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Abstract: This paper deals with a new robust control design for autonomous vehicles. The goal is to
perform lane-keeping under various constraints, mainly unknown curvature and lateral wind force.
To reach this goal, a new formulation of Parallel Distributed Compensation (PDC) law is given. The
quadratic Lyapunov stability and stabilization conditions of the discrete-time Takagi–Sugeno (T-S)
model representing the autonomous vehicles are discussed. Sufficient design conditions expressed in
terms of strict Linear Matrix Inequalities (LMIs) extracted from the linearization of the Bilinear Matrix
Inequalities (BMIs) are proposed. An illustrative example is provided to show the effectiveness of the
proposed approach.
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1. Introduction

Autonomous vehicles require sensors to collect information about the road and a
central processing unit to analyze all the data for making decisions appropriately. The
sensors needed will include LIDARs, radars, cameras, GPS and ultrasound [1]; these
sensors will be used to recognize the vehicles’ surroundings and measure the distance
between the vehicle and nearby objects so the central processing unit can evaluate them and
respond accordingly. Since some of these sensors are very expensive e.g., the sideslip angel
at the center of gravity or/lateral velocity are crucial for vehicle stability, thus playing a key
role in lateral control. However, in practice these variables can be only measured with very
expensive sensors. Then, we should design an observer to estimate them. We also used
output feedback control to avoid using such expensive sensors for control implementation.
ϑy = ϑxβ. Where ϑy is the lateral velocity ϑx is the vehicle speed and β is the sideslip angle.

In recent years, lateral control of autonomous vehicles has attracted great atten-
tion from academic [2] and industrial communities [3,4] and many results have been
reported [5–7]. Some authors suggest new lateral control system architecture by combining
the fuzzy logic and PID control [8]. Others focused on stabilizing lateral dynamics with con-
siderations of parameters uncertainties and control saturation through robust yaw control.
A robust yaw-moment controller design for improving vehicle handling and stability with
consideration of parameters uncertainties and control saturation has been developed [9].
However, the state vector contains only two parameters to be controlled, which are the yaw
rate and the sideslip angle; in this case, there is not enough information about the state of
the vehicles that allows for their control in a tight way.

Sun et al. [10] present a non-model-based controller for vehicle dynamics systems to
improve lateral stability, where output tracking control and adaptive dynamic programing
approaches are employed to track the desired yaw rate and, at the same time, mitigate the
sideslip angle, roll angle, and roll rate of the vehicle.

Considering Sun et al. [10], the proposed idea does not have a mathematical model,
which means there are no mathematical stability and stabilization conditions to get access
to the system control.
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On the other hand, some authors investigated vision-based autonomous driving with
deep learning and reinforcement learning methods. Different from the end-to-end learning
method, this method breaks the vision-based lateral control system down into a perception
module and a control module [11]. Nonetheless, there are no constraints in the model, e.g.,
lateral wind force applied to the vehicles, unknown road curvature and steering physical
saturation. This implies that the introduced method is still far from real-world driving
situations. For instance, an asymptotic stabilization problem for a class of nonlinear under-
actuated systems was studied by Jiang and Astolfi [12]. Its solution, together with the
back stepping and the forward control design methods, is exploited in the control of the
nonlinear lateral dynamics of a vehicle. This technique proved that with the established
controller, a vehicle is able to track any feasible reference at a constant speed and the lateral
deviation converges to zero.

The issues in this case are there is a constant longitudinal vehicle speed, only one
intern variable that can be controlled and the stability is local.

The lateral control of an autonomous and connected vehicle (ACV), especially in
emergencies, is important from a safety point of view. The trajectory to be followed by
an ACV must either be planned in real-time or communicated from its preceding vehicle,
which was introduced by Liu et al. [13]; yet, this technique has a constant longitudinal
velocity and no internal variables.

Zhang and Wang [14] investigated the combined active front wheel steering/direct
yaw moment control for the improvement of a vehicle lateral stability and vehicle handling
performance. The authors’ more particular assumption [14] is that the longitudinal velocity
is not constant, but it varies within a range. Both the nonlinear tyre model and the variation
of the longitudinal velocity are considered in vehicle system modeling. To track the system
reference, a generalized proportional-integral (PI) control law is proposed. There is still the
problem of no constraints on the model. Besides, robust non-linear control was discussed.
It uses barrier Lyapunov function under lateral offset called deviation error as a constraint
for the lateral control of autonomous vehicles [15,16]. Nevertheless, there is only one
intern variable on the state vector that can be controlled, there are no constraints and no
sweeping into longitudinal velocity. In addition, only partial state information is available
for real-time control implementation.

All the above lateral control methods do not use an observer to compute the entire
vehicle state vector to ensure an efficient and accurate control scheme. The first motivation
came from the above issues in lateral control of autonomous vehicles. Based on the above
discussion, the T-S fuzzy control method is further investigated. The T-S fuzzy control
gives the possibility to sweep in large vehicles’ speed variation range. Furthermore, this
feature helps to improve the closed loop performance of the autonomous vehicles under
different constraints. The T-S fuzzy control systems are efficient and successful because
they can describe nonlinear systems in a convex form with local and simple consequents.
However, the T-S fuzzy systems control approach belongs to the state feedback control;
that is, they require the entire system state to be available. Getting more information about
the vehicle states indeed is of paramount importance for efficient control.

Some methods are developed for the vector state estimation. We cite Tong et al. [17]’s
work, where a novel observer based adaptive fuzzy output-feedback back stepping control
is designed; thus, the unmeasurable states are estimated based on the designed fuzzy state
observer. Moreover, a novel integral sliding mode control is designed for the T-S fuzzy
model based on Semi Markovian Jump System with immeasurable premise variables [18].
Other methods are developed to improve the control and the stabilization technique [19].
The authors proposed a new mathematical model, where the state equation is expressed
by a class of nonlinear stochastic differential equations with parameter uncertainties. The
uncertainties appear in the controller and the system coefficients. The idea is to solve
the problems as solving the non-fragile robust stochastic stabilization and non-fragile
robust H∞ control via LMIs. The authors of [20] proposed a novel H2/H∞ control scheme
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with Markovian Jump, advanced parameter estimation techniques are integrated into the
proposed method to achieve an accurate model and better control performance.

Recently, several studies have focused on steering system control, especially fuzzy
control systems [5–7]. These authors achieved very interesting results regarding lateral
control based on Takagi–Sugeno models. Various constraints such as road with unknown
curvature, steering saturation and lateral wind force, sweeping into large range of vehicle
longitudinal speed and exploiting an approximated vector state containing six intern
variables for effective control were fully used in their work. However, the authors used a
non-quadratic Lyapunov function to reduce the conservatism caused by the use of common
quadratic Lyapunov functions. On the other hand, the proposed non-quadratic Lyapunov
function is complicated and complex in implementation, which results in more complexity
of the system. Nevertheless, even when a nonquadratic Lyapunov is used for the T-S control
scheme combined with the PDC control law, for example, the solution is a set of bilinear
matrix inequalities. In addition, conservatism will always exist. Due to this complexity, the
authors were forced to use approximations and assumptions for the control purpose.

Using assumptions and approximations in the automatic control signifies that there
are still problems in the model, and it needs more improvements to represent the desired
system dynamics.

The second and main motivation is based on the lacks introduced by Nguyen et al. [5],
Nguyen et al. [6], and Sentouh et al. [7]. This work is based on the following summa-
rized contributions:

(1) A Quadratic Lyapunov function is considered to simplify the implementation of the
system, to minimize the system complexity and to create the ellipsoid convex form.

(2) An Improved PDC controller is designed. We introduce a new mathematical term
in the classic PDC control law; this term is composed of the optimized gains times
the gradient term of the state vector. This is to make the trajectory slides faster to the
global minimum of the ellipsoid shape created by the Lyapunov function applied to
the T-S system. This improved PDC controller ensures relaxed results even when we
use the quadratic energy Lyapunov function.

(3) Contrary to Nguyen et al. [5], Nguyen et al. [6], and Sentouh et al. [7] and others in the
first motivation mentioned, the state vector will not be approximated. It will be measured,
and it contains six real state variables values using Luenberger multiobservers.

(4) First time application of Jemmali et al. [21]’s technique for the autonomous vehicles.

The paper is summarized as follows. The second section presents vehicle modeling.
The third section presents the control design for discrete-time T-S systems, which focuses
on the stabilization of discrete-time T-S fuzzy system based on the new PDC control law
and the synthesis of multi-observers. The fourth section is devoted to application in
steering control. Finally, the last section presents the new results and compares them with
previous results.

2. Vehicle Modeling

This section presents the different steps used for vehicle modeling. First, the vehicle
parameters are introduced and presented in Table 1.

2.1. Lateral Dynamics Model of the Vehicle

Extracting from the well-known bicycle model presented by Rajamani [22], the ob-
tained model of the vehicle lateral dynamics is expressed as:[ .

β
.
r

]
=

[
a11 a12
a21 a22

][
β

r

]
δ+

[
e1
e2

]
fw, (1)

where β is the sideslip angle at the center of gravity (CG), and the yaw rate is r shown
in Figure 1. As represented in Equation (1), fw is the lateral wind force, and the system
matrices elements are written as follows:
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a11 = −2 (Cr+Cf)
mϑx

; a12 = 2 (lrCr−lfCf)

mϑ2
x
− 1;

a21 = 2 (lrCr−lfCf)
Iz

; a22 = −2 (
l2r C2

r+l2r Cf)
Izϑx

.
b1 = 2Cf

mϑx
; b2 = 2lfCf

Iz
; e1 = 1

mϑx
; e2 = lw

Iz
.

Table 1. Definition of parameters.

Parameters Description Value

Bs Steering system damping 5.73
Cf Front cornering stiffness 57,000 N/rad
Cr Rear cornering stiffness 59,000 N/rad
Is Steering system moment of inertia 0.02 kg·m2

Iz Vehicle yaw moment of inertia 2800 kg·m2

Kp Manual steering column coefficient 0.5
lf Distance from the CG to the front axle 1.3 m
lr Distance from the CG to the rear axle 1.6 m
ls Look-ahead distance 5 m
lw Distance from the CG to the impact center of the wind force 0.4 m
M Mass of the vehicle 2025 kg
Rs Steering gear ratio 16
σt Tyre length contact 0.13 m
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Figure 1. Lateral vehicle dynamics modeling.

2.2. Road-Vehicle Positioning

The vehicle positioning dynamics on the road is described by [22]:{ .
yL = ϑxβ+

.
lsr + ϑxψL.

.
ψL = r− ϑxρr.

(2)

where yL is the lateral deviation error from the centerline of the lane projected forward a
look- ahead distance, ls and ψL are the heading error between the tangent to the road and
the vehicle orientation. The road curvature is indicated by ρr.
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2.3. Steering System Model

The electronic power steering is given as follows [23]:

..
δ = 2

KpCfσt

R2
s Is

β+ 2
KpCfσt

R2
s Is

lf
ϑx

r · · · − 2
KpCfσt

R2
s Is

δ− Bs

Is

.
δ+

1
RsIs

Ts. (3)

where Ts is the steering torque, δ is the steering angle, ls is the inertia moment of the
steering column, Bs is the damping factor of the column, Rs is the reduction ratio of the
column, σt is the width of the tyre contact finally, the manual steering column coefficient
is Kp.

2.4. Vehicle Control-Based Model

From the previous models (1), (2) and (3), the road-vehicle continuous-time model
utilized for the aim of system control is written as follows:

.
x(t) = Acx(t) + Bcu(t) + Bcww(t). (4)

where

x =
[
β r ψL yL δ

.
δ
]T

is the vehicle vector state,

w = [fw ρr]
T is the disturbance vector,

and u = Ts is the input vector.

The control-based system matrices in (4) are expressed as:

Ac =



a11 a12 0
a21 a22 0
0 1 0

0 b1 0
0 b2 0
0 0 0

vx ls vx
0 0 0

a61 a62 0

0 0 0
0 0 1
0 a65 a66

; Bcw =



e1 0
e2 0
0 −vx
0 0
0 0
0 0

; Bc =



0
0
0
0
0
1

RsIs

.

We have:

a61 = 2
KpCfσt

R2
s Is

, a62 = 2
KpCfσt

R2
s Is

lf
vx

, a65 = −2
KpCfσt

R2
s Is

, a66 = −Bs

Is
.

Therefore, the control design in this paper will be based on the following discrete-time
system (5).

xk+1 = Axk + Buk + Bww(k) (5)

where Te = 0.01 s is the discretization time, A is the discrete-time matrix of Ac, B is the
discrete-time matrix of Bc and Bw is the discrete-time matrix of Bcw.

3. Control Design for Discrete-Time T-S Systems

In this part, the new PDC controller design is developed. The stability and the
stabilization conditions are demonstrated.

3.1. Discrete-Time Takagi-Sugeno System

The following discrete-time T-S system is described by fuzzy IF-THEN rules.
Rule i is of the form:
IF ϕ1(k) is τi

1 and . . .ϕq(k)is τi
q THEN{
xk+1 = Aixk + Biuk

yk = Ci xk
(6)
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where τi
1 . . . . τi

q are the fuzzy sets, and n is the number of the rules. In addition, xk ∈ Rn

is the state vector; uk ∈ Rp is the control vector and yk is the measurable output vector;
Ai, Bi and Ci are the system matrices with appropriate dimension. The premise variables
are represented by the vector ϕ(k) =

[
ϕ1(k) . . . ϕq(k)

]
.

Consider the discrete-time T-S fuzzy model:

xk+1 = ∑n
i=1 ξi(ϕ(k))(Aixk + Biuk + Bw

i wk) (7)

The convexity conditions are:{
∑n

i=1 ξi(ϕ(k)) = 1
ξi(ϕ(k)) ≥ 0.

(8)

With

ξi(ϕ(k)) =
λi(ϕ(k))

∑n
i=1 λi(ϕ(k))

; λi(ϕ(k)) =
q

∏
j=1
τi

j(ϕ(k))

ξi(ϕ(k)), i = 1, 2, . . . , n, are the normalized grades of membership.
τi

j(ϕ(k)), j = 1, 2, . . . , q, are the grades of membership corresponding to the fuzzy
term τi

j .
The open loop discrete-time T-S fuzzy system is:

xk+1 = ∑n
i=1 ξi(ϕ(k)) Aixk (9)

The candidate Lyapunov quadratic function is:

V(xk) = xT
kF xk (10)

Theorem 1. The discrete-time T-S fuzzy system presented in Equation (9) is quadratically asymp-
totically stable if there exists a common symmetric matrix F = FT > 0 such that the following LMIs
are feasible [24,25]: {

F > 0
AT

i F Ai − F < 0 ∀ i ∈ In
(11)

where In is a set of natural numbers ranging from 1 to n.

To say that V(xk) = xT
kF xk is a Lyapunov function we must validate these three

conditions that are the stability conditions in (11):

• V > 0;
• V(0) = 0;
• V(xk+1)−V(xk) < 0.

Proof 1. V > 0 gives F > 0, because xT
k .xk > 0, for non-zero vector xk, which is the first

condition in Equation (11), V(0) = 0, which is validated as well. V(xk+1)− V(xk) < 0
gives the second equation of (11). �

Proof 2. Using the Equations (9) and (10):

V(xk+1)−V(xk) = xT
k+1Fxk+1 − xT

kFxk

=
[
∑n

j=1 ξi(ϕ(k))Aixk

]T
F ∑n

i=1 ξi(ϕ(k))Aixk − xT
kFxk

=
[
∑n

i=1 ξi(ϕ(k))xT
kAT

i

]
F[∑n

i=1 ξi(ϕ(k))Aixk]− xT
kFxk

= xT
k

[
∑n

i=1

n
∑

j=1
ξi(ϕ(k))ξj(ϕ(k))

(
AT

i FAj

)]
xk − xT

kFxkx
k
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Let F = ∑n
i=1 ∑n

j=1 ξi(ϕ(k))ξj(ϕ(k)) F

= xk
T

[
∑n

i=1

n
∑

j=1
ξi(ϕ(k))ξj(ϕ(k))

(
AT

i FAj

)]
xk − xk

T

[
∑n

i=1

n
∑

j=1
ξi(ϕ(k))ξj(ϕ(k))F

]
xk

xk
T

[
∑n

i=1

n
∑

j=1
ξi(ϕ(k))ξj(ϕ(k))

(
AT

i FAj − F
)]

xk ≤ xk
T
[

n
∑

i=1
ξi(ϕ(k))

(
AT

i FAj − F
)]

xk

The last two lines called number of inequality reduction: Number of inequality reduction.

If n = 2 : ∑2
i=1 ∑2

j=1 ξi(ϕ(k))ξj(ϕ(k))
(

AT
i FAj − F

)
= ξ1ξ1

(
AT

1 FA1 − F
)
+ ξ1ξ2

(
AT

1 FA2 − F
)
+ ξ2ξ1

(
AT

2 FA1 − F
)
+ ξ2ξ2

(
AT

2 FA2 − F
)

∑2
i=1 ξi

(
AT

i FAj − F
)
= ξ1

(
AT

1 FA1 − F
)
+ ξ2

(
AT

2 FA2 − F
)

= ξ1ξ1

(
AT

1 FA1 − F
)
+ ξ1ξ2

(
AT

1 FA1 − F
)
+ ξ2ξ1

(
AT

2 FA2 − F
)
+ ξ2ξ2

(
AT

2 FA2 − F
)

Ifn = 2 : ∑2
i=1 ξi

(
AT

i FAi − F
)
−∑2

i=1 ξiξj

(
AT

i FAj − F
)
= ξ1ξ2

(
AT

1 FA1 − F
)
+

ξ2ξ1

(
AT

2 FA2 − F
)
−
{
ξ1ξ2

(
AT

1 FA2 − F
)
+ ξ2ξ1

(
AT

2 FA1 − F
)}

= ξ1ξ2

{(
AT

1 FA1 + AT
2 FA2

)
−
(

AT
1 FA2 + AT

2 FA1

)}
(A1 −A2)

TF(A1 −A2)
T > 0

Means AT
1 FA1 −AT

1 FA2 −AT
2 FA1 −AT

2 FA1 > 0

Means ∑2
i=1 ξi(ϕ(k))

(
AT

i FAi − F
)
−∑2

i=1 ∑2
j=1 ξi(ϕ(k))ξj(ϕ(k))

(
AT

i FAj − F
)
> 0

Means V(xk+1)−V(xk) ≤ xk
T
[
∑n

i=1 ξi(ϕ(k))
(

AT
i FAi − F

)]
xk

If the condition AT
i FAi − F < 0 holds, V(xk+1)−V(xk) < 0 and AT

i FAi − F < 0

�

The above LMIs are the sufficient asymptotic stability conditions obtained by the
application of the Quadratic Lyapunov function (10) along the trajectory of the discrete-
time T-S presented in (9).

The existence of matrix F depends on two main conditions that are [26]:

(1) Every matrix must be a Schur matrix.
(2) The matrix product ∏n

i=1 Ai must be Schur.

A is a Schur matrix when the module of each eigen value of matrix A belongs to the
disc of center (0, 0) and radius 1.

3.2. Autonomous Vehicles’ Stabilization

Considering the new PDC formula:

uk = −
n

∑
i=1
ξi(ϕ(k))[Gixk]− [Gixk+1] (12)

Applying a PDC control law on the closed loop discrete-time T-S fuzzy system de-
scribed in (7) we get:{

xk+1 = ∑n
i=1 ∑n

j=1 ξi(ϕ(k))ξj(ϕ(k))ϑijxk − BiGjxk+1

ϑij =
(

Ai − BiGj
) (13)

Hypothesis 1. In this case, the two system matrices (Ai, Bi) are supposed to be controllable. It is
said that the T-S models are locally controllable as described by Euntai and Lee [27].
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Theorem 2. The closed loop of the discrete-time T-S fuzzy system (7) via PDC control law is
globally asymptotically stable if there exists a symmetric matrix F > 0 and matrices Gi, i∈In such
as [28]:

Cdiscrete(ϑii, F) < 0 ∀ i ∈ In (14)

Cdiscrete
(
ϑij, F

)
≤ 0 ∀ (i, j) ∈ I2

n i < j (15)

ξi(ϕ(k)) ξj(ϕ(k)) 6= 0 (16)

Cdiscrete
(
ϑij, F

)
=

[
ϑij + ϑji

2

]T

F
[
ϑij + ϑji

2

]
− F (17)

The first closed loop stabilization condition is Cdiscrete(ϑii, F) < 0, ∀i ∈ In. ij in
Equation (17) is substituted with ii to get the condition:

(Ai − BiGi)
TF(Ai − BiGi)− F < 0. (18)

Multiplying (18) in pre and post by F−1, the following inequality is obtained:

F−1(Ai − BiGi)
TF(Ai − BiGi)F−1 − F−1FF−1 < 0; (19)(

AiF−1 − BiGiF−1
)T

F
(

AiF−1 − BiGiF−1
)
− F−1 < 0. (20)

This inequality will be written as LMI. The Schur complement is used as follows:

• Let the matrices be Q = QT and R = RT;

The following matrix inequalities are equivalent:

R
〈

0, Q− SR−1ST
〉

0 (21)

[
Q ST

S R

]
> 0. (22)

So (−1) is made as a common factor in Equation (20) to get the Schur LMI desired
form (21) as follows:

− (F−1 −
(

AiF−1 − BiGiF−1
)T

F
(

AiF−1 − BiGiF−1
)
) < 0 (23)

F−1 −
(

AiF−1 − BiGiF−1
)T

F
(

AiF−1 − BiGiF−1
)
> 0 (24)

Until now we get the Schur desired form, but there is still bilinearity which is the
multiplication of two unknown variables GiF−1. The solution is to use a simple variable
change as follows:

It is supposed that X = F−1 and Hi = GiF−1; thus, we get the following Linear
Matrix Inequality:

X− (AiX− BiHi)
TF(AiX− BiHi) > 0 (25)

Applying the Schur complement, we get the LMI:[
X ∗

AiX− BiHi X

]
> 0 (26)
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Using the same method for the following stabilization condition coming from the
Quadratic Lyapunov function when we apply:

V(xk+1)−V(xk) < 0 (27)

Cdiscrete
(
ϑij, F

)
≤ 0, ∀ (i, j) ∈ I2

n i < j (28)

We get: [
X ∗

Ai+Aj
2 X− 1

2
(
BjHi + BiHj

)
X

]
≥ 0 (29)

We apply the following theorem described by Euntai and Lee [27]. The aim of this
theorem is to reduce the conservatism of the previous stabilization conditions presented as
LMIs. The theorem uses a several matrices Mij instead of a common matrix M.

Theorem 3. If there exist matrices F = FT > 0, Mij = MT
ij and matrices Gi which verifies:

Cdiscrete(ϑii, F) + Mii < 0, ∀i ∈ In,
Cdiscrete

(
ϑij, F

)
+ Mij ≤ 0, ∀i, j ∈ I2

n
ξi(ϕ(k)) ξj(ϕ(k)) 6= 0.

(30)

where,  M11 · · · M1n
...

. . .
...

M1n · · · Mnn

 > 0 (31)

and,
ϑij =

(
Ai − BiGj

)
, so the discrete-time closed loop system (13) is globally asymptotically stable.

The LMI (26) can be relaxed by using Theorem 3:[
X− Yii ∗

AiX− BiHi X

]
> 0 ∀i ∈ In (32)

The LMI (29) by using the condition Cdiscrete
(
ϑij, F

)
≤ 0 and Theorem 3 is:[

X− Yij ∗
Ai+Aj

2 X− 1
2
(
BjNi + BiHj

)
X X

]
> 0 ∀ (i, j) ∈ I2

n i < j (33)

The first Lyapunov function condition is V > 0 gives F > 0, because xT
k .xk > 0.

This means F > 0 is a stability and stabilization condition.
Multiplying pre and post by F−1 gives:
F−1 FF−1 > 0; gives F−1 > 0, which implies X > 0. Since X = F−1.

X > 0 (34) Y11 · · · Y1n
...

. . .
...

Y1n . . . Ynn

 > 0 (35)

 M11 · · · M1n
...

. . .
...

M1n . . . Mnn

 > 0 (36)
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Yij = XMijX
Gi = HiX−1

∀i ∈ In

(37)

3.3. Developing of Nonlinear Luenberger Observer

Consider the following Luenberger nonlinear observer as follows: x̂k+1 =
n
∑

i=1
ξi(ϕ(k))((Aix̂k + Biuk + Bw

i wk) + Ni(yk − ŷk)).

ŷ(k) = ∑n
i=1 ξi(ϕ(k))Cix̂k.

(38)

The estimation error of the state vector is written as:

∼
xk = xk − x̂k (39)

Knowing that, the dynamics of the state vector error is given by Equations (7) and (38)

∼
xk+1 = xk+1 − x̂k+1 = ∑n

i=1 ξi(ϕ(k))[(Aixk + Biuk + Bw
i wk)]−

∑n
i=1 ξi(ϕ(k))[(Aixk + Biuk + Bw

i wk)] + Ni(yk − ŷk)]
= ∑n

i=1 ξi[Aixk + Biuk + Bw
i wk −Aix̂k − Biuk − Bw

i wk −Niyk + Niŷk]
= ∑n

i=1 ξi(ϕ(k))[Aixk −Aix̂k + Niŷk −Niyk]

= ∑n
i=1 ξi(ϕ(k))

[
Ai(xk − x̂k) + Ni

(
∑n

j=1 ξj(ϕ(k))Cjx̂k

−∑n
i=1 ξi(ϕ(k))Cjxk

)]
= ∑n

i=1 ξi(ϕ(k))
[
Ai
∼
xk + Ni ∑n

j=1 ξj(ϕ(k))Cj(x̂k − xk)
]

= ∑n
i=1 ξi(ϕ(k))

[
Ai
∼
xk −Ni ∑n

j=1 ξj(ϕ(k))Cj(xk−x̂k)
]

= ∑n
i=1 ξi(ϕ(k))

[
Ai
∼
xk −Ni ∑n

j=1 ξj(ϕ(k))Cj
∼
xk

]
∑n

i=1 ∑n
j=1 ξi(ϕ(k))ξj(ϕ(k))αij

∼
xk.

αij = Ai −NiCj , ∀(i, j) ∈ I2
n.

(40)

Indeed, the synthesis of Luenberger observers consists of computing local gains
Ni ∈ In to guarantee the convergence of the estimation error dynamics of the state vector
to 0. In addition, F = FT > 0 and matrices Ni ∈ In should make the following condi-
tions valid:

Cdiscrete(αii, F) < 0, ∀i ∈ In.
Cdiscrete

(
αij, F

)
≤ 0, ∀i, j ∈ I2

n
ξi(ϕ(k)) ξj(ϕ(k)) 6= 0.

Cdiscrete
(
αij, F

)
=

[
αij + αji

2

]T
F
[
αij + αji

2

]
− F (41)

The conditions (41) and (42) secure global convergence of the state error vector. In
addition, these conditions can be written as LMI:[

F
F ∗

Ai+Aj
2 − 1

2
(
HjCj + HjCi

)
F

]
≥ 0 (42)

When i < j.
The Luenberger observers may be enhanced by the next theorem.



J. Sens. Actuator Netw. 2022, 11, 12 11 of 17

Theorem 4. The multiple Luenberger observers are globally asymptotically stable if there exist
symmetric matrices F > 0, Mij and Ni ∈ In that satisfy:

Cdiscrete(αii, F) + Mii < 0, ∀i ∈ In
Cdiscrete

(
αij, F

)
+ Mij ≤ 0, ∀ij ∈ I2

n M11 · · · M1n
...

. . .
...

M1n . . . Mnn

 > 0

ξi(ϕ(k)) ξj(ϕ(k)) 6= 0.
αij = Ai −NiCj, ∀(i, j) ∈I2

n

(43)

The LMIs are given by:

F > 0.[
F−Mii ∗

FAi −HiCi F

]
> 0∀i ∈ In.[

F−Mij ∗
F

Ai+Aj
2 − 1

2
(
HiCj + HjCi

)
F

]
≥ 0∀i < j. i, j ∈ I2

n

M =

 M11 · · · M1n
...

. . .
...

M1n . . . Mnn

 > 0.

Hi = FNi.

(44)

4. Application of the Lateral Control for Autonomous Vehicles

This part will present the T-S model for simulation purposes.
It is clear (5) that the system matrices are nonlinearly linked to the vehicle speed.

This velocity is measured and bounded as follows: vmin ≤ vx ≤ vmax, vmin = 10 m/s,
vmax = 25 m/s.

The vector variables of the measured premise to achieve the vehicle T-S model are
as follows:

θ =
[

vx
1

vx
1

v2
x

]T
∈ R3.

Indeed, by following the description part of the nonlinearity approach of Tanaka and
Wang [29], the right choice will guide us to an exact T-S representation of system (5) with
eight linear subsystems. Nevertheless, the acquired T-S fuzzy system would be massive for
control purposes, mainly for real-time control implementation. Therefore, the factorization
of Taylor will be applied to fully benefit from the relationship between vx, 1

vx
, and 1

v2
x
;

consequently, the numerical difficulty of the suggested control technique can be notably
decreased as follows:

1
vx

=
1
v0

+
1
v1

∆x
1

vx
=

1
v0

+
1
v1

∆x
1

v2
x
=

1
v2

0

(
1 + 2

v0

v1
∆x

)
(45)

The new measured time-varying parameter ∆x ∈
[
−1, 1

]
is used to describe the

variation of vx between its lower and upper bounds vmin, vmax.
The two constants v0 and v1 in (46) are given by:

v0 = 2
vmin vmax

vmin + vmax
, v1 = 2

vmin vmax

vmin − vmax
(46)

Replacing relations (46) in system (5), the premise variable of this system will be
expressed as θ∗ = ∆x. The T-S fuzzy presented in (7) of system (5) has two linear subsystems
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(Ai, Bi, Bw
i ). The following membership functions related to the obtained T-S system are

given by:

ξ1 =
1− ∆x

2
ξ2 = 1− ξ1 (47)

5. Results

In this section, we compare between the discrete-time T-S of [21] and our new PDC
control law design applied to the lateral control for autonomous vehicles. The results
demonstrate the robustness and effectiveness of the improved PDC control law formula.
This idea is original and has not been used before. From (37) and (45), the feedback gains
Gi, the matrix F, and the gain Ni are of the form:

F = X−1.
Gi = HiF.
Hi = FNi.

(48)

In this part, we present the results of the lateral control of autonomous vehicles for T-S
presented by [21], the methods used by [5–7] and the new formulation of the PDC control
law. Based on (49), The F matrix is symmetric and positive definite as we can see below, this
form of F applied to the Quadratic Lyapunov function ensures the ellipsoid convex shape
with a global minimum which is zero. Implies we are studying the global asymptotique
stability of the autonomous vehicle controller and observer. We get the following gains
and matrices:

F = e−03



0.0513 0.0139 0.0693 0.0120 0.1275 0.0070
0.0139 0.0062 0.0235 0.0041 0.0400 0.0025
0.0693 0.0235 0.1267 0.0196 0.21158 0.0121
0.0120 0.0041 0.0196 0.0051 0.0368 0.0019
0.1275 0.0400 0.2158 0.0368 0.4979 0.0266
0.0070 0.0025 0.0121 0.0019 0.0266 0.0029


The Lateral controller gains to ensure the autonomous vehicle lateral control called

also steering control based on the improved PDC control law are:

G1 = [538.7210 88.1555 137.5593 21.1442 −146.3325 −56.7097]

G2 = [545.2576 58.9360 139.5243 21.1255 −148.8607 −56.7512].

The multi-observer gains are presented as follows:

N1 = e03



0.0116 0.0007
0.0828 − 0.0020
0.0285− 0.0003
0.2673− 0.0020
−0.0196− 0.0273

9.3447 7.3696

,

N2 = e04



0.0026 0.0000
0.0152− 0.0001
0.0076− 0.0000
0.0624 − 0.0001
0.0074− 0.0023
−1.2496 0.6264

.

The following figures present a combined scenario applied for autonomous vehicles.
Firstly, we test the control input saturation, which means that we make the assumption that

the vehicle system will not start from the origin. The state vector x0 = [0; 0.01; 0.02; 0; 0; 0.3],



J. Sens. Actuator Netw. 2022, 11, 12 13 of 17

which is not the system equilibrium points, for example, the lane centreline. It can be
clearly observed that our two T-S systems converge all the state variables to zero, but the
system control based on the new PDC law formulation converges faster and shows more
robustness than the first T-S controller shows. The system dynamic is subjected to a lateral
wind force of 500 Newton. Figure 2 of the classic PDC controller shows a remarkable robust
stabilization. The six states given by the classic PDC controller are illustrated in Figure 3.
Figure 4 presents the stabilization based on the new PDC controller. Figure 5 of the new
PDC control design, shows that the six states converge to the equilibrium point zero, which
proves that the autonomous vehicle is in the centreline of the lane. In others, our model is
tested in terms of disturbance mitigation. Our model showed robustness and effectiveness
against disturbances.

As shown in the following figures, the new PDC controller stabilizes the state vector
variable faster than the classic PDC controller does.

Table 2 below shows that the sideslip angle converges to zero. It takes 10 s when using
the classic PDC controller and 7 s when using the new PDC controller design. The yaw rate
converges in 12 s using the classic PDC controller while it takes 11 s using the new PDC
controller. The lateral deviation and the heading error share the same time for both cases
as well as the steering angle; however, it can be observed that the behavior of the lateral
deviation error of the new PDC controller is better than the classic one, because we do not
have an overshoot in this case. As seen in Figure 3d, the heading error was 290 degree
using the classic PDC controller, while in Figure 5d; the heading error is only 95 degree
using the new PDC controller. This implies a reduction of 67.24 percent. On the other hand,
the steering rate takes 8 s for the classic PDC, while it takes 10 s for the new PDC design.
Nevertheless, the improvement is in the term of degree per second, which is better than the
case of the new PDC controller.

Table 2. Comparison between states time convergence.

States Classic PDC (second) Improved PDC (second)

Sideslip 10 7
Yaw rate 12 11

Lateral deviation 8 8
Heading error 8 8
Steering angle 8 8
Steering rate 8 10
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Figure 3. The stabilization of the autonomous vehicle six states using the classic PDC control law:
(a) Sideslip using the classic PDC law; (b) Yaw rate using the classic PDC law; (c) Lateral deviation
error using the classic PDC law; (d) Description of what is contained Heading error using the classic
PDC law; (e) Steering angle using the classic PDC law; (f) Steering rate using the classic PDC law.

These results confirm the robustness and the effectiveness in terms of stabilization and
improvement of lateral control as shown in the previous figures. We notice also that all
trajectories of the vehicle T-S fuzzy system converge to zero.
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Figure 5. The stabilization of the autonomous vehicle six states using the improved PDC control
law: (a) Sideslip using the improved PDC law; (b) Yaw rate using the improved PDC law; (c) Lateral
deviation error using the improved PDC law; (d) Description of what is contained Heading error
using the improved PDC law; (e) Steering angle using the improved PDC law; (f) Steering rate using
the improved PDC law.
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6. Conclusions

We proposed in this paper an improved Parallel Distributed Compensation law for lat-
eral control purpose, suggesting new steering control architecture of autonomous vehicles.
The vehicle system has been defined by discrete-time T-S model. This method relies on the
use of a quadratic Lyapunov function, which is easy to implement, and LMIs techniques
for the optimization goal, in particular to get the matrices and gains values that ensures
the global asymptotic stability of the system and the multiobserver. We also computed
the true values of the state vector using multiple Luenberger observers. Moreover, in this
paper, we compared the lateral control results given by the new formulation of the PDC
law with the improved classic one [21]. As shown, the two lateral controllers converge the
autonomous vehicles states to the equilibrium point and ensure the lane keeping under
various constraints. In this paper, the improved PDC control law ensures relaxed results,
and faster convergence comparing to the classic one. This method is simple and effective
than the nonquadratic methods presented previously in some references [5–7] in this paper.
This method can be a real interest in other related applications e.g., drone control, underwa-
ter autonomous vehicles and autonomous ship control. The effectiveness of the proposed
method is clearly illustrated via different figures.
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