

Effects of Increased N Deposition on Leaf Functional Traits of Four Contrasting Tree Species in Northeast China

Attaullah Khan^{1,+}, Sun Jingjue^{1,+}, Nowsherwan Zarif^{1,2}, Kashif Khan¹, Muhammad Atif Jamil¹, Yang Lixue^{1,+}, Brent Clothier³, and Boris Rewald⁴

³ Sustainable Production, New Zealand Institute for Plant & Food Research Limited, Tennent Drive, Palmerston North, 4474, New Zealand; <u>Brent.Clothier@plantandfood.co.nz</u> (B.C)

⁴ Forest Ecology, Dept. Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria; <u>boris.rewald@boku.ac.at</u> (B.R)

*Corresponding Author: (email: ylx_0813@163.com)

+ A.K. and S.J. contributed equally to this work.

Supplementary Materials

Supplementary Table S1 The ANOVA results of tree species, N deposition level, and their interaction on biomass parameters of two-year-old seedlings of *Fraxinus mandshurica*, *Tilia amurensis* (both Angiosperms), *Pinus koraiensis* and *Larix gmelinii* (both Gymnosperms) in NE China at two treatments. Treatments are control (C; no additional nitrogen (N) deposition) and 10 g N m⁻² yr⁻¹ (Fert) additional N deposition. RMF; root mass fraction, SMF, stem mass fraction, LMF; leaf mass fraction, df degrees of freedom

Source of variation	df	Plant biomass	RMF	SMF	LMF	Root: shoot
Species (Spec)	3	<0.001	<0.001	<0.001	<0.001	<0.001
N deposition	1	0.001	0.001	0.387	0.001	0.001
Spec × N	3	0.289	0.160	0.045	0.048	0.270

P-values in the bold indicates significant effects

¹Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, P. R. China; <u>khan.aup252@gmail.com</u> (A.K); <u>jue_mz@126.com</u> (S.J); <u>noshu2002@gmail.com</u> (N.Z); <u>kashifkhanses@gmail.com</u> (K.K); <u>ati_eagle2007@live.com</u> (M.J); <u>ylx_0813@163.com</u> (Y.L)

² Pakistan Forest Institute Peshawar, Pakistan (PFI)

Supplementary Table S2 Plant biomass and its distribution to organs of two-year-old seedlings of *Fraxinus mandshurica, Tilia amurensis, Pinus koraiensis,* and *Larix gmelinii* at control (C; no additional nitrogen (N) deposition) and after 10 g N m⁻² yr⁻¹ (Fert) additional N deposition in NE China. See Supplementary Table 1 for 2-way ANOVA results; significant differences between N deposition levels per species are indicated by different lower-case letters (Tukey's HSD post hoc; P < 0.05; mean±SE);

root mass fraction (RMF), stem mass fraction (SMF), leaf mass fraction (LMF)

Species	N deposition level	Plant biomass (g)	RMF	SMF	LMF	Root: shoot
F. mandshurica	С	32.1±2.26 a	0.44±0.03 a	0.22±0.01 a	0.34±0.03 a	0.80±0.08 a
	Fert	40.3±2.86 b	0.40±0.02 b	0.23±0.00 a	0.37±0.02 b	0.67±0.05 b
T. amurensis	С	25.9±1.04 a	0.41±0.01 a	0.31±0.01 a	0.28±0.01 a	0.70±0.03 a
	Fert	40.0±2.81 b	0.31±0.02 b	0.32±0.00 a	0.38±0.02 b	0.45±0.05 b
P. koraiensis	С	11.7±2.65 a	0.37±0.01 a	0.39±0.01 a	0.24±0.01 a	0.58±0.01 a
	Fert	19.9±2.92 b	0.32±0.01 b	0.41±0.00 a	0.27±0.00 b	0.48±0.01 b
L. gmelinii	С	21.7±1.82 a	0.43±0.01 a	0.31±0.01 a	0.26±0.01 a	0.77±0.03 a
	Fert	37.2±2.02 b	0.36±0.01 b	0.29±0.00 a	0.35±0.01 b	0.57±0.02 b

Note: The different letters in the same line indicate significant differences among the N deposition levels (P<0.05)

Supplementary Figure S1 Increase in plant height (cm; Jun-Sept. 2018) in *Fraxinus mandshurica* (a), *Tilia amurensis* (b), *Pinus koraiensis* (c), and *Larix gmelinii* (d) at control (C; no additional nitrogen (N) supply; black bars) and after 10 g N m⁻² yr⁻¹ (Fert; grey bars) additional N deposition in NE China. Within species, significant differences between N deposition levels are indicated by different lower-case letters (Tukey's HSD post hoc; P < 0.05; mean±SE)

Supplementary Figure S2 Increase in collar diameter (cm; Jun-Sept. 2018) in *Fraxinus mandshurica* (a), *Tilia amurensis* (b), *Pinus koraiensis* (c), and *Larix gmelinii* (d) at control (C; no additional nitrogen (N) supply; black bars) and after 10 g N m⁻² yr⁻¹ (Fert; grey bars) additional N deposition in NE China. Within species, significant differences between N deposition levels are indicated by different lower-case letters (Tukey's HSD post hoc; P < 0.05; mean±SE)

Supplementary Table S3 Pearson's correlation coefficients of leaf morphological and anatomical traits and biomass growth /parameters of two-year-old saplings of angiosperms (*Fraxinus mandshurica, Tilia amurensis*) at control (C; no additional deposition) and after 10 g N m⁻² yr⁻¹ (Fert) additional nitrogen deposition in NE China. Abbreviations: leaf mass per area (LMA), leaf thickness (LT), leaf density measured (LDDM/LV), conduit diameter (CD), vascular bundle diameter (fraction (LMF)

	Leaf len	gth	Leaf	width	LN	ИA	L	Т	LDL	MA/LT	C	D	VI	BD	PN	ΛT	SN	ΛT	Al	DE	Al	BE	S	SL.	Bior	nass	RI	MF	SN	ЛF	LMF	Root: shoot
	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	C I	ert C Fert
Leaf length	1	1																														
Leaf width	.973**	.983**	1	1																												
LMA	788	802	904*	898*	1	1																										
LT	884*	873*	965**	948**	.984**	.991**	1	1																								
LDlma/lt	.798	.191	.675	.024	322	.379	486	.253	1	1																						
CD	.998**	.991**	.982**	.985**	814*	827*	901*	889*	.762	.109	1	1																				
VBD	483	263	648	429	.897*	.764	.808	.673	.117	.866*	526	322	1	1																		
PMT	929**	916*	987**	974**	.959**	.974**	.994**	.995**	570	.171	941**	927**	.749	.605	1	1																
SMT	735	718	862*	831*	.993**	.984**	.961**	.956**	229	.517	765	750	.935**	.846*	.928**	.929**	1	1														
ADE	487	477	662	628	.917*	.901*	.834*	.839*	.051	.688	522	516	.969**	.954**	.772	.784	.947**	.938**	1	1												
ABD	.410	.546	.191	.384	.221	.059	.051	069	.747	.805	.364	.506	0.520	.610	053	165	.284	.166	.548	.464	1	1										
SL	.977**	.993**	.915*	.964**	658	757	783	836*	.906*	.267	.964**	.985**	292	186	844*	884*	589	657	315	413	.552	.594	1	1								
Biomass	732	133	749	034	.751	194	.781	108	446	679	724	004	.603	508	.786	063	.755	252	.664	351	170	435	660	127	1	1						
RMF	392	698	491	795	.494	.908*	.485	.890*	206	.393	435	757	.375	.733	.475	.869*	.477	.870*	.395	.844*	.284	.102	362	688	.004	474	1	1	_			
SMF	.883*	.960**	.957**	.992**	956**	925**	984**	964**	.549	059	.895*	.971**	739	510	982**	982**	929**	865*	801	693	019	.310	.805	.939**	808	.047	517	853*	1	1		
LMF	721	182	731	045	.728	276	.766	181	477	659	701	085	.567	598	.772	112	.710	299	.624	520	193	684	653	168	.928**	.833*	162	566	761	.052	1	1
Root:shoot	409	693	513	793	.520	.911*	.511	.893*	213	.393	452	752	.399	.727	.500	.871*	.502	.872*	.420	.844*	.294	.116	376	684	.020	474	.999**	.997**	540	846*	135	573 1 1

Note: *, ** indicates significant differences between N deposition levels at 0.05 and 0.01 levels (in bold), respectively; changes of significance of correlation between N deposition levels are highlighted by frames

Supplementary Table S4 Pearson's correlation coefficients of leaf morphological and anatomical traits and biomass growth /parameters of two-year-old saplings of gymnosperms (P. koraiensis, L. gmelinii) at control (C; no additional deposition) and after 10 g N m⁻² yr⁻¹ (Fert) additional nitrogen deposition in NE China. Abbreviations: leaf mass per area (LMA), leaf thickness (LT), leaf density estimated (LDDM/LV), conduit diameter (CD), vascular bundle diameter (VBD), mesophyll thickness (MT), resin duct diameter (RD), stomata pore length (SL), root mass fraction (RMF), stem mass fraction (SMF), and leaf mass fraction (LMF)

	Leaf length		Leaf width		n LMA		Ľ	LT		LD _{DM/LV}		CD		3D	Μ	ĨT	R	D	S	SL	Bio	mass	RMF		SMF		LMF	Root:sh	
	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	С	Fert	C Fert
Leaf length	1	1																											
Leaf width	.973**	.964**	1	1																									
LMA	.979**	.984**	.990**	.983**	1	1																							
LT	.991**	.989**	.982**	.957**	.995**	.982**	1	1																					
LD _{DM/LV}	.895*	.916*	.967**	.962**	.946**	.958**	.921**	.887*	1	1																			
CD	.994**	.988**	.960**	.933**	.979**	.969**	.990**	.996**	.870*	.863*	1	1																	
VBD	.983**	.992**	.995**	.976**	.995**	.990**	.990**	.994**	.941**	.918**	.979**	.986**	1	1															
MT	103	279	.092	120	021	203	082	367	.293	.082	185	410	.001	306	1	1													
RD	.984**	.958**	.946**	.899*	.963**	.935**	.976**	.981**	.837*	.796	.994**	.986**	.971**	.969**	218	529	1	1											
SL	.955**	.987**	.990**	.977**	.986**	.992**	.975**	.968**	.949**	.963**	.949**	.960**	.990**	.985**	.065	165	.917*	.910*	1	1									
Biomass	958**	991**	967**	966**	955**	984**	963**	989**	919**	909*	932**	984**	959**	998**	072	.324	896*	963**	965**	985**	1	1	_						
RMF	833*	802	751	775	815*	832*	844*	878*	590	677	878*	873*	-0.806	843*	.547	.573	922**	902*	791	769	.763	.829*	1	1					
SMF	.844*	.910*	.739	.824*	.807	.887*	.837*	.950**	.576	.718	.893*	.964**	0.799	.918**	599	615	.937**	.987**	.749	.858*	709	917**	966**	940**	1	1			
LMF	594	923**	466	810	520	872*	544	942**	352	705	636	964**	-0.518	913*	.533	.607	668	984**	399	863*	.341	.920**	.563	.859*	758	982**	1	1	
Root:shoot	826*	798	747	772	812*	831*	838*	875*	587	677	873*	870*	-0.803	840*	.545	.570	918**	899*	790	768	.755	.826*	1.000**	1.000**	963**	937**	.555	.855*	1 1

Note: *, ** indicates significant differences between N deposition levels at 0.05 and 0.01 levels (in bold), respectively; changes of significance of correlations between N deposition levels are highlighted by frames

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).