

- 1 Article
- 2 Constituents of *Gastrodia elata* and Their Neuroprotective Effects in HT22 Hippocampal
- 3 Neuronal, R28 Retinal Cells, and BV2 Microglial Cells
- Hye Mi Kim ^{1,+}, Jaeyoung Kwon ^{2,+}, Kyerim Lee ^{2,3}, Jae Wook Lee ², Dae Sik Jang ^{1,3,*} and Hak
 Cheol Kwon ^{2,*}
- 6 ¹ College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
 7 hyemi586@gmail.com (H.M.K.); dsjang@khu.ac.kr (D.S.J.)
- ² KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology (KIST),
 Gangneung 25451, Republic of Korea; kjy1207@kist.re.kr (J.K.); klim8@kist.re.kr (K.L.);
- 10 jwlee5@kist.re.kr (J.W.L.); hkwon@kist.re.kr (H.C.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul
 02447, Republic of Korea; klim8@kist.re.kr (K.L.); dsjang@khu.ac.kr (D.S.J.)
- 13 * Correspondence: hkwon@kist.re.kr (H.C.K.); dsjang@khu.ac.kr (D.S.J.); /
- ⁺ These authors contributed equally to this work and joint first authors
- 15

16 List of Supporting Information

- 17 **S1.** ¹H and ¹³C NMR spectral data of compounds **4–19**.
- 18 **Table S1.** Screening of all isolated compounds for protective effects against HT22 cell death caused
- 19 by glutamate-induced toxicity.
- 20 Table S2. Screening of all isolated compounds (50 µM) for protective effects on R28 cell death caused
- 21 by H₂O₂ induced toxicity.
- 22 Table S3. Screening of all isolated compounds for inhibitory effects of nitric oxide production on
- 23 LPS treated BV2 cell lines.
- 24 Figure S1. The ¹H NMR spectrum of compound 1 (500 MHz, CD₃COCD₃).
- 25 Figure S2. The ¹³C NMR spectrum of compound 1 (125 MHz, CD₃COCD₃).
- 26 **Figure S3.** The ¹H-¹H COSY NMR spectrum of compound **1** (500MHz, CD₃COCD₃).
- 27 Figure S4. The HSQC NMR spectrum of compound 1 (500 MHz, CD₃COCD₃).
- 28 Figure S5. The HMBC NMR spectrum of compound 1 (500 MHz, CD₃COCD₃).
- 29 Figure S6. The UV spectrum of compound 1 (CH₃OH).
- 30 **Figure S7.** The IR spectrum of compound **1**.
- 31 **Figure S8.** The HRESIMS spectrum of compound **1**.
- 32 Figure S9. The ¹H NMR spectrum of compound 2 (500 MHz, CDCl₃).
- 33 Figure S10. The ¹³C NMR spectrum of compound 2 (125 MHz, CDCl₃).
- 34 Figure S11. The ¹H-¹H COSY NMR spectrum of compound 2 (500 MHz, CDCl₃).
- 35 Figure S12. The HSQC NMR spectrum of compound 2 (500 MHz, CDCl₃).
- 36 Figure S13. The HMBC NMR spectrum of compound 2 (500 MHz, CDCl₃).
- 37 Figure S14. The UV spectrum of compound 2 (CH₃OH).
- 38 Figure S15. The IR spectrum of compound 2.
- 39 Figure S16. The HRESIMS spectrum of compound 2.
- 40 **Figure S17.** The ¹H NMR spectrum of compound **3** (500 MHz, CD₃OD).
- 41 **Figure S18.** The ¹³C NMR spectrum of compound **3** (125 MHz, CD₃OD).
- 42 **Figure S19.** The ¹H-¹H COSY NMR spectrum of compound **3** (500 MHz, CD₃OD).
- 43 **Figure S20.** The HSQC NMR spectrum of compound **3** (500 MHz, CD₃OD).
- 44 Figure S21. The HMBC NMR spectrum of compound 3 (500 MHz, CD₃OD).
- 45 **Figure S22.** The UV spectrum of compound **3** (CH₃OH).
- 46 **Figure S23.** The IR spectrum of compound **3**.
- 47 **Figure S24.** The HRESIMS spectrum of compound **3**.
- 48

49 **S1.** ¹H and ¹³C NMR spectral data of compounds **4–19**.

50 4-[[4-(ethoxymethyl)phenoxy]methyl]phenol (4) exhibited following data: white amorphous 51 powder; ¹H NMR (500 MHz, CD₃OD) δ : 7.26 (2H, d, *J* = 8.0 Hz, H-2, H-6), 7.26 (2H, d, *J* = 8.0 Hz, H-2', 52 H-6'), 6.92 (2H, d, J = 8.0 Hz, H-3', H-5'), 6.76 (2H, d, J = 8.0 Hz, H-3, H-5), 4.93 (2H, s, H₂-7), 4.44 (2H, s, 53 H₂-7'), 3.53 (2H, q, J = 7.0 Hz, CH₂CH₃), 1.23 (3H, t, J = 7.0 Hz, CH₂CH₃);; ¹³C NMR (125 MHz, CD₃OD) 54 δ : 129.0 (C-1), 129.7 (C-2, 6), 115.6 (C-3, C-5), 155.9 (C-4), 70.0 (C-7), 130.8 (C-1'), 129.6 (C-2', C-6'), 55 115.0 (C-3', C-5'), 158.6 (C-4'), 72.6 (C-7'), 65.7 (CH2CH3), 15.3 (CH2CH3). 56 Gastrol A (5) exhibited following data: white amorphous powder; ¹H NMR (500 MHz, 57 CD₃COCD₃) δ : 7.34 (2H, d, J = 8.5 Hz, H-2", 6"), 7.31 (2H, d, J = 8.5 Hz, H-2, H-6), 7.23 (2H, d, J = 8.5 58 Hz, H-2', H-6'), 7.01 (2H, d, J = 8.5 Hz, H-3, H-5), 6.89 (2H, d, J = 8.5 Hz, H-3", H-5"), 6.85 (2H, d, J = 8.5 59 Hz, H-3', H-5'), 5.03 (2H, s, H2-7"), 4.48 (2H, s, H2-7), 4.46 (2H, s, H2-7'); ¹³C NMR (125 MHz, 60 CD₃COCD₃) δ : 132.0 (C-1), 130.2 (C-2, C-6), 115.5 (C-3, C-5), 159.5 (C-4), 72.0 (C-7), 130.6 (C-1'), 130.4 61 (C-2', C-6'), 115.9 (C-3', C-5'), 157.8 (C-4'), 72.3 (C-7'), 129.2 (C-1"), 130.4 (C-2", C-6"), 116.1 (C-3", 5"), 62 158.2 (C-4"), 70.5 (C-7"). 63 Bis(4-hydroxyphenyl)methane (6) exhibited following data: white amorphous powder; ¹H 64 NMR (500 MHz, CD₃OD) δ : 6.96 (4H, d, J = 8.5 Hz, H-2, H-6, H-2', H-6'), 6.68 (4H, d, J = 8.5 Hz, H-3, 65 H-5, H-3', H-5'), 3.74 (2H, s, H2-7); ¹³C NMR (125 MHz, CD₃OD) δ : 134.4 (C-1, C-1'), 130.9 (C-2, C-6, 66 C-2', C-6'), 116.2 (C-3, C-5, C-3', C-5'), 156.6 (C-4, C-4'), 41.3 (C-7).

67 4-Hydroxybenzyl vanillyl ether (7) exhibited following data: white amorphous powder; ¹H 68 NMR (500 MHz, CD₃OD) δ : 7.17 (2H, d, *J* = 8.5 Hz, H-2, H-6), 6.91 (1H, d, *J* = 1.5 Hz, H-2'), 6.77 (1H, 69 dd, *J* = 8.0, 1.5 Hz, H-6'), 6.77 (1H, d, *J* = 8.0 Hz, H-5'), 6.76 (2H, d, *J* = 8.5 Hz, H-3, H-5), 4.41 (2H, s, 70 H₂-7'), 4.41 (2H, s, H₂-7), 3.84 (3H, s, 3'-OCH₃); ¹³C NMR (125 MHz, CD₃OD) δ : 131.2 (C-1), 131.1 (C-2, 6), 116.3 (C-3, 5), 158.5 (C-4), 72.9 (C-7), 130.5 (C-1'), 113.2 (C-2'), 149.2 (C-3'), 147.6 (C-4'), 116.1 (C-5'), 72 122.5 (C-6'), 73.1 (C-7'), 56.6 (3'-OCH₃).

73Bis(4-hydroxybenzyl)ether (8) exhibited following data: colorless oil; ¹H NMR (500 MHz,74CD₃OD) δ : 7.16 (4H, d, J = 8.5 Hz, H-2, H-6, H-2', H-6'), 6.76 (4H, d, J = 8.5 Hz, H-3, H-5, H-3', H-5'),754.40 (4H, s, H₂-7, H₂-7'); ¹³C NMR (125 MHz, CD₃OD) δ : 130.5 (C-1, C-1'), 131.1 (C-2, C-6, C-2', C-6'),76116.3 (C-3, C-5, C-3', C-5'), 158.7 (C-4, C-4'), 72.9 (C-7, C-7').

772,4-Bis(4-hydroxybenzyl)phenol (9) exhibited following data: brownish amorphous powder;78¹H NMR (500 MHz, CD₃OD) δ : 6.99 (2H, d, *J* = 8.5 Hz, H-2', H-6'), 6.92 (2H, d, *J* = 8.5 Hz, H-2", H-6"),796.80 (1H, d, *J* = 2.0 Hz, H-2), 6.78 (1H, dd, *J* = 8.0, 2.0 Hz, H-5), 6.66 (1H, d, *J* = 8.0 Hz, H-6), 6.66 (2H,80d, *J* = 8.5 Hz, H-3', H-5'), 6.66 (2H, d, *J* = 8.5 Hz, H-3", H-5"), 3.78 (2H, s, H₂-7'), 3.69 (2H, s, H₂-7"); ¹³C81NMR (125 MHz, CD₃OD) δ : 154.4 (C-1), 133.9 (C-2), 132.1 (C-3), 134.6 (C-4), 128.4 (C-5), 116.1 (C-6),82129.7 (C-1'), 131.0 (C-2', C-6'), 116.2 (C-3', C-5'), 156.4 (C-4'), 35.9 (C-7'), 134.3 (C-1"), 130.8 (C-2",83C-6"), 116.1 (C-3", C-5"), 156.5 (C-4"), 41.4 (C-7").

84 Gastrodigenin (10) exhibited following data: white amorphous powder; ¹H NMR (500 MHz,
85 CD₃OD) δ : 7.16 (2H, d, *J* = 8.5 Hz, H-2, H-6), 6.76 (2H, d, *J* = 8.5 Hz, H-3, H-5), 4.39 (2H, s, H₂-7); ¹³C
86 NMR (125 MHz, CD₃OD) δ : 130.4 (C-1), 131.1 (C-2, C-6), 116.3 (C-3, C-5), 158.5 (C-4), 72.8 (C-7).

4-Hydroxybenzyl ethyl ether (11) exhibited following data: white amorphous powder; ¹H NMR
(500 MHz, CDCl₃) δ : 7.10 (2H, d, *J* = 8.0 Hz, H-2, H-6), 6.72 (2H, d, *J* = 8.0 Hz, H-3, H-5), 4.42 (2H, s,
H₂-7), 3.53 (2H, q, *J* = 7.0 Hz, <u>CH₂CH₃</u>), 1.22 (3H, t, *J* = 7.0 Hz, CH₂<u>CH₃</u>); ¹³C NMR (125 MHz, CDCl₃) δ :
130.2 (C-1), 129.9 (C-2, C-6), 115.5 (C-3, C-5), 155.7 (C-4), 72.7 (C-7), 65.7 (<u>CH₂CH₃</u>), 15.3 (CH₂<u>CH₃</u>).

91Gastrodin (12) exhibited following data: white amorphous powder; ¹H NMR (500 MHz, CD₃OD)92 δ : 7.28 (2H, d, J = 8.5 Hz, H-2, H-6), 7.08 (2H, d, J = 8.5 Hz, H-3, H-5), 4.89 (1H, d, J = 7.5 Hz, Glc H-1),934.54 (2H, s, H₂-7), 3.89 (1H, dd, J = 12.0, 2.0 Hz, Glc H₂-6a), 3.70 (1H, dd, J = 12.0, 5.0 Hz, Glc H₂-6b),943.46-3.37 (4H, Glc H-2, H-3, H-4, H-5); ¹³C NMR (125 MHz, CD₃OD) δ : 136.8 (C-1), 129.6 (C-2, C-6),95117.8 (C-3, C-5), 158.7 (C-4), 65.0 (C-7), 102.6 (Glc C-1), 75.1 (Glc C-2), 78.3 (Glc C-3), 71.6 (Glc C-4),9678.2 (Glc C-5), 62.7 (Glc C-6).

97 4-Hydroxybenzaldehyde (13) exhibited following data: brownish amorphous powder; ¹H NMR
98 (500 MHz, CD₃OD) δ : 9.76 (1H, s, CHO) 6.96 (2H, d, *J* = 8.5 Hz, H-2, H-6), 6.68 (2H, d, *J* = 8.5 Hz, H-3,
99 H-5); ¹³C NMR (125 MHz, CD₃OD) δ : 130.4 (C-1), 133.6 (C-2, C-6), 117.1 (C-3, C-5), 165.5 (C-4), 193.0
100 (<u>C</u>HO).

101 3,5-Dimethoxybenzoic acid-4-*O*-β-D-glucopyranoside (**14**) exhibited following data: white 102 amorphous powder; ¹H NMR (500 MHz, DMSO-*d*₆) δ : 7.22 (2H, s, H-2, H-6), 5.11 (1H, d, *J* = 7.0 Hz, 103 Glc H-1), 3.59-3.06 (6H, Glc H-2, H-3, H-4, H-5, H₂-6), 3.80 (6H, s, 3-OCH₃, 5-OCH₃); ¹³C NMR (125 104 MHz, DMSO-*d*₆) δ : 136.0 (C-1), 116.9 (C-2, C-6), 161.9 (C-3, C-5), 147.6 (C-4), 176.8 (<u>C</u>OOH), 111.6 105 (Glc C-1), 83.9 (Glc C-2), 87.1 (Glc C-3), 79.6 (Glc C-4), 86.3 (Glc C-5), 70.5 (Glc C-6), 66.0 (3-OCH₃, 106 5-OCH₃). 107 Parishin E (**15**) exhibited following data: yellowish oil; ¹H NMR (500 MHz, CD₃OD) δ : 7.31 (2H, 108 d, *J* = 8.5 Hz, H-2', H-6'), 7.08 (2H, d, *J* = 8.5 Hz, H-3', H-5'), 5.06 (2H, d, *J* = 2.5 Hz, H₂-7'), 4.91 (1H, d, *J*

109 = 7.5 Hz, Glc H-1), 3.89 (1H, dd, *J* = 12.0, 2.0 Hz, Glc H₂-6a), 3.70 (1H, dd, *J* = 12.0, 5.5 Hz, Glc H₂-6b), 110 3.47-3.30 (4H, Glc, H-2, H-3, H-4, H-5), 2.96 (1H, d, *J* = 15.5 Hz, H₂-3a), 2.92 (1H, d, *J* = 16.0 Hz, H₂-1a), 111 2.85 (1H, d, *J* = 15.5 Hz, H₂-3b), 2.79 (1H, d, *J* = 16.0 Hz, H₂-1b); ¹³C NMR (125 MHz, CD₃OD) δ : 44.2 112 (C-1), 75.1 (C-2), 44.5 (C-3), 131.4 (C-1'), 131.0 (C-2', C-6'), 117.9 (C-3', C-5'), 159.2 (C-4'), 67.4 (C-7'), 113 102.4 (Glc C-1), 75.1 (Glc C-2), 78.3 (Glc C-3), 71.6 (Glc C-4), 78.2 (Glc C-5), 62.7 (Glc C-6), 171.5 114 (<u>C</u>OOR), 173.9 (COOH), 177.1 (COOH).

115Adenosine (16) exhibited following data: white amorphous powder; ¹H NMR (500 MHz,116DMSO-*d*₆) δ : 8.35 (1H, s, H-8), 8.14 (1H, s, H-2), 7.37 (2H, br s, NH₂), 5.88 (1H, d, *J* = 6.0 Hz, H-1'), 5.46117(1H, br d, *J* = 6.0 Hz, 2'-OH), 5.45 (1H, br dd, *J* = 7.5, 4.5 Hz, 5'-OH), 5.20 (1H, br d, *J* = 4.5 Hz, 3'-OH),1184.61 (1H, ddd, *J* = 6.0, 6.0, 5.0 Hz, H-2'), 4.14 (1H, ddd, *J* = 5.0, 4.5, 3.0 Hz, H-3'), 3.96 (1H, ddd, *J* = 3.5,1193.5, 3.0 Hz, H-4'), 3.67 (1H, ddd, *J* = 12.0, 4.5, 3.5 Hz, H2-5'a), 3.55 (1H, ddd, *J* = 12.0, 7.5, 3.5 Hz, H2-5'b);120¹³C NMR (125 MHz, DMSO-*d*₆) δ : 152.3 (C-2), 149.0 (C-4), 119.3 (C-5), 156.1 (C-6), 139.9 (C-8), 87.9121(C-1'), 73.4 (C-2'), 70.6 (C-3'), 85.8 (C-4'), 61.6 (C-5').

122S-(4-Hydroxybenzyl) glutathione (17) exhibited following data: white amorphous powder; ¹H123NMR (500 MHz, DMSO-*d*₆) δ : 7.09 (2H, d, *J* = 8.5 Hz, H-2^m, H-6^m), 6.69 (2H, d, *J* = 8.5 Hz, H-3^m, H-5^m),1244.50 (1H, dd, *J* = 9.0, 5.0 Hz, H-2'), 3.71 (1H, d, *J* = 2.5 Hz, H₂-2^ma), 3.63 (1H, d, *J* = 2.5 Hz, H₂-2^mb), 3.63125(2H, s, H₂-7^m), 3.40 (1H, t, *J* = 6.5 Hz, H-2), 2.78 (1H, dd, *J* = 14.0, 5.0 Hz, H₂-3'a), 2.55 (1H, dd, *J* = 14.0,1269.0 Hz, H₂-3'b), 2.32 (2H, m, H₂-4), 1.93 (1H, br dt, *J* = 6.5, 6.5 Hz, H-3); ¹³C NMR (125 MHz, DMSO-*d*₆)127δ : 171.7 (C-1), 53.1 (C-2), 26.8 (C-3), 31.5 (C-4), 170.9 (C-5), 170.7 (C-1'), 52.2 (C-2'), 33.0 (C-3'), 170.6128(C-1"), 41.2 (C-2"), 128.1 (C-1^m), 129.9 (C-2^m, C-6^m), 115.1 (C-3^m, C-5^m), 156.3 (C-4^m), 34.8 (C-7^m).

129Palmitic acid ethyl ester (18) exhibited following data: yellowish waxy-like; ¹H NMR (500 MHz,130CDCl₃) δ : 4.10 (2H, q, J = 7.0 Hz, CH₂CH₃), 2.26 (2H, t, J = 7.5 Hz, H₂-2), 1.60 (2H, m, H₂-3), 1.28-1.22131(24H, br m, H₂-4, H₂-5, H₂-6, H₂-7, H₂-8, H₂-9, H₂-10, H₂-11, H₂-12, H₂-13, H₂-14, H₂-15) 1.23 (3H, t, J =1327.0 Hz, CH₂CH₃), 0.86 (3H, t, J = 7.0 Hz, H₃-16); ¹³C NMR (125 MHz, CDCl₃) δ : 174.2 (C-1), 34.6 (C-2),13325.2 (C-3), 29.4 (C-4), 29.6 (C-5), 30.0, 30.0, 29.9, 29.9, 29.9, 29.8, 29.7 (C-6, C-7, C-8, C-9, C-10, C-11,134C-12), 29.5 (C-13), 32.2 (C-14), 22.9 (C-15), 14.3 (C-16), 60.4 (CH₂CH₃), 14.5 (CH₂CH₃).

Linoleic acid ethyl ester (**19**) exhibited following data: colorless oil; ¹H NMR (500 MHz, CDCl₃) $\delta : 5.33$ (4H, m, H-9, H-10, H-12, H-13), 4.13 (2H, q, *J* = 7.0 Hz, <u>CH</u>₂CH₃), 2.75 (2H, t, *J* = 6.5 Hz, H₂-11), 2.26 (2H, t, *J* = 7.5 Hz, H₂-2), 2.02 (4H, br dt, *J* = 7.0, 7.0 Hz, H₂-8, H₂-14), 1.60 (2H, br m, H-3), 1.36-1-29 (14H, br m, H₂-4, H₂-5, H₂-6, H₂-7, H₂-15, H₂-16, H₂-17), 1.23 (3H, t, *J* = 7.0 Hz, CH₂<u>CH</u>₃), 0.87 (3H, t, *J* = 7.0 Hz, H₃-18); ¹³C NMR (125 MHz, CDCl₃) $\delta : 174.1$ (C-1), 34.6 (C-2), 31.7 (C-3), 29.8, 29.6, 29.4, 29.3, 29.3, 25.2, 22.8 (C-4, C-5, C-6, C-7, C-15, C-16, C-17), 27.4 (C-8), 128.1 (C-9), 130.4 (C-10), 25.8 (C-11), 130.3 (C-12), 128.2 (C-13), 27.4 (C-14), 14.3 (C-18), 60.4 (<u>CH</u>₂CH₃), 14.5 (CH₂<u>CH</u>₃).

143 Table S1. Screening of all isolated compounds for protective effects against HT22 cell death caused144 by glutamate-induced toxicity.

Compound	Concentration	Cell viability	Compound	Concentration	Cell viability
	(μ M)	(%)		(μM)	(%)
	5.6	38.27 ± 5.96		5.6	22.14 ± 2.82
1	16.6	33.62 ± 3.90	2	16.6	22.88 ± 3.46
	50.0	71.48 ± 6.68		50.0	72.26 ± 7.41
	5.6	37.94 ± 3.77		5.6	120.02 ± 2.41
3	16.6	51.75 ± 3.28	4	16.6	95.83 ± 14.01
	50.0	25.20 ± 2.20		50.0	53.17 ± 0.12
	5.6	110.34 ± 2.78		5.6	22.51 ± 1.90
5	16.6	110.34 ± 2.71	6	16.6	25.71 ± 2.71
	50.0	98.02 ± 0.78		50.0	26.28 ± 9.32
	5.6	24.33 ± 4.86		5.6	32.68 ± 1.32
7	16.6	32.69 ± 2.03	8	16.6	32.47 ± 3.60
	50.0	85.61 ± 10.78		50.0	100.35 ± 1.49
	5.6	31.79 ± 9.05		5.6	22.72 ± 1.82
9	16.6	20.67 ± 4.07	10	16.6	19.13 ± 3.92
	50.0	17.37 ± 2.18		50.0	23.79 ± 0.19
	5.6	30.78 ± 4.96		5.6	32.42 ± 1.45
11	16.6	27.67 ± 9.04	12	16.6	28.60 ± 2.89
	50.0	24.90 ± 3.26		50.0	23.07 ± 1.12
	5.6	21.75 ± 8.62		5.6	22.86 ± 10.6
13	16.6	20.21 ± 0.72	14	16.6	24.10 ± 3.53
	50.0	20.07 ± 0.43		50.0	20.16 ± 1.47
	5.6	34.32 ± 3.65		5.6	37.70 ± 0.96
15	16.6	33.15 ± 3.21	16	16.6	59.00 ± 6.08
	50.0	23.59 ± 0.90		50.0	76.25 ± 5.31
	5.6	33.95 ± 6.46		5.6	45.92 ± 3.18
17	16.6	54.24 ± 18.69	18	16.6	57.65 ± 4.64
	50.0	27.75 ± 1.21		50.0	50.30 ± 6.46
	5.6	30.32 ± 6.53	DMSO	-	100.00 ± 2.00
19	16.6	31.50 ± 6.60	Glu	5 mM	44.62 ± 2.00
	50.0	19.65 ± 1.92	NAC	1 mM	102.40 ± 0.95

Table S2. Screening of all isolated compounds (50 μM) for protective effects on R28 cell death
 caused by H₂O₂ induced toxicity.

No	Cell viability (%)	No	Cell viability (%)	No	Cell viability (%)
1	7.99 ± 0.13	2	79.88 ± 0.59	3	53.47 ± 3.14
4	31.60 ± 3.47	5	55.27 ± 0.18	6	76.13 ± 0.04
7	82.66 ± 2.49	8	40.88 ± 4.19	9	19.75 ± 9.86
10	53.07 ± 2.87	11	49.41 ± 9.92	12	52.01 ± 2.52
13	54.10 ± 1.33	14	53.99 ± 6.32	15	55.90 ± 2.22
16	58.30 ± 3.37	17	57.64 ± 4.14	18	54.49 ± 5.13
19	12.91 ± 4.62	DMSO	100.00 ± 3.22	Glu (5 mM)	50.77 ± 0.02
NAC (1 mM)	96.70 ± 0.95				

149

150

153 LPS treated BV2 cell lines.

154

Compound	Concentration	Litrite	Compound	Concentration	Litrite ^a
	(µM)	(µM)		(µM)	(µM)
	0.2	27.91 ± 3.09		0.2	30.80 ± 0.33
1	1.8	27.52 ± 1.66	2	1.8	25.88 ± 0.22
1	16.6	29.47 ± 2.21	2	16.6	27.91 ± 0.44
	50.0	25.17 ± 3.65		50.0	Litrite ^a (μ M) 30.80 ± 0.33 25.88 ± 0.22 27.91 ± 0.44 28.77 ± 0.11 28.30 ± 1.21 27.91 ± 0.88 23.53 ± 0.00 20.09 ± 1.10 29.86 ± 0.99 23.77 ± 0.11 25.95 ± 0.11 30.02 ± 0.11 27.67 ± 0.33 28.06 ± 1.99 27.91 ± 1.32 25.95 ± 1.43 26.97 ± 0.22 27.36 ± 3.87 27.83 ± 0.77 27.20 ± 1.44 26.66 ± 0.88 25.95 ± 0.99 27.44 ± 0.44 24.55 ± 1.88 23.84 ± 1.10 23.22 ± 0.22 29.47 ± 2.21 26.73 ± 0.77 25.95 ± 2.10 24.47 ± 1.77 32.13 ± 2.65 27.91 ± 1.10 26.19 ± 0.66 26.03 ± 0.88 2.91 ± 0.22
	0.2	28.84 ± 0.66		0.2	28.30 ± 1.21
2	1.8	27.13 ± 0.66	4	1.8	27.91 ± 0.88
3	16.6	26.73 ± 0.99	4	16.6	23.53 ± 0.00
	50.0	25.48 ± 0.77		50.0	20.09 ± 1.10
	0.2	26.34 ± 1.55		0.2	29.86 ± 0.99
-	1.8	25.88 ± 2.65	(1.8	23.77 ± 0.11
5	16.6	25.56 ± 0.66	0	16.6	25.95 ± 0.11
	50.0	23.38 ± 1.10		50.0	30.02 ± 0.11
	0.2	28.92 ± 0.77		0.2	28.76 ± 1.21
-	1.8	25.41 ± 1.33	0	1.8	27.36 ± 0.11
7	16.6	26.97 ± 0.44	8	16.6	27.67 ± 0.33
	50.0	26.03 ± 1.10		50.0	28.06 ± 1.99
	0.2	27.52 ± 0.33		0.2	27.91 ± 1.32
0	1.8	29.08 ± 0.33	10	1.8	25.95 ± 1.43
9	16.6	27.98 ± 2.10	10	16.6	26.97 ± 0.22
	50.0	9.94 ± 2.78		50.0	27.36 ± 3.87
	0.2	29.16 ± 1.33		0.2	27.83 ± 0.77
11	1.8	22.98 ± 0.11	12	1.8	27.20 ± 1.44
11	16.6	23.92 ± 0.99	12	16.6	26.66 ± 0.88
	50.0	26.11 ± 1.44		$ \begin{array}{c cccccccccccccccccccccccccccccccc$	25.95 ± 0.99
	0.2	30.64 ± 0.55		0.2	27.44 ± 0.44
12	1.8	22.59 ± 0.22	14	1.8	24.55 ± 1.88
13	16.6	22.83 ± 0.11	14	16.6	23.84 ± 1.10
	50.0	26.81 ± 0.00		50.0	23.22 ± 0.22
	0.2	27.98 ± 0.77		0.2	29.47 ± 2.21
15	1.8	27.83 ± 0.55	16	1.8	26.73 ± 0.77
15	16.6	24.39 ± 1.21	10	16.6	25.95 ± 2.10
	50.0	26.81 ± 0.88		50.0	24.47 ± 1.77
	0.2	32.20 ± 0.11		0.2	32.13 ± 2.65
17	1.8	29.10 ± 2.65	10	1.8	27.91 ± 1.10
1/	16.6	26.11 ± 2.32	18	16.6	26.19 ± 0.66
	50.0	25.56 ± 1.77		50.0	26.03 ± 0.88
	0.2	34.16 ± 1.44	DMSO	-	2.91 ± 0.22
10	1.8	29.08 ± 2.54			
19	16.6	26.97 ± 2.65	LPS	1 μg/ml	32.43 ± 0.44
	50.0	25.95 ± 1.44			

¹Secreted nitric oxide levels were determined by Griess reagent. ² 1 µg/mL of LPS was used in NO production

and cell viability assay. The % values are representative relative cell viabilities compared with DMSO treated

157 cell growth (negative control, 100% value)

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f2 (ppm)

165 **Figure S3.** The ¹H-¹H COSY NMR spectrum of compound **1** (500 MHz, CD₃COCD₃).

5.0

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5

166

-8

-9

5.0 4.5 4.0 f2 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 3.5 3.0 2.5 2.0 167

168 Figure S4. The HSQC NMR spectrum of compound 1 (500 MHz, CD₃COCD₃).

169

-150

-160 -170 [₁₈₀

0.5

1.0

1.5

176 Figure S7. The IR spectrum of compound 1 [using the attenuated total reflection (ATR) sampling177 technique].

Single M Tolerance Selected Monoisoto 50 formula	ass Analy e = 5.0 PPM filters: Non opic Mass, f a(e) evaluate	sis /1 / DE e Even Ele ed with 1	BE: min = ctron lons l results w	-1.5, max = 5 ithin limits (up	0.0 1 to 50 best	isotopic r	natches	for each n	nass)							
Mass 20E 1174	Calc. Mass	mDa	PPM DBE	Formula	i-FIT	C	H 0									
GAEL1E-K9 1: TOF MS ES	(-)-4 222 (2.75 B-	i0) Cm (2	21:222)							305 117	4 [M-H]-					2.00
-																
%-																
0-4	304.850		304,900	304,95		305.000		305.050	305.1	00	305.150	305.200	305.250	305.300	305.350	
For Help, press	F1															

179 For Help, press F1

180 **Figure S8.** The HRESIMS spectrum of compound **1** (m/z 305.1174 [M – H]⁻; calcd for C₂₀H₁₇O₃, 181 305.1178).

183 8.5 8.0

184 **Figure S9.** The ¹H NMR spectrum of compound **2** (500 MHz, CDCl₃).

187 **Figure 10.** The ¹³C NMR spectrum of compound **2** (125 MHz, CDCl₃).

189 **Figure S11.** The ¹H-¹H COSY NMR spectrum of compound **2** (500 MHz, CDCl₃).

193

195 **Figure S13.** The HMBC NMR spectrum of compound **2** (500 MHz, CDCl₃).

226.31

0.800

0.70 0.65

198 **Figure S14.** The UV spectrum of compound **2** (CH₃OH, c= 1.9×10^{-5} M).

Figure S15. The IR spectrum of compound 2 [using the attenuated total reflection (ATR) samplingtechnique].

Plants 2020, 9, x FOR PEER REVIEW

Single M Tolerance Element p Number of Monoisotop 1197 formu Elements U	salysis PPM / IDBE min = -1.5, max = 50.0 c) off peaks used for i-FIT = 3 Even Electron lons aluated with 6 results within limits (up to 50 closest results for each mass)
Mass	Mass mDa PPM DBE Formula i-FiT i-FiT Norm Fit Conf % C H N O S
257.1177	178 -0.1 -0.4 8.5 C16 H17 O3 341.7 0.000 100.00 16 17 3 100 -0.2 -1.2 -1.5 C0 H25 N 2 - 2 200 1105 0 00 9 25 2 2
	150 - 0.5 - 1.2 - 1.3 C9 H21 N2 O5 - 302.9 21.19 0.00 9 2.3 2 171 0.6 2.3 - 0.5 C8 H21 N2 O5 - 359.3 17.631 0.00 8 21 2 5 1
	183 - 0.6 - 2.3 1.5 C H13 N12 O4 357.6 15.882 0.00 1 13 12 4
	105 - 0.0 - 5.1 - 4.3 C - 5.1 - 106 C - 3 - 5.2 - 17.5 C - 105 - 5.0 - 5 - 17 - 17 - 17 - 17 - 17 - 17 - 17
GAEL1E_K4 GAEL1E_K4 100	0 (3.626) 211.0758 257.1177 257.1177
×	213.0910 258.1212 210.0682 259.1236 357.0424 423.1595.467.1859 515.2434 598.1649_619.2776 561.2889 773.3701.839.2943 872.2866.894.2641 953.3702 1055.4489 1084.4059 1108.3899 1163.6704
100	200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150
For Help, pre	

203 204 Figure S16. The HRESIMS spectrum of compound 2 (m/z 257.1177 [M – H]⁻; calcd for C₁₆H₁₇O₃, 257.1178).

217 **Figure S20.** The HSQC NMR spectrum of compound **3** (500 MHz, CD₃OD).

220 **Figure S21.** The HMBC NMR spectrum of compound **3** (500 MHz, CD₃OD).

Plants 2020, 9, x FOR PEER REVIEW

222

223 Figure S22. The UV spectrum of compound 3 (CH₃OH, c= 1.1×10^{-5} M).

Figure S23. The IR spectrum of compound 3 [using the attenuated total reflection (ATR) sampling
 technique]..

Plants 2020, 9, x FOR PEER REVIEW

Single M	ass Analysi	is (DBC				n																			^
Flomont p	= 10.0 PPM	/ DBC	: min =	-1.5, 1	max = 50.0	U																			
Liement pi	Limiter production, one																								
Monoisotor	Nonisotopic Mass. Even Electron lons																								
6507 formu	la(e) evaluate	d with 39	results	within	limits (up t	to 50 closest	results fo	r each r	nass)																
Elements I	Ised:																								
										1															~
Mass	Calc. Mass	mDa	PPM	DBE	Formula			i-FIT	i-FIT Norm	Fit Conf %	C	H	N	0	S										^
440.1487	440.1485	0.2	0.5	-0.5	C11 H30	D N5 O9 S2	2	272.7	10.270	0.00	11	30	5	9	2										
	440.1490	-0.3	-0.7	5.5	C11 H2	2 N9 010		277.8	15.403	0.00	10	22	9	10	4										-
	440,1491	-0.4	-0.9	-1.5	C12 H34	4 N5 04 S4	4	205.9	14 270	0.00	12	34		4	4										
	440.1478	0.9	2.0	14.5	C16 H18	B N13 O S		267.3	4.876	0.76	16	18	13	1	1										
	440.1496	-0.9	-2.0	1.5	C4 H22	N15 O8 S		275.6	13.214	0.00	4	22	15	8	1										
	440.1476	1.1	2.5	11.5	C8 H14	N19 O4		277.7	15.302	0.00	8	14	19	4											
	440.1498	-1.1	-2.5	17.5	C27 H22	2 N O5		276.3	13.902	0.00	27	22	1	5											~
GAEL1W_K	6_neg 3_neg 240 (2.3	240)																						1: TOF M	9 6 9.
ONLE IN_IG	sactim_co_neg 240 (2.240) 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													2.05	+005										
100								1																	
-					224.1	060																			
					334.1	005																			
1																									
-																									
% -																									
								441.15	17																
																		881.305	2						
1					3	35.1096												000	2002						
				30	0.1193	336.1057		4	87.1450									202							
127.0	506 2	210.0879	282.10	085 🔪	Í	425	5.1010		488.147	5 540.0750	602.1	995	655.12	15		775.2662	879	.2865	904.292	1,950.2942	.999.3583	1109	9.8201 213	5.6416	
100	150	200	250		300	350 4	00	450	500	550	600	650)	700		750 800	85	0 9	00 9	50 10	00 105	0 110	0 11	50 1	1 m/z 200
For Help, pre	ss F1																								- //

229

- 230 Figure S24. The HRESIMS spectrum of compound 3 (m/z 440.1487 [M H]⁻; calcd for C₁₉H₂₆N₃O₇S,
- 231 440.1491).

232