an event (contextual outlier). The taxonomy
presented in Figure 3 describes this method.
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When a failure occurs, the proposal also delivers, along with the other output vari-
ables, a classification for the type of outlier, based on the information presented in the
failure/outlier model and in the scheme presented in Table 1.

Table 1. Output fault/outlier type (cell background colors help identify outlier types).

First Level

Output Label Normal Anomaly Failure

Second Level
Normal Normal Point

Failure
Point

Failure
Anomaly Context Event Context Event Context Event

Failure Collective
Failure

Collective
Failure

Collective
Failure

The criteria adopted for the decision consider that faults identified at the first level,
that is, in the individual analysis of the sample, are highly likely to represent transient
faults in the sensor. Thus, when only the first level fails, the error is considered a point
failure. At the second level, in the analysis of a subsequence of data, when an anomaly is
identified, the data are considered as a context event and not as a failure. If a fault is also
identified at the first level, the data are considered a collective failure. Figure 4 presents an
example of these types of outliers.
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In this proposal, the data generated by sensors are classified with as normal, anomaly
(event), and failure. Data considered as normal are those that indicate that both the sensor
and the environment in which the measurement is being made are stable (no anomalies) and
the reading process was not affected by interference during data capture and transmission.
Data in this range of values represent the data most frequently generated by the sensor.

When a measurement affected by a fault is analyzed as a time series (slice), the
subsequence corresponding to that fault will be different from the normal trend of the
entire time series. However, this will only be true if the deviation from normality is large
enough to influence the measurement of the entire segment, which occurs in persistent
failures. In the case of transient failures, a single abnormal data point, the influence on series
measurement is less significant. Thus, when analyzed in a data segment, the disturbance
caused is mitigated due to the presence of several other normal values.

In this second evaluation, the data can also be considered an anomaly, indicating the
occurrence of anomalies in the environment. This occurs when several of the values in the
data segment are relatively far from the normal range, but within a range of values that may
exist in the environment’s domain (contextual outlier). This kind of data do not occur that often.

Finally, data considered as a failure are data that occur due to persistent failures in
devices, affecting the capture or transmission of data (collective outlier). In this case, the
range of values is further away from the other values, extrapolating the limits of valid
values in the domain.

(Q1− FF× IQR)〈 f i〉(Q3 + FF× IQR) (1)

(Q1− AF× IQR) < ai < (Q3 + AF× IQR) (2)

The IQR metric is applied to obtain the indicators to be used in the evaluation of the
data. In the case of evaluating single data samples, the IQR is applied to a data set of values
produced by the sensors. In the case of evaluating data subsequences, the IQR is applied to
the distance profile generated by the matrix profile algorithm.

Equations (1) and (2) use the anomaly index (ai) and failure index (fi) to label samples.
Equation (1) is used to verify if a value is considered a failure and Equation (2) for values
considered anomalies. The anomaly factor (AF) was set to 3 (three) and failure factor (FF) to
AF × 2. Normally, when calculating the cut of outliers using the IQR metric, a K coefficient
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usually equal to 1.5 (one point five) is adopted [27]. In preliminary studies carried out
in the development of the proposed method, this coefficient proved to be inefficient as a
threshold to define anomalies and failures related to the approach of this work.

Figure 5 shows an example of application of this metric: the samples located between
the green lines represent the data considered normal; the samples between the green and
red lines represent anomalous data, and the points above the red line represent probable
failure data.

J. Sens. Actuator Netw. 2022, 11, x FOR PEER REVIEW 7 of 30 
 

 

(𝑄1 − 𝐴𝐹 ∗ 𝐼𝑄𝑅) < 𝑎𝑖 < (𝑄3 + 𝐴𝐹 ∗ 𝐼𝑄𝑅)  (2)

The IQR metric is applied to obtain the indicators to be used in the evaluation of the 
data. In the case of evaluating single data samples, the IQR is applied to a data set of 
values produced by the sensors. In the case of evaluating data subsequences, the IQR is 
applied to the distance profile generated by the matrix profile algorithm. 

Equations (1) and (2) use the anomaly index (ai) and failure index (fi) to label samples. 
Equation (1) is used to verify if a value is considered a failure and Equation (2) for values 
considered anomalies. The anomaly factor (AF) was set to 3 (three) and failure factor (FF) to 
AF * 2. Normally, when calculating the cut of outliers using the IQR metric, a K coefficient 
usually equal to 1.5 (one point five) is adopted [27]. In preliminary studies carried out in 
the development of the proposed method, this coefficient proved to be inefficient as a 
threshold to define anomalies and failures related to the approach of this work. 

Figure 5 shows an example of application of this metric: the samples located between 
the green lines represent the data considered normal; the samples between the green and 
red lines represent anomalous data, and the points above the red line represent probable 
failure data. 

 
Figure 5. Division of data into normal, anomaly, and failure values using the IQR metric. 

2.5. Matrix Profile 
Here, the scalable matrix profile algorithm [28] and some of its variations relevant to 

this work, will be described. The algorithm is used in the proposal to create time series 
subsequence joins. The algorithm is simple, fast, parallelizable, and parameter free, and 
can be incrementally updated. As will be shown, the algorithm is extremely efficient for 
discord discovery tasks. 

The following definitions and notations were taken from [28]. A time series T is a finite 
sequence of samples T = [t1, t2, …, tn], taken at increasing instants of time, of length n. A 
subsequence is a small continuous subsets Ti,m obtained from T, of length m, starting in i. 
Ti,m = [ti, ti+1,…, ti+m-1], where 1 ≤ i ≤ n-m+1. A subsequence refers to a sequence of time series 
samples ordered in time. 

The Euclidean distance metric is used to produce the similarity measure between sub-
sequences t1 and t2, with m samples in each subsequence. A zero distance, that is, maximum 

Figure 5. Division of data into normal, anomaly, and failure values using the IQR metric.

2.5. Matrix Profile

Here, the scalable matrix profile algorithm [28] and some of its variations relevant to
this work, will be described. The algorithm is used in the proposal to create time series
subsequence joins. The algorithm is simple, fast, parallelizable, and parameter free, and
can be incrementally updated. As will be shown, the algorithm is extremely efficient for
discord discovery tasks.

The following definitions and notations were taken from [28]. A time series T is a finite
sequence of samples T = [t1, t2, . . . , tn], taken at increasing instants of time, of length n. A
subsequence is a small continuous subsets Ti,m obtained from T, of length m, starting in i.
Ti,m = [ti, ti+1, . . . , ti+m−1], where 1 ≤ i ≤ n − m + 1. A subsequence refers to a sequence of
time series samples ordered in time.

The Euclidean distance metric is used to produce the similarity measure between
subsequences t1 and t2, with m samples in each subsequence. A zero distance, that is, maximum
similarity, occurs only when two segments are very similar in all n samples. The Euclidean
metric is presented in Equation (3).

d(t1, t2) =
√

∑m
i=1(t1 − t2)

2 (3)

A distance profile D is a vector of the Euclidean distances between a given query and
each subsequence in an all-subsequences set. When the query and all-subsequences set belong to
the same time series, the distance profile must be zero at the query location, and close to zero
before and just after [28]. An all-subsequences set A of a time series T is an ordered set of all
possible subsequences of T obtained by sliding a window of length m across T:A = {T1,m,
T2,m, . . . , Tn−m+1,m}, where m is a user-defined subsequence length. A[i] is used to denote
Ti,m [28].
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Given two all-subsequences sets A and B and two subsequences A[i] and B[j], a 1NN-join
function θ1nn (A[i], B[j]) is a boolean function which returns “true” only if B[j] is the nearest
neighbor of A[i] in the set B.

Given all-subsequences sets A and B, a similarity join set JAB of A and B is a set containing
pairs of each subsequence in A with its nearest neighbor in B:JAB = {〈A[i], B[j]〉 | θ1nn(A[i],
B[j])}. This is formally denoted as JAB = A./ θ1nnB.

A matrix profile PAB is a vector of the Euclidean distances between each pair in JAB. This
vector is called the matrix profile because one way to compute it would be to compute the
full distance matrix of all the subsequences in one time series with all the subsequence in another
time series and extract the smallest value in each row (the smallest non-diagonal value for
the self-join case). The profile has a host of interesting and exploitable properties. For
example, the highest point on the profile corresponds to the time series discord (subsequences
that are maximally different to all the rest) [28], the lowest points correspond to the locations
of the best time series motif pair [29], that is, pairs of time series subsequences that are
very similar to each other, and the variance can be seen as a measure of T’s complexity.
Moreover, the histogram of the values in the matrix profile is the answer to the time series
density estimation [30]. This special case of the similarity join set is named as self-similarity
join set. Each element in the matrix profile tells us the Euclidean distance to the nearest
neighbor, however, it does not tell us where that neighbor is located. This information
is recorded in matrix profile index, a vector of integers that allows efficiently retrieve the
nearest neighbor of an element by accessing the position indicated by each integer, that is,
a IAB of a similarity join set JAB is a vector of integers where IAB[i] = j if {A[i], B[j]} ∈ JAB.

Mueen’s ultra-fast algorithm for similarity search (MASS) is a Euclidean distance similarity
search algorithm for time series data that finds the nearest neighbor to a query and, unlike
the dozens of time series KNN search algorithms in the literature [31], this algorithm
calculates the distance to every subsequence, i.e., the distance profile of time series T. The
algorithm uses an fast similarity search algorithm under Euclidean distance as a subroutine,
exploiting the overlap between subsequences using the classic Fast Fourier Transform (FFT)
algorithm to calculate the dot products between the query and all subsequences of the
time series [28]. The algorithm produces one full row of the all-pair similarity matrix. The
scalable time series anytime matrix profile (STAMP) [28] algorithm is a loop that computes
each full row of the all-pair similarity matrix and updates the current “best-so-far” matrix
profile when needed.

The STAMP is the batch version of the algorithm. Batch means that the algorithm
needs to see the entire time series TA and TB (or just TA if self-similarity join matrix profile
is being calculated) before creating the matrix profile. But in the case of this research
work, the interest is in building the matrix profile incrementally. Once the matrix profile
has already been built in a batch approach, when new data arrives, an incremental ad-
justment of the current profile is performed. This algorithm is called STAMPI (STAMP
incremental) algorithm.

2.6. Evaluation Measures

The evaluation metrics commonly used to measure the effectiveness of anomaly
detection performance present in related works are Accuracy, Precision, Recall, and F1 score,
as presented in Equations (4)–(7) respectively. In these Equations, TP = true positive,
TN = true negative, FP = false positive, and FN = false negative. The results are presented
as a percentage.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)
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F1 Score = 2× Recall × Precision
Recall + Precision

(7)

2.7. Distributed Hash Tables

Distributed hash tables (DHT) are excellent solutions for managing distributed lists.
This method has a high degree of scalability and flexible support for query and update
operations. DHT has a decentralized approach that provides fast mechanisms for storage,
queries and updates. Are built on overlay networks in which network objects are spread
out and identified with unique keys [32].

The Apache Cassandra tool implements a chord class algorithm [33]. Cassandra
achieves horizontal scalability by partitioning all data stored on the system using a hash
function called a consistent hash that is similar to a Chord model [34], and the Chord
model in turn is based on DHT. This model provides a scalable and efficient protocol for
dynamic research in P2P systems with frequent node inputs and outputs. It also provides
mechanisms to facilitate resource finding, new node entries, and fault management. To
improve scalability, the Chord node does not need routing information about all other
nodes, but only a number of O (log N) nodes, and therefore the search needs a maximum of
O (log N) messages.

3. Related Works

In this section, the most relevant works related to the ranking of sensors are presented.
The IoTCrowler [35] is a framework developed for the task of search IoT. The frame-

work is composed of two layers: the crawling and processing layer that is responsible for
constantly integrating new data sources into the framework; and the search and orchestra-
tion layer that contains components for handling search and subscription requests coming
from IoT applications or users. In the crawling and processing layer, the data stream is
monitored to allow fault detection as well as fault recovery. Here, the search indexes are
also generated. In the search and orchestration layer, the orchestrator is the entry point
for any user or application that wants to search for IoT devices. This layer can provide an
endpoint to receive notifications about faults. In this layer, the ranking component uses the
built indices, given constraints, and enriched information to rank the found data sources
before they are sent back to the user or application.

Bharti proposed the VoI-based sensor ranking mechanism VoISRAM [36], which is
primarily intended to exploit the classification engine’s gateway services to strike a balance
between application-specific QoS requirements and network power consumption. The
method proposed an information-based value-based sensor service ranking mechanism
that models the classification of a sensor service as an information attribute value while
considering its context of use in the corresponding application. In [37] the GaaS, a cross-
platform gateway architecture for retrieving the sensory data from the low-power IoT
sensors is proposed. The architecture leverages multithreading to enable the gateway from
simultaneously connecting to several IoT sensors. To regulate the Bluetooth low energy
connections, the work devised two distinct priority-based schedulers which rank the IoT
sensors, before generating the connection schedule.

In the work of Nesa and Banerjee [38], a dynamic sensor activation algorithm, in-
spired by the PageRank algorithm, called SensorRank, is proposed. Unlike the PageRank
algorithm, which requires only external links to classify web pages, SensorRank dynami-
cally analyzes the network topology in terms of relative distances, link qualities, and the
remaining power of the devices, based on which the sensors are classified. Dautov and
Distefano [39] present a decentralized architecture to group heterogeneous devices and
execute data-intensive IoT workflows at the edge of the network. The proposed approach
initially divides a complex workflow into more straightforward tasks, then discovers and
selects suitable edge devices and, finally, allocates tasks to the selected nodes, connecting
them to recompose the original workflow. The discovery and selection of suitable edge
devices are made based on functional and non-functional task requirements, respectively,
before mapping the decomposed tasks to the selected nodes. The ranking of devices is
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calculated at the device selection stage using non-functional requirements. In the work of
Ruta et al. [40], the ranking of the devices is based on a metric that calculates the semantic
distance between the user’s requirements and the semantic description of each device. In
the work by Kertiou et al. [18], the authors use context information from sensors with a
dynamic skyline operator to reduce the search space and select the best sensors according
to user requirements. In Kang et al. [41], the frequency at which users use individual
items, the distances between users and devices (services), the network’s QoS, the device’s
performance and its history of operations, and the priority set by the user are used to
calculate the device’s ranking information.

In the work of Yuen et al. [42], the primitive cognitive network process (P-CNP) method
is used to derive the importance of sensor nodes based on two types of QoS parameters:
network-based (latency, bandwidth, and throughput) and based on the sensor (accuracy,
reliability, and cost). The parameters receive weights according to their importance to the
user. The ranking of the sensor is generated using the values of the attributes and weights.

The work of Perera et al. [43] presents an architecture for providing scalability, as well
as a research tool, in which it establishes two classes of user parameters (negotiable and non-
negotiable). For example, if a user wants to measure the temperature in a given location,
the result (the list of sensors) must contain only sensors to measure the temperature. To
index and order the sensors, user preferences are used with an indexing technique using
the weighted Euclidean distance metric called the Comparative Priority Based Weighted
Index (CPWI). In the paper by Truong, Römer, and Chen [44], a proposal for researching
similarity sensors is presented. In the proposal, a user provides a sensor and a fraction of
its past output as an example and requests sensors that have produced similar output in the
past. Regarding the time factor, the proposal uses a time series to search for sensors when
comparisons are made by similarity. A comparison of the sensors is made using fuzzy logic
to compare each of the candidate sensors with the sensor provided by the user. The result
of the similarity metric is used to build the sensor ranking.

Elahi et al. [45] were the first to use the term ranking of sensors. The work focuses on
using data produced by sensors centered on people, considering that habits can indicate
future behavior, and thus use the data generated by these sensors to create forecasting
models. This process calculates, for each sensor, an estimate of the probability that corre-
sponds to the query and the sensors in decreasing order of probability. The effort is spent
first on sensors with a high probability of corresponding to the query. This approach, in
addition to not meeting situations in which low latency requirements are present, as it is
very specific, needs to develop (train) a forecasting model for each dataset, making the
intervention of a specialist mandatory and requiring a long preparation time for use. An-
other negative aspect is that the ranking calculation is performed after receiving the user’s
parameters, which increases the process latency. In addition to the characteristics described,
the proposal cannot be executed in a distributed manner, which poses an obstacle when
considering the need for scalability of a solution aimed at the IoT network.

Table 2 presents a list of works related to this proposal. The symbology of the table
uses a dash if the work does not meet the presented resource and a special sign if it does.
The features refer, in this order, to: whether the proposal is capable of running totally in
a distributed network environment; in which computing layer (cloud, fog, or edge) the
algorithm runs; if the algorithm has low computational complexity; if the ranking list is
always ready (no need to generate it for each query); if the work considers the evaluation
of the data generated by the sensor; if the proposal seeks to identify and differentiate faults
and anomalies; whether the data assessment process requires training; whether the data
assessment process is kept up to date; whether the proposal makes use of data recovery
from other sensors when failures occur in the current sensor; whether the experimental
environment used in the evaluation of the proposal is close to a real processing environment;
and finally, whether real data were used in the evaluation of the proposal.
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Table 2. Related works.

Work
Features Characteristics

Distributed Fog/Edge Tier Low Complexity Ready Ranking List Data Evaluation Fault/Outlier Type Online Up to Date Replace Failure Data Real Testbed Real Datasets

FOCUSeR
√ √ √ √ √ √ √ √ √ √ √

Mekala (2021)
√ √

- -
√

- - - - - -
Iggena (2021)

√
-

√
-

√ √
- -

√
-

√

Costa (2021) -
√ √ √ √

- - - - -
√

Bharti (2021)
√ √ √ √

- - - - - - -
Liu (2020) - - - - - - - - - -

√

Lee (2020) - -
√

- - - - - - - -
Sundar (2019) - - - - - - - - - - -

Biró (2019) - -
√

- - - - - - - -
Abdelaal (2019) -

√ √
- - - - - -

√ √

Costa (2019) -
√ √ √ √

- - - - -
√

Nesa (2019)
√

- -
√

- - - -
√

-
√

Dautov (2019)
√

- -
√

- - - - -
√ √

Ruta (2019)
√ √ √

-
√ √

- - -
√ √

Kakunsi (2018) - -
√

- - - - - - - -
Kertiou (2018)

√
-

√
- - - - - -

√ √

Dilli (2018) - -
√ √

- - - - - - -
Hussain (2018) - -

√ √
- - - - - - -

Nunes (2018) - -
√

- - - - - - -
√

Kang (2016)
√ √ √ √

- - - - - - -
Zhang (2016)

√
- - - - - - - - -

√

Neha (2016) - -
√

- - - - - - - -
Wang (2015)

√
-

√
- - - - - - - -

Yuen (2014) - -
√

-
√ √

- - - - -
Cabral (2014)

√
-

√ √
- - - - - -

√

Niu (2014) - - - - - - - - - - -
Perera (2014)

√
-

√ √
- - - - - -

√

Truong (2012)
√

-
√ √

- - - - -
√ √

Walters (2011)
√ √ √

- - - - - - - -
Wang (2010)

√
-

√ √
- - - - -

√
-

Ostermaier
(2010)

√
-

√
- - - - - -

√ √

Elahi (2009)
√ √

-
√

- - - - - -
√
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According to the bibliographic research carried out, it is possible to verify that few
works address the evaluation of data, and among these, none of the proposals use online
training or keep up to date over time. Many other works address the issue of fault detection,
but as they do not propose to offer solutions for sensor ranking, they were not considered
in this discussion [46,47].

FOCUSeR Contributions

From the analysis of related works, it is possible to assume that a reasonable ranking
method must satisfy several requirements [35,48], in order to provide a service that meets
the quality of service when used in a real scenario.

The related works analyzed present different approaches for generating sensor ranking
lists, demonstrating the importance of the activity for the correct use of IoT data. However,
despite the related proposals showing promising results, it is possible to note some chal-
lenges and issues that still need to be overcome. Thus, when considering these problems, it
is possible to list a set of requirements that must be met in the sensor ranking processes.
These requirements are listed below:

• Requirement 1 (R1): the ranking list should be distributed in a distributed way.
• Requirement 2 (R2): to reduce latency in end-user queries and applications where

real-time requirements are present, it is desirable that the ranking service runs close to
the data source, that is, in the Edge or Fog Computing layers.

• Requirement 3 (R3): to be viable in terms of processing, and considering R2, it is
essential that the algorithm has low time complexity.

• Requirement 4 (R4): with the same purpose as R2, the ranking list must always be
ready, to prevent the user from having to wait for the list to be generated on each
request.

• Requirement 5 (R5): one of the main challenges of a WSN is how to efficiently deliver
the detected measurements to the destination with maximum fidelity to the probed
data. For this, data measured by sensors require an efficient classification measure
to differentiate between normal and anomalous values [49]. Thus, not performing
data evaluation can compromise the performance of WSNs and the services and
applications interested in that data.

• Requirement 6 (R6): considering that WSN is highly dynamic, distributed, heteroge-
neous and with a large number of objects, using data evaluation (R5) with methods
that require training becomes unfeasible. Thus, it is essential that ranking algorithms
have online learning.

• Requirement 7 (R7): since the objects in the WSNs are dynamic, and in order to avoid
effects such as “concept drift”, it is important to use methods capable of avoiding the
lag of the models.

• Requirement 8 (R8): verifying the viability of the algorithm, carrying out the tests in
environments as close as possible to real processing environments, corroborates the
results of the work.

• Requirement 9 (R9): here the intention is similar to that presented in R8.

Thus, after presenting the requirements considered important for a sensor ranking
method, we present the contributions of this research work:

• Run in a distributed environment (R1).
• The method is able to meet the real-time requirements using low computational

resources and thus providing low latency in queries (R2, R3 and R4).
• Provides a method capable of delivering, together with the data obtained from the

sensors, metadata with information about the quality, reliability and nature of this
data and the sensor itself (R5, R6 and R7).

• The proposed method is free of training and keeps up to date over time (R6 and R7).
• Evaluate experimental results with real data and in real environments (R8 and R9).
• The proposed method is capable of recomposing failure data by searching for sensors,

capable of providing the same information, in the surrounding locations.
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4. Fog Online Context-Aware Up-to-Date Sensor Ranking (FOCUSeR) Method

This section describes the proposed method FOCUSeR and some important ap-
proaches used in the proposal.

4.1. Sensor Ranking Inspired on Active Perception Theory

The ranking method proposed in this work is inspired by the theory of active per-
ception. Similarly, in this proposal, the task of ranking sensors is performed through an
analysis that allows for different levels of reasoning according to the context found. In
addition, it is characterized as active because it is able to find alternatives to the problems
encountered (failures and anomalies) by seeking reliable data sources.

Figure 6 shows an overview of all steps involved in this proposal. At the top of the
figure, the network layers (Edge, Fog, and Cloud) are first identified. Below the network
layers, are presented (from left to right): the acquisition, reasoning and monitoring levels;
the standard functions (bold text), commonly found in middleware’s for sensor ranking;
and the tools used to perform each function in the experimental environment developed to
evaluate the proposal.
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The boxes in the lower part of the figure presents the levels of the ranking process,
detailing the flow of information in the proposal. This part of the figure presents the levels
of active perception (boxes with light gray background color), starting with the sensation
activity, that is, collecting data in the environment and following the direction of the red
arrow, perception, perception over time and active perception. In this flow, the burn-in and
storage activities (boxes with a darker gray background color) of the data produced by the
proposal are also presented.

The first level of active perception, sensation, is performed by the sensors and repre-
sents the capture of data produced by them. So, the burn-in activity is the one in which the
indicators for using the IQR metric are created. After the burn-in stage, the next levels of
active perception appear.

The flow ends with the data persistence activity, used to demonstrate monitoring
examples. The red arrow in the image informs that the flow returns to the environment,
indicating the execution of actions to be taken defined at the level of active perception. In
the following subsections, the implementations of each level will be detailed.

4.2. Burn-In

Due to the heterogeneity of the environments monitored by sensors, it is impossible
to manually adjust the parameters for each sensor. As a way to overcome this limitation,
this proposal uses the online learning approach. In the burn-in step, the samples initially
obtained from each sensor are used to generate the anomaly and failure indices presented
in Equations (1) and (2). The number of samples initially used to generate the indices is
an input parameter of the proposal’s algorithm. In the tests performed, the first 2000 (two
thousand) samples were used, with the exception of the FOCUSeR and SmartSantander
datasets in which the first 500 (five hundred) were used due to the low number of samples
for each sensor. These values were chosen after a parameter sensitivity analysis, as will be
described in the evaluation results section.
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The update of the anomaly and failure index (Equations (1) and (2)), according to the
value defined in the burn-in parameter, proved to be effective, which was verified through
an increase in the Accuracy rates, as will be shown.

The t-digest data structure was used to allow updating these indexes without having
to keep the entire dataset already seen in memory.

4.3. First Level

At the first level of proposal processing, that is, perception, the anomaly and failure
indices are applied to the samples that arrive in the system. As a result of this evaluation,
the data can be classified as normal, anomaly or failure.

4.4. Second Level

This level uses time to evaluate the data. The adoption of this approach allows to
distinguish transient faults from persistent faults and also, by examining the data from the
point of view of a data slice, it allows a better identification of the patterns contained in that
dataset. If a measurement affected by a fault is analyzed as a time series, then the sequence
of samples or segments corresponding to the fault will be distinct from the normal trend of
the time series. In other words, this segment will be considered anomalous.

To implement this concept, the matrix profile algorithm was chosen. The algorithm is
initially run with the burn-in sample data (batch). Once the distance profile is generated, the
IQR metric is applied to generate the anomaly and failure indices for segments. After the
burn-in stage, the matrix profile is updated with each new data and this data is evaluated
using the generated indices, in order to identify the segments that diverge from the other
segments of the data set (in this case, all segments known so far). In the same way
as in the previous level, the segments are also classified in the normal, anomaly and
failure categories.

4.5. Third Level

In the final level, according to the classifications obtained in the first two levels, the
type of outlier is identified. The sensor index is also updated with the new information. To
update the index, the data are processed using the concepts of Quality of Context (QoC)
theory. The QoC parameters used in this work are described below.

The trustworthiness (T) parameter of QoC (Equation (8)) is used as an indicator in
order to generate the ranking of sensors. In the trustworthiness parameter, the value 0 (zero)
means that this context source is not reliable, and 1 (one) represents total reliability in the
context source [50]. In Equation (8), the parameter T is the reliability, the ctx is the set of
trusted context elements for a given sensor i and W is the total number of sensor context
elements and must be greater than zero.

Ti =
NumberO f RealiableSamples(ctxi)

Wi
(8)

In the final level, that is, the active perception level, when a failure is identified
in the sensor data, the active perception function is then activated, and “the vision is
adjusted” to check if there is another sensor close enough to provide the measurement of
the environment that can replace the measurement provided by the unreliable sensor. For
this task, other QoC parameters are used.

The sensor_location [51] parameter, which describes the location of the sensor at the
time the context information was collected, is used to enable the retrieve of similar sensors
(with the same features) surrounding some sensor that is in abnormal state. To make this
search quick and straightforward in the sensor list, geospatial data is previously stored in
Apache Cassandra. By storing the data in this way, it is possible to find points close to a
certain location. The challenge here is to find a key capable of restricting the potential list
of locations and avoiding consulting many keys at once [52].
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Although there is more than one possible data structure used for this purpose, geo-
hashing was chosen because it offers several benefits over other techniques. A geohash is a
base 32 representation of a geographic area, where each additional digit represents greater
accuracy. The property of geohashes that makes them particularly suitable for geospatial
research is that adding a level of precision to given geohash results in an area contained in
the lower precision value [52]. An example can be seen in Figure 7, which shows a diagram
with the geohash 9q9p6, containing a series of more precise geohashes contained within it.
All the smaller geohashes begin with the 9q9p6 prefix.
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After performing a search using the location data, the found data is evaluated with
the QoC parameters described below. These parameters were used to verify the validity of
context information over time, that is, to verify that the data did not expire according to the
parameters.

Age(ctxi) = tcurr − tmeas(ctxi) (9)

Timeliness(ctxi) =

{
1− Age(ctxi)

TimePeriod(ctxi)
: i f Age(ctxi) < TimePeriod(ctxi)

0 : otherwise
(10)

Age of context object ctxi (Equation (9)) is calculated by taking the difference between
the current time, tcurr, and the measurement time of that context object ctxi, tmeas(ctxi).
Information about the age of a context allows the consumer to assess its relevance in
advance to process it. The Timeliness parameter (Equation (10)) is a measure that indicates
the degree of freshness of a context object at a given time [51]. Newer information is often
more relevant compared to older information. In most cases, old contexts can be discarded
without significant consequences. The dynamic nature of this parameter is characteristic
of real-time applications [53]. As the situation in pervasive environments changes very
rapidly, applications using a context object without knowing the Timeliness of that context
object may take undesired actions that can result in loss of resources. Timeliness of a context
object can be measured objectively and subjectively. To obtain the subjective view of the
timeliness of a context object, the validity time of the context object mentioned by the user is
considered, regardless of the time period [51]. However, as this proposal does not consider
the query parameters to generate the ranking, the value of 0.5 is assumed as the limit for
the data age (Timeliness). The parameter TimePeriod indicates the time interval between two
measurements. The value of Timeliness and the validity of context object decrease as the
Age of that context object increases [51].

In addition to checking the freshness of the data produced, it is tested whether the
value of the trustworthiness parameter is above 0.9, otherwise the sensor is considered
unreliable. These parameters are configurable per dataset and do not influence ranking
generation. They can be informed at the time of user queries.



J. Sens. Actuator Netw. 2022, 11, 25 16 of 29

The values set for the burn_in, window_size and iqr_refresh parameters are discussed in
the results evaluation section.

The last step is to update the ranking of the sensors using the new values of the
trustworthiness parameter as a key. The algorithm also feeds information regarding the last
analyzed sample into the distributed hash tables, such as the classification of data into
normal, anomaly and failure and a second category identifying the sample as normal, point
outlier (failure), context outlier (anomaly) or collective outlier (failure). Algorithm 1 presents
the entire process, whose abbreviations used are presented in Table 3.

Algorithm 1 Fog Online Context-aware Up-to-date Sensor Ranking (FOCUSeR)

Input: ptr=0.9, ptl=0.5, ptp, burn_in, pbin_sz=3000, pw_sz=30, piqr=3000, id, val, lat, lon, dt
Output: tt, ft, lba, fsid, fsv
focuser (ptr, ptl, ptp, pbin_sz, pw_sz, piqr, id, val, lat, lon, dt): tt, ft, lb, fsid, fsv
sl := [ ]
ct := 0
burn_in := true
repeat

ct := ct + 1
sl[ct] = val
if burn_in

if pbin_sz < ct then
build_iqr()
burn_in := false
ct := 0

end if
else

if piqr < ct then
build_iqr()
ct := 0

end if
end if
lbp := perception(iqr)
lbt := time_perception(lbp)
lba, ft, tt, fsid, fsv := active_perception(lbp, lbt)
update_rank(par, id, val, lat, lon, dt)

end repeat

Table 3. List of abbreviations used in Algorithm 1.

Abbreviations Definition

ptr QoC parameter trustworthiness
ptl QoC parameter timeliness
ptp QoC parameter time_period
burn_in Burn-in phase
pbin_sz Number of samples to be used in the burn-in step
pw_sz Size of the window to be used when comparing subsequences
piqr Number of samples to be used to update IQR metric indicators
id Sensor identification
val Sensor measured value
lat Sensor location latitude
lon Sensor location longitude
dt Sensor measurement capture date
tt Updated QoC parameter trustworthiness
ft Fault type
fsid Identification of the sensor used in data recovery (nearby sensor)
fsv Value captured by the nearby sensor
sl Sample sliding window buffer
ct Counter of the number of samples processed
lbp First level output label (perception level)
lbt Second level output label (level of perception with time)
lba Third level output label (active perception level)
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4.6. Time Complexity Discussion

As a way of not impacting latency, it is important that the algorithm has a low time
complexity. In the time complexity equations, consider the following notation:

n: the number of samples for ranking
C1: cost to calculate IQR for all levels
C2: cost to calculate matrix profile structures
C3: cost to update matrix profile structures
C4: cost for all levels tests
C5: cost to locate the sample from another sensor

The total cost of the algorithm (Equation (11)) is the result of the sum of the costs of
the burn-in step and the normal operation of the algorithm. In the case of the burn-in stage,
cost is represented by the calculation of the IQR metric indicators (C1) and by the initial
execution (batch) of the matrix profile algorithm (C2). On execution after the algorithm
burn-in step, the cost is represented by the sum of the costs of the tests of each level (C4)
with the sum of the cost of updating the structures of the matrix profile algorithm (C3) and
when an anomaly occurs, by the cost of searching, in the tables of distributed hash, of a
sensor sample in normal state (C5).

Ctotal = C1 + C2 + C3 + C4 + C5 (11)

Computing the IQR (C1) of data at the given quartile value has O(nlogn) time com-
plexity [23]. The overall complexity of the matrix profile algorithm (C2) is O(n2logn) [28].
The time complexity of the STAMPI algorithm (C3) is O(nlogn) [28]. The cost of tests at
each level is equal to O(n). And the cost of searching for a sample from another sensor
is O(logn) [34]. Thus, the total time complexity of the algorithm is O(n2logn). However,
considering that the burn-in step (C1 and C2 costs) only occurs at the initial moment of the
algorithm execution, the algorithm’s operating cost is O(nlogn).

This loglinear computational complexity is promising for the Fog Computing envi-
ronment. This can be proven through the results obtained in the evaluation of the latency
of the proposal. This is supported by the fact that the tests were carried out in a real test
environment, that is, with the same resources as a Fog network node.

5. Proposal Experimental Environment and Datasets

In this section, the computational architecture and the data sets used in the tests of
the proposal are presented. To support the results obtained, the proposal was tested in
a scenario close to the real world. The configuration of the experimental environment
is first described, as well as the datasets used, before presenting the evaluation results
themselves. Performance is evaluated considering the data retrieval latency and against
the effectiveness of the anomaly detection.

5.1. Experimental Environment

Given the distributed nature of IoT devices, it is necessary to adopt a distributed
architecture capable of ensuring the scalability of the proposal. The exponential growth
in the number of sensors in the IoT environment justifies the requirement for this type
of approach. Thus, the proposed method will use a distributed approach in which the
processing takes place in the fog computing layer. This work considers the use of gateways,
in which the data of each sensor will be processed and evaluated. The gateways exchange
information using a ranking list management model available in Apache Cassandra.

Figure 8 presents the developed experimental architecture. The bottom box in Figure 8
represents the sensors (devices). The data from these sensors are sent to the platform
using the message queuing telemetry transport (MQTT) protocol. To perform this function,
the Mosquitto tool [54] was chosen. A connector continuously monitors topics (such
as a message queue) in MQTT, and, as soon as a message arrives, it is automatically
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transferred to our broker FOCUSeR, which represents the proposal of this research work
for ranking sensors.
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After processing by the FOCUSeR broker, messages are maintained in the Apache
Cassandra tool. To visualize the processing results, the algorithm output data are persisted
in the InfluxDB database, which is used as a data source in the Grafana tool. For the tests, a
network with three nodes was used. In this way, this architecture allows parallel processing,
also reinforcing the scalability of the proposal.

To evaluate the proposal, we developed a testbed composed of four processing nodes
and two sensors (Figure 9). As hardware for each node, Raspberry PI 4 boards with 4GB
RAM each were used (Figure 9a,c). Three of the four nodes were used to run the proposed
algorithm and the Apache Cassandra tool. The other node, one Raspberry PI 2 board, was
reserved for running the MQTT Broker.
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As sensors, two DS18B20 temperature sensors, a passive infrared sensor and a led were
used, all connected to an ESP8266 12E module (Figure 9b,d). The Grafana and InfluxDB
(Cloud Computing) tools were run on a computer with an Intel Core i7 processor with 8
GB of RAM and a 500 GB SSD.

5.2. Datasets

Five real data sets were selected to evaluate the proposed method, as shown in Table 4.
The FOCUSeR dataset was created in this research work. Two DS18B20 temperature sensors
were connected to an ESP8266 board Figure 9b. Captures were taken every two (2) seconds.
To create abnormal data in the set, at random times, one of the sensors (identified in the
image by the red blocks) was alternately dipped in glasses of hot and cold water. The
moments of each change were generated randomly, as well as the duration of each event
and the type of change (cold or hot).

Table 4. Datasets.

Dataset Cases
(Millions) Stations

FOCUSeR 0.014 2
Intel 2.300 54

NUMENTA 0.022 1
SmartSantander 0.044 16

SensorScope 0.418 23

As a way of assisting in the process of creating labels for the data, an infrared sen-
sor was installed next to the manipulated sensor to detect the presence. Approximately
7000 (seven thousand) samples were generated from each of the sensors. The Intel Lab
dataset [55] contains information about data collected from 54 sensors with weatherboards
that collected timestamped topology information, along with humidity, temperature, light,
and voltage values once every 31 s. The sensors, deployed in the Intel Berkeley Research
Lab (Intel), were arranged in the lab. The Numenta Anomaly Benchmark (NAB) is a
real-world set of data about multiple domains. The “machine temperature system failure”
dataset contains temperature sensor data of an internal component of a large, industrial
machine. The file has three anomalies: the first is a planned shutdown of the machine; the
second is difficult to detect and directly led to the third anomaly, a catastrophic failure of
the machine [56]. The SmartSantander dataset consist of temperature measurements from
16 outdoor sensors that are part of the SmartSantander project [57]. The last dataset used
have data collected from 23 stations of the SensorScope [58], an outdoor temperature.

The subsets of data for each sensor (stations) were chosen because they contain data
that are far from the average of each set (possible anomalies or failures). The combination
of these datasets, in which the data were generated under different conditions, contributed
to the evaluation of our proposal. Furthermore, data referring to Intel Lab, SmartSantander
and SensorScope sets were retrieved from [59]. The work described in the paper provides
a framework for preparing annotated datasets with configured injected faults, which are
suitable for evaluating fault detection methods. The motivation for using these files is to
allow an evaluation of the proposed treatment of anomalies and failures method.

6. Experimental Results

In this section, the results obtained in the experimental tests will be presented.

6.1. Parameter Sensitivity Test

Table 5 presents the results of the sensitivity analysis of the burn-in parameters and
subsequence size (window size). In the tests, the IQR Refresh parameter was set to the same
value as the burn-in parameter. Tests were performed with the values 1000, 2000, 3000,
4000 and 5000 for the burn-in parameter and with the values 30, 90, 150, 210 and 270 for
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the subsequence parameter, that is, 25 different combinations for each data set. The Table
shows only four from each set.

Table 5. Parameter sensitivity analysis (best results for each metric are highlighted in bold).

Dataset Burn-In Subsequence Accuracy Precision Recall F1 Score

Intel

5000 30 94.59 96.16 97.68 96.91
3000 30 94.19 98.56 94.51 96.49
4000 270 89.47 89.35 99.99 94.37
2000 30 91.49 95.03 94.55 94.79

SmartSantander

2000 30 94.83 97.06 96.80 96.93
1000 30 92.47 98.10 92.72 95.33
3000 30 91.19 97.14 91.31 94.14
1000 150 82.68 90.74 88.10 89.40

SensorScope

5000 30 95.73 99.00 95.86 97.40
4000 30 95.50 98.29 96.17 97.22
3000 30 94.74 97.25 96.34 96.79
4000 270 85.22 84.72 99.98 91.72

Although in the Intel and SensorScope datasets the values with a burn-in size equal to
5000 present the best values, we chose to use a default value of 3000 as default. This choice
is justified because higher burn-in values “spend” more samples in the method operation in
order to effectively start processing. Furthermore, they are only slightly higher than those
with lower values in these parameters. In the case of the Santander dataset, the value 1000
was chosen because the dataset files have few samples (on average, 3000 samples per file).

In the case of the subsequence length parameter (window size), the best result is
obtained when the parameter is set to 30.

6.2. Accuracy Evaluation

To verify the accuracy of the proposal, only the datasets with labels were considered,
that is, those labeled in [59]. The temperature variable was selected to evaluate the accuracy
of these three data sets.

As can be seen in Table 6, FOCUSeR achieved Accuracy around 95% and approximately
97% for Precision, Recall and F1-Score.

Table 6. Effectiveness of FOCUSeR.

Dataset Accuracy (%) Precision (%) Recall (%) F1 (%)

FOCUSeR 98.4 98.1 100.0 99.0
Intel 94.6 96.1 97.7 96.9

SmartSantander 94.8 97.1 96.8 96.9
SensorScope 95.7 99.0 95.9 97.4

As a way of evaluating the proposed method in comparison with other solutions,
Table 7 presents the values obtained in the Accuracy, Precision, Recall, and F1 score metrics,
respectively. It should be noted that this comparison serves only as a superficial analysis,
since the approaches and purposes are normally different in relation to aspects such as the
online approach, execution environment and data sets used.

In Table 7, only the Intel and SensorScope datasets were considered, as they are also
used in other proposals. In cases where the datasets or metric was not used in the job, a
dash was placed in the cell. As can be seen in the table, in three of the four metrics used,
FOCUSeR presents the best performance (values highlighted in bold) in at least one of the
two datasets considered. In the case of Accuracy, where FOCUSeR did not obtain the best
result, the values are close to the highest values.
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Table 7. Comparison of Effectiveness Evaluation (best results for each metric are highlighted in bold).

Work Dataset Accuracy (%) Precision (%) Recall (%) F1 (%)

FOCUSeR
Intel 94.59 98.56 98.56 96.9

SensorScope 95.73 99.00 99.00 97.4

[60]
Intel 98.4 - - -

SensorScope - - - -

[61]
Intel 98.5

SensorScope 99.1 - - -

[62]
Intel 95.00 - 100.0 -

SensorScope - - - -

[63] 1 Intel - 53.32 94.61 68.20
SensorScope - 76.04 92.97 83.66

[64] 2 Intel - 49.23 95.30 64.92
SensorScope - - - -

[65]
Intel - 94.00 89.00 91.43

SensorScope - - - -

[66]
Intel - 83.00 94.00 88.16

SensorScope - - - -

[67]
Intel - 94.86 - -

SensorScope - - - -

[68] 3 Intel 99.86 - - 51.94
SensorScope - - - -

1 Online results considered. 2 Best Precision and Recall in the same entry. 3 Best results considered.

Furthermore, as FOCUSeR uses an approach of keeping your model up to date over
time, as the number of samples increases, the parameters of the IQR metric are updated.
As a result of this approach, when analyzing the growth of the Accuracy rate over time, it
is possible to verify that there is a trend of growth in this rate (Figure 10), indicating an
improvement in the results over time.
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6.3. Failure Data Recomposition Evaluation

When using the active ranking approach, the algorithm looks for nearby sensors with
valid (normal) values if the value read from the current sensor is considered abnormal. The
scenario of this test used the processing of data in multiple nodes (raspberry’s). Each node
listening to a specific sensor. In this way, data were selected if they met the requirements of
geographic location, message freshness and age, that is, the QoC parameters.

Figure 11 presents a failures data recovery scenario. This graph was generated using
the data files of sensor 1 of the Intel dataset available in the work of [59]. Three data sets
were used to construct the graph: data without errors (gray), that is, original data from the
Intel dataset, data with injected errors (red) and data generated by FOCUSeR (violet). As
shown in the graph, most of the samples identified as anomalies or failures by FOCUSeR
can be retrieved from nearby sensors, more precisely 87.31%.
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6.4. Online and Up-to-Date Approach Results

From Figures 12–14, the presented images demonstrate the proposal’s online training
approach, as well as the ability to keep indexes up to date. The green dashed line in
Figure 12 separates the data used in the algorithm’s burn-in step from those used in normal
processing. For this reason, data before this row is not labeled as anomaly and failure. The
images also present the results of classifying the data into anomaly, normal, and failure. In
the images, the initial data were used in the burn-in stage to generate the metrics from the
IQR statistic. The green and red lines (Figure 13) represent the thresholds used to identify
the data categories.

Figure 13 presents the result of the evaluation referring to the second level of the
algorithm. This evaluation was performed using the matrix profile method. In the same
way, the colored lines represent the limits used in the evaluation of the data. As you can
see in the images, the lines have breaks at fixed-length intervals related to the burn-in
parameter value. These breaks represent the updating of the IQR metric indicators. The
t-digest structure was used to make it possible to update these indicators.
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Figure 14 presents the results referring to the NUMENTA dataset. Despite the ab-
sence of labels, and for this reason it was not included in the Accuracy assessment, some
works [69,70] mention the presence of three anomalies in this dataset. Comparing the
results of the generated graph with that of the work of [56] it is possible to see that the first
and last anomalies were identified at the same points and the second at a slightly different
location. As the work states, the second anomaly is difficult to identify exactly.
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In addition to classifying the data into normal, anomaly and failure, this proposal
delivers a classification of the outlier type, as shown in Figure 5.

6.5. Latency Evaluation

To evaluate latency, we consider latency as the time difference between the time of
entry and exit of the message in the system. In this experiment the messages were processed
in the raspberry nodes configured in the developed testbed. As shown in Figure 15, the
average latency added by the proposal is approximately 0.0016 milliseconds per transaction.
When faults or anomalies in the readings are identified, the proposed algorithm searches
for normal data in neighboring sensors. In these cases, the average latency added is
approximately 0.225 milliseconds per transaction.
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In the case of the average latency for querying the ranking list, the times are similar to
the values of queries to data from nearby sensors since both queries are performed on the
distributed hash lists.

The performance in relation to latency is not compared with other works due to the
diversity of approaches in relation to the metrics used. Most of the works use the query
times of the ranking list as a metric and in these cases, most of the time is spent with the
sensor selection operations according to the query criteria. In addition, aspects such as
network transmission speed and hardware used in the tests drastically impact the results.

6.6. Cloud Monitoring

Finally, Figure 16 exemplifies a way of monitoring environments using the results
produced by the proposal.
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The monitoring panel shown in the image includes sensor value monitoring (top left);
the results of the evaluation at the different levels of the proposal (right); and the ranking
list of sensors classified using the trustworthiness parameter (bottom left).

7. Discussion

The method proposed in this research work can create and managing sensor ranking
lists, in a distributed way, so that the information is available for services and applications
as fast as possible. In the same sense, the proposed method also keeps the parameters
obtained in the online training up-to-date, to prevent them from becoming outdated due to
changes in the data. To the best of our knowledge, this is the first sensor ranking method
that addresses all these features.

The numerical results obtained in the tests demonstrate the feasibility of the proposed
method. However, the indices obtained with the Accuracy metric are slightly lower than
some of the related works. In these cases, it is important to emphasize that the related
works considered do not present online solutions, that is, free of training and also do not
present techniques to keep the parameters updated. These requirements are fundamental
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given the characteristics of the IoT environment, in which the immense heterogeneous
volume of sensors makes training for each sensor or even dataset unfeasible. On the other
hand, FOCUSeR obtained the best values in the other metrics used.

Analyzing the results, it is possible to verify that the highest incidence occurs due to
False Positive values, that is, values considered as normal when they should be considered
as anomalies or failures. It is important to remember that the datasets in which this occurs
are datasets with artificially inserted faults [59]. This issue occurs on failures that are
considered “malfunctions” in the job from which the datasets were obtained. In this type
of artificial failure, data is generated more frequently than expected. The cause of this
misclassification of data is related to the magnitude of errors injected into the dataset. As
can be seen in Figure 12, the dashed purple lines identify two regions where this type of
error was inserted into the dataset. The first region was correctly identified, which was not
the case with the second. This is due to the amplitude of the values entered, which in the
case of the second region, is very small.

Regarding latency, considering the real datasets and testbed used in the tests, the
response times obtained are promising and demonstrate the robustness of the proposal.
This statement is supported by the following points: the proposal is intended to run
in a distributed environment; with low computational resources (Fog Computing); that
provides a training-free method of evaluating data that remains updated over time; and
finally, that a has low computational complexity, so as not to add latency to services and
applications interested in using the results produced.

8. Conclusions and Future Works

This paper describes a method for ranking sensors that uses data evaluation as a crite-
rion for ranking. FOCUSeR offers a real ranking solution for WSNs to be executed in the Fog
Computing environment, making ranking lists available in a distributed way. FOCUSeR
was evaluated in a real testbed, developed with Fog nodes and temperature sensors.

The motivation for the development of this proposal is based on the fact that, although
the related works in this area present promising results, there are still some challenges
to be overcome in the sensor ranking area. Given the exponential growth in the volume
of connected devices, the great heterogeneity of these devices and the data generated,
and considering that one of the main challenges is to efficiently deliver the detected
measurements with maximum fidelity, it is reasonable to assume that methods that use
supervised learning will not achieve good results when used in real environments. Thus,
although the methods with this approach may present slightly superior results to those of
this proposal, we can assume that our method is superior, as it is free of training and has
resources to keep its data evaluation indicators updated over time.

As future works, we consider executing the proposal using data from online public
sensors and with a larger set of nodes for processing; increase the criteria used in the
selection of spatially and temporally correlated sensors to be used to replace the values of
the sensors in failure state; and we also consider the implementation of resources for the
rational use of sensors, aiming to provide an energy saving mechanism.
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