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Abstract: Rhodolith beds (RBs) are bioconstructions characterized by coralline algae, which provide
habitat for several associated species. Mediterranean RBs are usually located in the mesophotic
zone (below 40 m), and thus are frequently remote and unexplored. Recently, the importance and
vulnerability of these habitats have been recognized by the European Community and more attention
has been drawn to their investigation and conservation. This study reports the results of an extensive
monitoring program, carried out within the Marine Strategy Framework Directive (2008/56/EC),
in six sites off the Campania coast (Italy, Mediterranean Sea). New insights were given into the
distribution, cover, vitality (i.e., live/dead rhodolith ratio), structural complexity, and coralline algae
composition of RBs. Remotely operated vehicles (ROV) investigations allowed the description of
several RBs, and the discovery of a RB with rhodolith cover >65% offshore the Capri Island. Only two
sites (Secchitiello and Punta Campanella) showed a very low mean cover of live rhodoliths (<10%);
hence, not being classifiable as RBs. The collected rhodoliths were mostly small pralines (~2 cm),
spheroidal to ellipsoidal, with growth-forms ranging from encrusting/warty to fruticose/lumpy.
Coralline algae identification revealed a high diversity within each bed, with a total of 13 identified
taxa. The genus Lithothamnion dominated all sites, and Phymatolithon calcareum and Lithothamnion
corallioides, protected by the Habitats Directive (92/43/EEC), were detected in all RBs.

Keywords: rhodolith beds; coralline algae; maerl; ROV; biogenic habitats; Tyrrhenian Sea

1. Introduction

Rhodolith beds (RBs) are biogenic habitats formed by unattached, non-geniculate coralline algae
(CA; Corallinophycidae, Rhodophyta) [1]. Rhodolith sizes range from 1 to 10 cm, varying from
highly branched to roundish shapes [2–4]. These habitats have a worldwide distribution, having been
described in tropical [5–7], temperate [8–11], and polar [12–14] regions, from the low intertidal zone to
depths over 150 m [4,15].

RBs are ecosystem engineers, which create 3D biogenic habitats [1] for epiphytes and benthic
invertebrates (both epifauna and infauna) [16–18], supporting higher species richness than nearby
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sedimentary habitats [3,4,19,20]. They provide critical ecosystem services, being settlement sites and
nursery grounds for species of commercial interest [4,21]. In some rare cases, RBs are exploited through
direct extraction for soil improvement [22] or may undergo indirect extraction as relict sand for beach
nourishment by dredging [23]. RBs are also relevant in climate regulation, through their role in
CO2 uptake, primary production, and carbonate production [1,24]. Moreover, through their CaCO3

production and dissolution, they contribute to the carbonate cycle of continental shelf ecosystems [6,25].
RBs are threatened by habitat degradation and loss of structural heterogeneity due to anthropogenic

impacts, which can hamper the functioning of these habitats [26]. Rhodoliths are often fragile
(particularly unattached branches), and their growth rate is on the order of 1 mm year−1, also depending
on environmental factors as light and temperature [4,24,27]. For these reasons, RBs are highly affected
by mechanical damage due to extraction of calcareous sediments and bottom fisheries [28–31].
Fish farms and aquaculture can threat these habitats too, by enhancing sedimentation rates and water
turbidity [32,33]. Finally, CA, and consequentially RBs, are likely to be negatively affected by both
ocean warming and acidification [24,34–36].

RBs have been classified as a non-renewable resource [1,37–39], and their vulnerability has been
recognized worldwide though the adoption of several protection instruments. The Habitats Directive
(92/43/EEC) [40] included the two species, Phymatolithon calcareum (Pallas) W.H.Adey and D.L.McKibbin
ex Woelkering and L.M.Irvine and Lithothamnion corallioides (P.Crouan and H.Crouan) P.Crouan and
H.Crouan, among those species subjected to exploitation and for which Member States have to ensure
effective conservation measures. Mediterranean RBs have been recently included among the habitats of
special interest within the Marine Strategy Framework Directive (MSFD,-2008/56/EC) [41,42], aiming at
achieving the “Good Environmental Status” (GES) of all marine waters by 2020. Thus, the assessment
of RBs distribution and biodiversity has been included within the protocol to evaluate the GES [1].

In the Mediterranean Sea, RBs, together with Posidonia meadows, coralligenous and vermetid
bioconstructions, are considered as marine benthic habitats of high conservation interest and hotspots
of biodiversity [43–55]. They are typically found around islands and capes, on submarine plateaux,
seamounts, marine terraces, channels and banks [9,53], and frequently occur in the mesophotic zone,
mostly at about 30–75 m depth [4], with the deepest bed discovered on the top of a seamount in the
Balearic Sea (~150 m) [15]. They rarely occur at shallower depths, as for Atlantic RBs [1,53].

The current knowledge of their geographic distribution is still fragmented and incomplete,
resulting in a wide but patchy distribution along the Mediterranean coasts [53]. This lack of information
is due to the remoteness of these habitats, and consequently to expensive and time-consuming sampling
efforts [1,56]. Remotely operated vehicles (ROVs) are fundamental instruments currently employed to
explore and monitor deep habitats, with non-destructive and standardized protocols [57–61], or to
evaluate the impact of fishing activities in coastal ecosystems [62–64]. ROV video/image analyses have
been included in the monitoring protocol of RBs within the MSFD, in order to obtain useful data on the
RB distribution and status [1]. Nevertheless, this method does not provide reliable information on RB
coralline species compositions [1].

Mediterranean RBs are characterized by a higher CA biodiversity than NE Atlantic beds, which are
usually monospecific/oligospecific, and mainly composed by Phymatolithon calcareum and Lithothamnion
corallioides [53,65]. Moreover, RBs can be structured by a suite of combinations of rhodolith shapes
and growth-forms [1,53], depending on the species, sedimentation, hydrodynamism, and seabed
morphology [8,66,67], concurring to increase the RB complexity, which in turn influences the diversity
and abundance of associated assemblages [3,19,68].

This study reports the results of an extensive regional-scale monitoring program, carried out
within the MSDF, to provide new insights into the distribution, ecological status, and CA composition
of deep Mediterranean RBs occurring off the Campania coast (Italy).
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2. Materials and Methods

2.1. Study Area

Surveys were carried out in 2017 and 2018, at depths ranging from 42 to 78 m, in six sites off the
Campania coast (SW Italy, Mediterranean Sea), within the Italian monitoring program of the MSFD.
Sites were chosen based both on previous records of coralline algal deposits along the Campania
coast [69–72], and on the empirical knowledge of fishermen. Moreover, morpho-bathymetric data
(multibeam echosounder and side-scan sonar) were used to corroborate the sites selection. Four sites
were selected within the Gulf of Naples: Capri, Punta Campanella, Secchitiello, and Ischia; and two
sites off the Cilento coast: Acciaroli A and Acciaroli B (Figure 1, Table 1).
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Figure 1. Map of the investigated sites along the Campania coast (Tyrrhenian Sea, Italy). Gulf of
Naples’ sites: Capri (CA), Punta Campanella (PC), Secchitiello (SE), and Ischia (IS). Cilento coast’ sites:
Acciaroli A (AA) and B (AB).

Table 1. Resuming data of sampling sites.

Site Latitude Longitude Time
Period

ROV
Routes’
Depth

Grab
Samples’

Depth

Capri (CA) 40◦32’20.545” N 14◦13’17.653” E Jul-18 42–64 m 55–59 m
Punta Campanella (PC) 40◦34’26.08” N 14◦19’19.049” E Jul-18 53–62 m 52–62 m

Secchitiello (SE) 40◦34’45.538” N 14◦17’15.261” E Aug-18 70–78 m 68–72 m
Ischia (IS) 40◦46’34.774” N 13◦53’49.401” E Apr-17 58–73 m 62–72 m

Acciaroli A (AA) 40◦8’9.582” N 15◦3’46.011” E Jul-17 49–52 m 48–49 m
Acciaroli B (AB) 40◦6’37.685” N 15◦3’39.149” E Jul-17 65–73 m 62–65 m

2.2. Remote Data Acquisition and Analysis

Seafloor data were collected both by a Reson Sea Bat 8125 Multi-Beam Echo-Sounder (MBES) and
a Side-Scan Sonar (SSS) Klein 3900 dual frequency system (100/500 kHz), which provided imagery with
a high level of seabed resolution (100% coverage possible). SSS images were used to evaluate a possible
extent of the rhodolith deposits on the base of sediment texture [73,74]. In fact, SSS backscatter is
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shadowed according to a grey scale of pixels. Each shade corresponds to a combination of RGBA colour
(i.e., black: 0,0,0,255; white: 255,255,255,255), which is in turn associated to a colour index, varying from
0 (black, highest backscatter signal) to 150 (white, lowest backscatter signal). Comparing SSS with ROV
images and direct samples of seabed, rhodolith deposits resulted to be associated to colour indices
ranging between 0 and 90 (Figure 2). Pixels within this colour index range were automatically selected.
The analysis was carried out using ArcGis 10.7.1 software.
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Figure 2. Example of rhodolith deposits definition by ArcGis 10.7.1 software (Acciaroli B site):
(a) ROV point on backscatter pixel. (b) Colour index and associated RGBA. (c) Frequency histograms
of pixels’ colour index in the side-scan sonar (SSS) image (frequencies range from 0 to 90).

Seabed videos were made through a ROV (“Perseus” of Ageotec) equipped with a high definition
video camera (DVS-3000 high definition), two lights, two parallel laser beams at the fixed distance
of 14.5 cm for the evaluation of the image surface. The ROV also hosted a navigation camera with
underwater positioning system USBL (Ultra Short Base Line System), interfaced with the on-board
navigation system, which allows to determine the real time geographical position and the ROV depth.
Moreover, in order to estimate potential changes in time within the same area, reconstruction of the
ROV routes was performed with the aim of being replicated in future monitoring programs.

At each site, three ROV video-routes were carried out, with a length of ca. 200 m each and a
distance of at least 50 m from each other, covering a surface of ca. 1800 m2, calculated from the ROV
routes’ length and the ROV camera field of vision (ca. 0.5 m). ROV videos were displayed using the
software VisualSoft®, allowing the vision of HD videos with overlay of navigation data. A visual
assessment of the sea bottom, characterized by rhodolith occurrence, was carried out on 60 images for
site, for a total of 360 video frames analysed. The video frames were obtained extrapolating images
(each 10 s) from the video tracks using the software DVDVideoSoft®. Videos’ and photos’ analyses
were carried out according to the monitoring protocol for deep Mediterranean RBs, developed within
the MSFD [75]. In particular, the total percentage cover (both live and dead thalli), the vitality
(i.e., live vs. dead ratio [76]), and the predominant morphotypes (i.e., pralines, boxwork rhodoliths,
and unattached branches [10]) of rhodoliths were analysed. The total (live and dead thalli) percentage
cover is a more complete data with respect to the only live thalli cover (considered by MSFD
protocol [75]), which does not allow to evaluate the eventual presence of RBs characterized by only
dead thalli. Of course, the live thalli cover can be easily calculated by our data, since the live/dead
rhodolith ratio was also reported.

In order to carry out bathymetric analyses, video frames from each site were divided into two
depth intervals: “shallow”, within 40 and 59 m, and “deep”, within 60 and 79 m, while to test whether
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there was a significant effect of bottom sediment type on rhodolith cover and vitality, video frames were
divided into two main categories: “fine” and “coarse” sediments (Table 2). The influence of depth and
sediment on rhodolith cover and live/dead rhodolith ratio was assessed using univariate techniques.
Data, checked with the Shapiro–Wilk’s test, were not normally distributed; thus, non-parametric tests
were applied. Specifically, univariate PERMANOVAs based on similarity matrixes computed using
Euclidean distances [77,78] were applied to avoid any assumption about the distribution of the
variables [79]. Pairwise tests were run to estimate differences between pairs of sites. Analyses were
performed using PAST software for Windows, version 3.16 [80]. Results are expressed as mean
± standard deviation (SD), and p is the significance.

Table 2. Summary of prevalent (>75% of analysed video frames) depth interval and substrate type at
the different sites. “shallow”, 40–59 m; “deep”, 60–79 m.

Site Depth Interval Substrate Type

Capri (CA) Shallow Coarse
Punta Campanella (PC) Shallow Coarse

Secchitiello (SE) Deep Fine
Ischia (IS) Deep Fine

Acciaroli A (AA) Shallow Coarse
Acciaroli B (AB) Deep Fine

2.3. Collection and Morphological Characterization of Rhodoliths

Three random samples were collected using a 25 l Van-Veen grab within each site, in the spots
detected via ROV characterized by the highest rhodolith cover. Collected rhodoliths were cleaned to
remove sediment and epiphytic organisms, air dried for at least 48 h and stored in the dark in zipper
bags with silica gel.

Rhodoliths were classified following MSFD protocol [75] in pralines, boxwork rhodoliths,
and unattached branches morphotypes. Results on rhodolith morphology were then plotted in
a ternary diagram using the software Origin.

Rhodolith shapes were obtained by measuring the long (L), intermediate (I), and short (S) axes [81].
This provided data for plotting shapes on Sneed and Folk’s pebble shape diagram [82]. Finally,
the rhodolith size was calculated using the volume of an ellipsoid [8], and data were reported in box
plots using Origin software.

2.4. Coralline Algal Identification

A preliminary sorting of the CA samples was carried out at the stereomicroscope.
Taxonomic identifications were carried out by scanning electron microscope SEM (Nova NanoSem
450-FEI-Thermo Fisher, Scientific, Waltham, MA, USA), following [83]. The identification
of non-geniculate red algae follows the specialized literature and algal taxonomy follows
Algaebase ([84] and references therein).

After the sorting, each sample was disposed on a 35 × 35 cm2 square, and then photographed
to obtain high resolution images. For each square/image, the percentage cover of each taxon was
estimated by the image analysis software VidAna 1.0 [85].

3. Results

3.1. Remote Data

Rhodolith deposits were found at all the investigated sites, although their cover varied among
sites. SSS data, together with ROV data and direct seabed samples, allowed the evaluation of the
areal extension of each rhodolith deposit (Figure 3). The wider investigated deposit was the one off

the Cilento coast, covering an area of ca. 8.49 km2, where the two sites Acciaroli A and B are present
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(Figure 3e). It was followed by Secchitiello (ca. 0.37 km2; Figure 3b), Capri (ca. 0.13 km2; Figure 3d),
Ischia (ca. 0.11 km2; Figure 3a), and Punta Campanella (ca. 0.03 km2; Figure 3c).
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Figure 3. Side-scan sonar images overlaid with maps for the sites of Ischia (a), Secchitiello (b),
Punta Campanella (c), Capri (d), and Acciaroli A and B (e), showing a possible extension of the
rhodolith deposits. Red polygons localize the rhodolith deposits. Dotted lines mean that the rhodolith
deposits could be wider with respect to the established boundaries. Blue lines and white stars indicate
ROV routes and grab sampling points, respectively. Coloured dots indicate the total (live and dead)
rhodolith cover (%) of each ROV video frame.

Depth significantly affected rhodolith cover (PERMANOVA, p < 0.001), with higher cover values
detected in shallower waters (40–59 m). Likewise, cover was significantly influenced by sediment
typologies (PERMANOVA, p < 0.001), with higher values in concurrence with coarse sediment.
Significant differences in terms of rhodolith cover were also found among sites (PERMANOVA,
p < 0.001). Video frames showed that the two shallower sites (i.e., Capri and Acciaroli A; Table 1)
were characterized by the highest mean rhodolith cover (66 ±14 and 60 ±4%, respectively; Figure 4,
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Figure 5a). Punta Campanella and Secchitiello showed mean rhodolith cover lower than 10% (5 ± 28
and 2 ± 21%, respectively). Intermediate cover values were registered at Ischia and Acciaroli B (47 ± 27
and 40 ± 10%, respectively).Plants 2020, 9, x FOR PEER REVIEW 8 of 18 
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Ischia; AA, Acciaroli A; AB, Acciaroli B. Different letters (a, b, and c) indicate significant differences
between sites.

No significant difference in live/dead rhodolith ratio was detected between the two depth
intervals and the two substrate types considered (PERMANOVA, p = 0.163 and 0.156, respectively).
Significant differences in terms of live/dead rhodolith ratio were found among the explored sites
(PERMANOVA, p < 0.001). In particular, the lowest percentages of dead thalli were observed at Capri
(16 ± 8%), Punta Campanella (17 ± 12%), Secchitiello (12 ± 17%), and Acciaroli B (14 ± 9%) sites;
the highest percentages of dead thalli were detected at Ischia and Acciaroli A sites (26 ± 15 and 76 ± 8%,
respectively; Figure 5b).

ROV data showed that pralines were the prevalent morphotype characterizing Capri,
Punta Campanella, Secchitiello, and Acciaroli B. At Ischia, the prevalent morphotype was pralines in
73% of the analysed video frames, while boxwork rhodoliths were the most abundant morphotype in
the remaining 27% of frames. Finally, Acciaroli A was characterized by a prevalence of unattached
branches in all the video frames.
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3.2. Rhodolith Morphology

Rhodolith growth forms varied from fruticose/lumpy to warty and encrusting (Figure 6a).
Pralines were the predominant morphotype within all sites (except Acciaroli A) (Figure 6b),
confirming the observations acquired by the ROV. In detail, this morphotype was the only found in all
the samples collected at Punta Campanella and Secchitiello. Capri was mostly characterized by pralines
too, even if few unattached branches (<5%) were also collected in one of the three samples. Ischia was the
only site where multi-specific boxwork rhodoliths were collected, although the prevalent morphotype
was pralines (>70% in all samples), followed by boxwork rhodoliths and unattached branches. Finally,
Acciaroli A was characterized by the dominance of fragmented (0.6–10 mm length and 0.2–0.3 mm
diameter) and brownish unattached branches (>70% in all samples), followed by pralines; Acciaroli B
was primarily composed by pralines (>84% in all samples), and then by unattached branches.

The sphericity diagram showed a majority of ellipsoidal to spheroidal shapes for all sites (Figure 6c).
The mean rhodolith size was relatively small in all sites, ranging from 21.8 mm ± 8.5 in Capri to
10.6 mm ± 6.1 in Secchitiello (Figure 6d).Plants 2020, 9, x FOR PEER REVIEW 9 of 18 
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Figure 6. Collected rhodoliths and graphic analyses of their morphology, shape, and size. (a) Detail of
collected rhodoliths from MS18-CA1 sampling, from Capri Island, 59 m depth. (b) Ternary plot of the
main morphotypes (i.e., pralines, boxwork rhodoliths, and unattached branches). Each symbol indicates
one of the three random samplings collected within each site. (c) Shape classification of rhodoliths using
Sneed and Folk’s pebble shape diagram [82]. Long (L), intermediate (I), and short (S) axes of rhodoliths.
(d) Box plot showing size range of rhodoliths calculated as the volume of an ellipsoid, following [8];
hence, unattached branches were not considered for size measurements. n = 120, except Acciaroli
A, where n = 45. CA, Capri; PC, Punta Campanella; SE, Secchitiello; IS, Ischia; AA, Acciaroli A; AB,
Acciaroli B.
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3.3. Taxonomic Composition of Coralline Algae

Most of the rhodoliths observed during the sorting were monospecific, although some
oligospecific samples occurred (i.e., boxwork rhodoliths). Thirteen CA taxa were identified, 10 of
which at the species level: Lithophyllum racemus (Lamarck) Foslie (Figure 7a,b), Lithophyllum sp.,
Lithothamnion corallioides (P.Crouan and H.Crouan) P.Crouan and H.Crouan, Lithothamnion crispatum
Hauck, Lithothamnion minervae Basso (Figure 7c,d), Lithothamnion sonderi Hauck, Lithothamnion valens
Foslie, Lithothamnion spp., Mesophyllum sp., Neogoniolithon hauckii (Rothpletz) R.A.Townsend Huisman
(ex Neogoniolithon mamillosum), Phymatolithon calcareum (Pallas) W.H.Adey and D.L.McKibbin ex
Woelkering and L.M.Irvine (Figure 7e,f), Spongites fruticulosus Kützing (Figure 7g,h), and Titanoderma
pustulatum (J.V.Lamouroux) Nägeli.
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Figure 7. Examples of rhodolith specimens’ morphology and SEM images of their inner structure.
(a) Fruticose rhodolith of Lithophyllum racemus from Ischia (specimen IS-12). (b) Perithallus of
L. racemus (AB-12). Note the primary (pr) and secondary (s) pit connections. (c) Warty rhodolith of
Lithothamnion minervae from Capri (specimen CA-33). (d) Multiporate conceptacle of L. minervae (CA-33).
Note the pore canals (rectangle). (e) Unattached branch of Phymatolithon calcareum from Acciaroli B
(specimen AB-03). (f) Epithallus and perithallus of P. calcareum (AB-03), with dome-shaped epithallial
cells (e) and cell fusions (f). (g) Warty rhodolith of Spongites fruticulosus from Acciaroli B (specimen AB-07).
(h) Uniporate sporangial conceptacle of S. fruticulosus (AB-07). Note the cells protruding laterally into
the pore canal (arrows).
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Sites were characterized by a high diversity of CA, ranging from a minimum of 6 CA taxa at Punta
Campanella to a maximum of 12 at Capri, Ischia, and Acciaroli B (Figure 8). Lithothamnion minervae
was the most abundant species at each site (23–38%), except at Acciaroli A (15%), where the most
abundant was L. corallioides (69%).Plants 2020, 9, x FOR PEER REVIEW 11 of 18 
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4. Discussion

4.1. Characterization of Rhodolith Beds

A spatial variability of rhodolith covers was observed within the different sites along the ROV
video-routes. Spatial heterogeneity, with high cover of rhodoliths interspersed with patches of
sediments, has been already reported for deep Mediterranean RBs and seems to be mainly related to
seafloor morphology and/or bottom currents [9,72,86].

RBs were found in Capri, Ischia, and Cilento with more than 10% of the mobile substratum
covered by live rhodoliths [2]. Secchitiello and Punta Campanella cannot be considered as proper RBs,
since they were mostly characterized by sparse rhodoliths (mean cover <10%). However, these sites
showed higher local rhodolith covers (>10%) often associated with small accumulation patches and
ripple marks, which indicate water motion over the sea floor [1,51].

The bathymetric range of the investigated RBs well compares with other Mediterranean beds,
which mainly occur at 30–75 m of depth [1,4]. Rhodolith cover was lower at deeper sites (60–79 m),
compared to the shallower ones (40–59 m), probably because of light irradiance reduction with
depth. Higher rhodolith covers were also detected in concurrence with coarser sediments. This could
be related to the presence of suitable sediments (e.g., gravel) for algal spore settlement and RBs
development [1,2,7,67,87]. Pralines were the prevalent morphotype in almost all sites (except at
Acciaroli A), suggesting the presence of high water energy [2,9,10,88,89].

We report the occurrence of a RB off the Capri Island, characterized by the highest rhodolith cover
(>65%) compared to the other sites, with a low percentage of dead thalli (16%) suggesting a good status
of the bed. The high cover of rhodoliths might be explained by the abundance of coarse sediments as
suitable substrate for CA settlement [7,10].

Acciaroli A was characterized by the prevalence of unattached branches, despite being mostly
dead (76%) and fragmented. The presence of beds offshore the Cilento peninsula was already reported
on submerged terraces between 42 to 52 m [72], mainly composed by a superficial layer of Lithothamnion
corallioides, over a thick dead and sub-fossil rhodolith deposit. At Acciaroli B, the image analysis
showed a lower cover of dead thalli (14%) compared to the live ones. Moreover, although unattached
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branches were observed, pralines were the most abundant morphotype in all the examined video
frames. These two sites are most likely part of a unique and wide RB off the Cilento coast, as suggested
by SSS data, structured by different rhodolith morphotypes and composed by a healthy ”live” part
(i.e., the Acciaroli B site) and a “dead” (or fossil) part (i.e., the Acciaroli A site).

An extended area with rhodoliths off the Ischia Island has already been described by [69,70].
They described a 1-mile-long RB located off Ischia between 50 and 65 m depth, characterized by all the
three rhodolith morphotypes, with a predominance of unattached branches of Phymatolithon calcareum
and Lithothamnion corallioides. According to these previous studies, we also found in our investigation
site all the three morphotypes, although the unattached branches cover was very low (<10%) and
P. calcareum and L. corallioides were not predominant. Moreover, despite it is common for live RBs to be
accompanied by a variable quantity of dead rhodoliths and their fragments [90], we observed a high
percentage of dead thalli (26%). This finding was not reported in previous studies for Ischia [69,70],
and we hypothesize that it could be related to the high fraction of fine sediments observed, which might
have caused burial phenomena [4,67,91]. However, further investigations would be necessary to
evaluate the entity and the possible progression of this algal mortality and its causes.

4.2. Rhodolith Morphology

The investigated RBs were similar with each other and with other deep RBs of the Mediterranean
Sea [9,10,86,92], characterized by the pralines’ facies, as described by Pérès and Picard [93].
CA growth-forms ranged from encrusting/warty to lumpy/fruticose, with several protuberances
and branches degrees, mainly depending on the CA species composing the rhodolith [10].

Surface currents within the Gulf of Naples have been deeply investigated [94–99], and there are
several models describing their dynamics within the Campania coastal system [100–102]. However,
macroscale hydrodynamic measurements at the sea-bottom lack for this area, and hydrodynamic models
have limitations in simulating the near-bottom currents due to boundary conditions for numerical
resolution. However, rhodoliths can represent, to some extent, a proxy of bottom currents [67].
The spheroidal to ellipsoidal shape of the rhodoliths analysed in this study and the lack of discoidal
shapes seem to suggest an equilibrium between a regular frequency of overturning associated with
moderate/high water energy, which assures the homogeneous growth of the thallus [8,10,67,87,103].
Moreover, the reduced sizes of the rhodoliths composing the Campania beds (i.e., from 21.8 mm ± 8.5
in Capri to 10.6 mm ± 6.1 in Secchitiello), according to literature [2,10,88,89], seem to support the
presence of an elevated water energy in all sites.

4.3. Taxonomic Composition of Coralline Algae

This study provided a first picture of the CA diversity characterizing deep RBs off the Campania
coast. The beds characterized by the highest number of CA were Capri, Ischia, and Acciaroli B,
with 12 taxa each. The genus Lithothamnion was the most abundant, representing more than 50% of the
total abundance of taxa in each site. L. minervae was the dominant species at each site (23–38%), except at
Acciaroli A (15%) that was mostly composed by unattached branches of L. corallioides (69%). At all
sites, except Punta Campanella and Secchitiello, we found both species, P. calcareum and L. corallioides,
protected by the Habitats Directive (92/43/EEC). These results confirm the studies on Mediterranean
RBs that report a high CA species diversity [9,53,70–72,86,104–110], highlighting the elevated scientific
and ecological value of these remote biodiversity hot spots in the Mediterranean Sea.

5. Conclusions

This work provides new insights at large scale on deep Mediterranean RBs distribution and
composition off the Campania coast (eastern Tyrrhenian Sea). The occurrence of a new RB offshore
Capri Island, characterized by the highest rhodolith cover (>65%) compared to the other studied sites,
is reported. The high rhodoliths’ cover might be related to the co-occurrence of coarse sediments and
shallow depth. Small pralines (ca. 2 cm) dominated all the studied RBs, except at Acciaroli A, that was
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mostly composed by dead fragments of unattached branches. Ischia RB was also characterized by a
conspicuous cover of dead rhodoliths. The collected rhodoliths were spheroidal to ellipsoidal in all sites,
probably indicating a moderate/high hydrodynamism. Growth-forms varied from encrusting/warty
to fruticose/lumpy, mainly related to the CA species composing the rhodoliths. CA identification
highlighted a high taxonomic diversity (i.e., 13 taxa).

The investigated RBs are particularly valuable since the two species Phymatolithon calcareum and
Lithothamnion corallioides, included and protected by the Habitats Directive (92/43/EEC), have been
detected in all RBs. This study supports the ecological value of these highly biodiverse yet poorly
explored deep macroalgal communities and represents a baseline for their future management
and conservation.
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