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Abstract: One of the possible countermeasures for pollinosis caused by sugi (Cryptomeria japonica), a
serious public health problem in Japan, is the use of male sterile plants (MSPs; pollen-free plants).
However, the production efficiencies of MSPs raised by conventional methods are extremely poor,
time consuming, and resulting in a high seedling cost. Here, we report the development of a novel
technique for efficient production of MSPs, which combines marker-assisted selection (MAS) and
somatic embryogenesis (SE). SE from four full sib seed families of sugi, carrying the male sterility
gene MS1, was initiated using megagametophyte explants that originated from four seed collections
taken at one-week intervals during the month of July 2017. Embryogenic cell lines (ECLs) were
achieved in all families, with initiation rates varying from 0.6% to 59%. Somatic embryos were
produced from genetic marker-selected male sterile ECLs on medium containing maltose, abscisic
acid (ABA), polyethylene glycol (PEG), and activated charcoal (AC). Subsequently, high frequencies
of germination and plant conversion (≥76%) were obtained on plant growth regulator-free medium.
Regenerated plantlets were acclimatized successfully, and the initial growth of male sterile somatic
plants was monitored in the field.

Keywords: male sterile plants; pollen-free sugi; pollinosis; propagation; somatic embryos;
tissue culture

1. Introduction

Sugi, which accounts for 44% of Japan’s planted forest area, is the most important tree species
in forestry. However, over 30% of the total population in Japan (and about 50% of the residents of
Tokyo) suffer from sugi pollinosis, an allergic reaction, resulting in an estimated economic loss of
more than 600 billion yens per year, which represents a serious social and public health problem. One
possible countermeasure against sugi pollinosis is to use male sterile plants (MSPs), which produce
no pollen. The first natural male sterile sugi was discovered in Toyama Prefecture in 1992 [1], and
its frequency in the planted forest area is estimated to be one in several thousand [2]. As a result of
vigorous selection across the country, 23 male sterile sugi individuals have now been discovered [3].
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These male sterile trees have a mutant allele of one of four recessive male sterility genes, MS1, MS2,
MS3, and MS4 [4], which have been identified based on the results of test crossings [5–7]. In order to
accelerate the molecular breeding of C. japonica, a number of DNA markers have been developed and a
high-density linkage map was constructed [8]. Based on these sources of information, the male-sterile
genes, MS1, MS2, MS3, and MS4, have been mapped onto the 9th, 5th, 1st, and 4th linkage groups,
respectively [8–10]. In addition, markers tightly linked to the MS1 gene or derived from a putative
MS1 gene have been developed [4,10–13]. These studies enabled marker-assisted selection (MAS) to
select trees with ms1 [14].

Since the first tree found possesses ms1 (mutant allele in MS1) and the majority of others have also
been ms1 (with only one tree representing each of the ms2, ms3, and ms4 mutant alleles), trees with ms1
have generally been used for tree improvement and seedling production. At present, MSPs of sugi are
obtained by artificial crossing between a male sterile tree (ms1/ms1) and a tree heterozygous for MS1
(Ms1/ms1) [15]. MSPs amongst the resulting seedlings are identified after inducing male flowering
by the application of gibberellin, a plant growth hormone which induces flowering in sugi [16,17].
Using this method, about half (or more) seedlings that do not become male sterile due to the law of
segregation are discarded, making production efficiency extremely poor. For seed production, usage of
superior trees is ideal (i.e., growth performance and morphological traits). Generally, the superior trees
with ms1 are selected from the resulting seedlings in a simple design without repetition. The ideal
selection form is a trial in repetition, but it takes time to propagate clones by cutting from seedlings
produced by artificial crossing. Tissue culture as a tool for clonal propagation is an option to accelerate
the breeding process for MSPs of sugi. Studies on micropropagation of sugi by tissue and organ
culture have been reported since the 1970s [18–29], and recently reports on somatic embryogenesis
(SE) as a plant regeneration system (including studies on the influence of plant material, explant
collection time, explant genotype, and culture conditions as the main factors affecting SE) have been
published [30–39]. However, tissue culture studies for male sterile sugi are limited to reports on
micropropagation through shoot culture published by Fujisawa et al. [40] and Ishii et al. [41], and
via SE reported by Maruyama et al. [42–44]. In addition, according to our knowledge this is the first
detailed report on regeneration of MSPs of sugi by means of SE and MAS.

Here, we examined whether use of a DNA marker for MAS to achieve early selection of male
sterile embryogenic cell lines (ECLs) at the undifferentiated cell stage can be combined with large-scale
somatic embryo propagation to produce a possible 100% MSP production rate. The technique could
produce multiple clones arising from artificial crossing in a considerably shorter time than from cuttings.
We thus report the SE initiation efficiency and plant regeneration achieved from ECLs carrying the
male sterility allele ms1.

2. Results and Discussion

2.1. Somatic Embryogenesis Initiation

Our strategy was to produce successful MSPs by SE from selected male sterile ECLs. The first part
of our experimental approach was to assess initiation of SE from the different seed families carrying the
male sterility gene. The whole megagametophyte containing the zygotic embryo was used as the initial
explant for induction and culture of ECLs to be used for SE. Although extrusion of embryogenic cells
in a number of explants could be observed about 2 weeks after the start of culture, the establishment of
stable lines with evident embryogenic cell proliferation was achieved most frequently after 4–6 weeks
of culture (Figure 1).

As shown in Table 1, despite observed differences among seed families and variations due to
collection date, SE was initiated in all families using megagametophyte explants from the seeds
collected in early to late July 2017. The highest SE initiation frequency (59.03%) was recorded using
explants from seeds of the ‘Fukushima-funen 1’×’Oi 7’ family collected on July 24. This result was
similar to those reported for some male fertile sugi families, such as Gujo 4 (62.5%), Kofu-sho 2
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(52.5%), and Minamitama 5 (65.9%) [32]. In contrast, the lowest SE initiation frequency (0.62% for
the July 03 collection), and the lowest overall average frequency (across all collections), was recorded
for the ‘Fukushima-funen 1’×’S3-37(1)’ seed family (7.67%). The lowest average frequency, taking
data for all four seed families into account, was recorded for the collection of July 03 (12.70%), this
value increasing to 30.11% and 33.84% for collections taken on July 10 and July 24, respectively, and
reaching the maximum value (42.24%) for seeds collected on July 18. An influence of seed collection
date on the induction efficiency of embryogenic cells has been previously reported for male fertile
sugi families [32,33] and other conifers [45–56]. The results of statistical analysis indicated that the
proportion of the explants with SE initiation response significantly differed among families (χ2 = 366.6,
df = 3, p < 0.001) and among seed collection dates (χ2 = 177.9, df = 3, p < 0.001). Frequencies of each
family and seed collection date with SE initiation response were all significantly differentiated with the
exception for the collections of July 10 and 24 (p > 0.05) (Table 1).

Maintenance/proliferation medium was able to support the growth of initiated ECLs by subculture
routines carried out at intervals of 2–3 weeks (Figure 2). Stable ECLs have been maintained for more
than 2 years without loss of their initial morphological characteristics and proliferation potential. Stable
embryogenic cultures showed early stage of somatic embryos characterized by a densely embryonal
head with distinct suspensor system (elongated cells), as described in Maruyama et al. [33].
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Table 1. SE initiation frequency of sugi seed families carrying the male sterility gene MS1. Data represent 
the explants with SE initiation response/total number of explants tested; and the numbers in the 
parentheses represent the initiation frequency (%) for each family at four different seed collection dates. 

Seed Family SE Initiation Frequency by Seed Collection Date 
July 03 July 10 July 18 July 24 All Collections 

♀ ‘Shindai 3’  
♂ ‘Suzu 2’ 

54/156  
(34.62) 

90/191  
(47.12) 

101/192  
(52.60) 

39/168  
(23.21) 

284/707  
(40.17) *** 

♀ ‘Fukushima-funen 1’  
♂ ‘S3-37(1)’ 

2/324  
(0.62) 

25/240  
(10.42) 

37/276  
(13.41) 

17/216  
(7.87) 

81/1,056  
(7.67) *** 

♀ ‘Fukushima-funen 1’  
♂ ‘Oi 7’ 

11/156  
(7.05) 

144/432  
(33.33) 

115/204  
(56.37) 

85/144  
(59.03) 

355/936  
(37.93) *** 

♀ ‘Fukushima-funen 1’  
♂ ‘S3-118(2)’  

29/120  
(24.17) 

55/180  
(30.56) 

136/249  
(54.62) 

196/468  
(41.88) 

416/1,017  
(40.90) *** 

All families 
96/756  

(12.70) *** 
314/1,043  
(30.11) ns 

389/921  
(42.24) *** 

337/996  
(33.84) ns 

1,136/3,716  
(30.57) 

ns: No significant differentiation at p > 0.05 by Pearson’s Chi-squared test; ***: Significantly different 
at p < 0.001 by Pearson’s Chi-squared test. 
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Figure 1. Somatic embryogenesis (SE) initiation from different seed families, (A–E) lines from ‘Shindai
3’ × ’Suzu 2’ family, (F–J) lines from ‘Fukushima-funen 1’ × ’S3-37(1)’ family, (K–O) lines from
‘Fukushima-funen 1’ × ’Oi 7’ family, (P–T) lines from ‘Fukushima-funen 1’ × ’S3-118(2)’ family. Bars
1 cm.
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Table 1. SE initiation frequency of sugi seed families carrying the male sterility gene MS1. Data
represent the explants with SE initiation response/total number of explants tested; and the numbers in the
parentheses represent the initiation frequency (%) for each family at four different seed collection dates.

Seed Family SE Initiation Frequency by Seed Collection Date
July 03 July 10 July 18 July 24 All Collections

♀‘Shindai 3’
♂‘Suzu 2’

54/156
(34.62)

90/191
(47.12)

101/192
(52.60)

39/168
(23.21)

284/707
(40.17) ***

♀‘Fukushima-funen 1’
♂‘S3-37(1)’

2/324
(0.62)

25/240
(10.42)

37/276
(13.41)

17/216
(7.87)

81/1056
(7.67) ***

♀‘Fukushima-funen 1’
♂‘Oi 7’

11/156
(7.05)

144/432
(33.33)

115/204
(56.37)

85/144 (
59.03)

355/936
(37.93) ***

♀‘Fukushima-funen 1’
♂‘S3-118(2)’

29/120
(24.17)

55/180
(30.56)

136/249
(54.62)

196/468
(41.88)

416/1017
(40.90) ***

All families 96/756
(12.70) ***

314/1043
(30.11) ns

389/921
(42.24) ***

337/996
(33.84) ns

1136/3716
(30.57)

ns: No significant differentiation at p > 0.05 by Pearson’s Chi-squared test; ***: Significantly different at p < 0.001 by
Pearson’s Chi-squared test.

Plants 2020, 9, x FOR PEER REVIEW 4 of 15 

 

 

Figure 2. Embryogenic cell proliferation from different seed families: (A,E) line from ‘Shindai 3’×’Suzu 
2’ family, (B,F) line from ‘Fukushima-funen 1’×’S3-37(1)’ family, (C,G) line from ‘Fukushima-funen 
1’×’Oi 7’ family, (D,H) line from ‘Fukushima-funen 1’×’S3-118(2)’ family. Bars 1 cm. 

2.2. Selection of Male Sterile ECLs 

After establishing the ECLs, it was necessary to identify and select those lines that were male sterile 
prior to further propagation. As shown in Table 2, over the 616 ECLs analyzed from four seed families, 
we selected 236 as male sterile lines (pollen-free lines) using MAS. Where PCR for detection of the marker 
DNA did not produce a clear positive band on agarose gels, ECLs were described as “doubted lines”. The 
lack of a clear PCR product could be due to failure of the PCR amplification or poor DNA extraction. Since 
this is the first step of the screening process, from which significant numbers of male sterile lines are 
identified, we did not repeat the experiments in order to eliminate this doubted line category and thereby 
determine the exact numbers in each of the male fertile or sterile lines. The preciseness of the numbers in 
each category was also affected by our cautious assumption that if the allele-specific PCR assay for male 
sterility did not produce a clear strong amplification product on agarose gels, that particular ECL was not 
male sterile. Using the numbers in Table 2, the ratio of male sterile lines to fertile lines was 1:1.4 (chi-square 
= 16.85 and p = 4.05 × 10−5 with df = 1). For a back-crossed pedigree (a seed parent (ms1/ms1) crossed with 
a pollen parent (Ms1/ms1)), Mendelian inheritance would predict a 1:1 ratio of male fertile and sterile 
progeny. An additional note of caution to be applied here is that the marker used is not the MS1 gene itself 
but a closely linked marker to MS1 (0.58 cM to MS1) [12]. This genetic distance indicates that at least one 
individual out of 200 offspring had a recombination event between MS1 and the marker dD_Contig_3995-
165. Such offspring would not give a positive result for presence of a mutant allele of MS1. Hence, for the 
present study, of the analyzed total of 616 lines, at least three individuals were not classified correctly as 
male fertile or sterile line. Although the marker used in the current study was a closely linked marker to 
MS1 (0.58 cM to MS1) [12], the MAS of the ECL was effective. In our previous studies on MAS for ms1, 
we also developed linked markers to MS1 [10,57]. These markers were distantly located to MS1 (3.1 cM) 
and/or unable to be used in the current families due to the lack of suitable SNPs among parents (Ueno et 
al. unpublished). More recently, since completion of the above analysis, we have identified a candidate 
gene for MS1 [58] and developed diagnostic markers [59]. These markers will be useful to verify the result 
of the current study.  

Table 2. Summary of marker-assisted selection (MAS) for the male sterility allele ms1 in four sugi seed 
families. Data represent the overall result of analyzed embryogenic cell lines (ECLs) derived from 
four collection dates for each family. 

Family Analyzed 
ECLs 

Male Fertile 
ECLs 

Male Sterile 
ECLs 

Doubted 
ECLs 

‘Shindai 3’×’Suzu 2’ 160 82 71 7 
‘Fukushima-funen 1’×’S3-37(1)’  136 83 43 10 

‘Fukushima-funen 1’×’Oi 7’  160 69 76 15 
‘Fukushima-funen 1’×’S3-118(2)’  160 100 46 14 

Total 616 334 236 46 

A D C 

E 

B 

F G H 

Figure 2. Embryogenic cell proliferation from different seed families: (A,E) line from ‘Shindai 3’ × ’Suzu
2’ family, (B,F) line from ‘Fukushima-funen 1’ × ’S3-37(1)’ family, (C,G) line from ‘Fukushima-funen 1’
× ’Oi 7’ family, (D,H) line from ‘Fukushima-funen 1’ × ’S3-118(2)’ family. Bars 1 cm.

2.2. Selection of Male Sterile ECLs

After establishing the ECLs, it was necessary to identify and select those lines that were male
sterile prior to further propagation. As shown in Table 2, over the 616 ECLs analyzed from four seed
families, we selected 236 as male sterile lines (pollen-free lines) using MAS. Where PCR for detection
of the marker DNA did not produce a clear positive band on agarose gels, ECLs were described as
“doubted lines”. The lack of a clear PCR product could be due to failure of the PCR amplification
or poor DNA extraction. Since this is the first step of the screening process, from which significant
numbers of male sterile lines are identified, we did not repeat the experiments in order to eliminate this
doubted line category and thereby determine the exact numbers in each of the male fertile or sterile
lines. The preciseness of the numbers in each category was also affected by our cautious assumption
that if the allele-specific PCR assay for male sterility did not produce a clear strong amplification
product on agarose gels, that particular ECL was not male sterile. Using the numbers in Table 2,
the ratio of male sterile lines to fertile lines was 1:1.4 (chi-square = 16.85 and p = 4.05 × 10−5 with
df = 1). For a back-crossed pedigree (a seed parent (ms1/ms1) crossed with a pollen parent (Ms1/ms1)),
Mendelian inheritance would predict a 1:1 ratio of male fertile and sterile progeny. An additional note
of caution to be applied here is that the marker used is not the MS1 gene itself but a closely linked
marker to MS1 (0.58 cM to MS1) [12]. This genetic distance indicates that at least one individual out of
200 offspring had a recombination event between MS1 and the marker dD_Contig_3995-165. Such
offspring would not give a positive result for presence of a mutant allele of MS1. Hence, for the present
study, of the analyzed total of 616 lines, at least three individuals were not classified correctly as male
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fertile or sterile line. Although the marker used in the current study was a closely linked marker to
MS1 (0.58 cM to MS1) [12], the MAS of the ECL was effective. In our previous studies on MAS for
ms1, we also developed linked markers to MS1 [10,57]. These markers were distantly located to MS1
(3.1 cM) and/or unable to be used in the current families due to the lack of suitable SNPs among parents
(Ueno et al. unpublished). More recently, since completion of the above analysis, we have identified a
candidate gene for MS1 [58] and developed diagnostic markers [59]. These markers will be useful to
verify the result of the current study.

Table 2. Summary of marker-assisted selection (MAS) for the male sterility allele ms1 in four sugi seed
families. Data represent the overall result of analyzed embryogenic cell lines (ECLs) derived from four
collection dates for each family.

Family Analyzed
ECLs

Male Fertile
ECLs

Male Sterile
ECLs

Doubted
ECLs

‘Shindai 3’ ×‘Suzu 2’ 160 82 71 7
‘Fukushima-funen 1’ × ‘S3-37(1)’ 136 83 43 10

‘Fukushima-funen 1’ × ‘Oi 7’ 160 69 76 15
‘Fukushima-funen 1’ × ‘S3-118(2)’ 160 100 46 14

Total 616 334 236 46

2.3. Maturation of Somatic Embryos

The next challenge was to develop the selected male sterile ECLs into mature somatic embryos that
could be used for regeneration and conversion into somatic plants. Formation of cotyledonary somatic
embryos from most of the ECLs was observed about 6 weeks after the transfer of the embryogenic cells
to maturation medium (Figure 3). Ten male sterile ECLs showing the best somatic embryo maturation
efficiencies from each seed family were selected for production of somatic plants. As shown in Figure 4,
the seed family ‘Shindai 3’×’Suzu 2’ produced the highest average number of somatic embryos per
plate (349 cotyledonary embryos per 0.5 g), whereas the lowest number (109 embryos) was recorded
for the ‘Fukushima-funen 1’×’Oi 7’ seed family. The families ‘Fukushima-funen 1’×’S3-37(1)’ and
‘Fukushima-funen 1’×’S3-118(2)’ produced intermediate values of 213 and 126 embryos per plate,
respectively. Somatic embryo production obtained in this study was higher than those previously
reported for sugi in 2000 (up to 67 embryos per plate) [33] and 2003 (up to 46 embryos per plate) [36],
but similar to the results published in 2007 (up to 361 embryos per plate) [39]. For comparison,
the numbers of cotyledonary embryos produced per gram of embryogenic cells in studies of other
conifer trees have been reported as 68–147 for Pinus strobus [46], 2–441 for P. sylvestris [60], 10–1550
for P. radiata [61], 0–798 for P. densiflora [62], 67–551 for Larix leptolepis [63], 8–1566 for hybrid Larix ×
eurolepis [64], 80–200 for Picea abies [65], and 22–925 for Abies fraseri [66].

Although the number of mature somatic embryos produced varied among the seed families, the
induction of somatic embryos was confirmed in all families, with an average production of at least 100
cotyledonary embryos per plate (equivalent to 200 embryos per gram). This value compares well with
those listed earlier for other conifers. Differences in successful somatic embryo production among seed
families, as observed here for the male sterile lines, were also found in male fertile sugi families [33,36]
and in other Japanese conifers such as Chamaecyparis obtusa [67,68], Pinus thunberghii [69], and P.
armandii var. amamiana [70].
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Figure 3. Somatic embryo maturation from embryogenic cells originated from different seed families,
(A–D) lines from ‘Shindai 3’ × ’Suzu 2’ family, (E–H) lines from ‘Fukushima-funen 1’ × ’S3-37(1)’ family,
(I–L) lines from ‘Fukushima-funen 1’ × ’Oi 7’ family, (M–P) lines from ‘Fukushima-funen 1’ × ’S3-118(2)’
family. Bars 1 cm.Plants 2020, 9, x FOR PEER REVIEW 6 of 15 
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Figure 4. Somatic embryo production efficiency of sugi seed families carrying the male sterility gene
MS1. Data represent the mean ± SE of somatic embryos per plate (cotyledonary embryos per 0.5 g) from
ten male sterile lines per seed family. The lower case letters indicate significant differences according to
Tukey’s multiple range test at p < 0.05.

2.4. Regeneration of Somatic Plants

At this point in our process, cotyledonary somatic embryos were now available from all four seed
families and could be transferred to germination medium as the first stage of regeneration of somatic
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plants. The embryos germinated readily, with the start of germination observed at about 1–2 weeks
after transfer (Figure 5A–D) and conversion in the majority of cases achieved after 3–6 weeks of culture.
The percentage of successful germination and plant conversion that was achieved varied from 80–88%
and 76–85%, respectively (Figure 6). Although no significant differences in these values were detected
among the seed families, the best result for both germination (88%) and conversion rate (85%) was
obtained with somatic embryos from ‘Shindai 3’×’Suzu 2’ family.
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Figure 5. Regeneration and in vitro growth of somatic plants originating from embryogenic cells
of different seed families, (A–D) somatic embryo germination, (E–H) plants growing in vitro before
acclimatization. (A,E) line from ‘Shindai 3’ × ’Suzu 2’ family, (B,F) line from ‘Fukushima-funen 1’ ×
’S3-37(1)’ family, (C,G) line from ‘Fukushima-funen 1’× ’Oi 7’ family, (D–H) line from ‘Fukushima-funen
1’ × ’S3-118(2)’ family. Bars (A–D) 1 cm, (E–H) 5 cm.
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Figure 6. Germination and plant conversion of somatic embryos from sugi seed families carrying
the male sterility gene MS1. Data represent the mean germination and plant conversion rate ± SE of
somatic embryos from ten ECLs per seed family. No significant differences in respective percentage
values were detected among the seed families according to Tukey’s multiple range test at p < 0.05.

The high germination and conversion frequencies obtained in all families demonstrated that the
somatic embryos produced were of high quality. Germination frequencies achieved in this study were
higher than those previously reported by Maruyama et al. [33] and Igasaki et al. [36], who recorded
germination frequencies in the ranges of 12–57% and 33–63%, respectively. Maturation efficiency and
the quality of the somatic embryos produced are two of the most important criteria for the optimization
of a SE protocol for practical use [71]. Notwithstanding the fact that cotyledonary embryos were
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produced on medium containing a high concentration (17.5%) of polyethylene glycol (PEG) they readily
germinated after the transfer to a plant growth regulator-free medium, without any post-maturation
treatment. This is in contrast to studies of somatic embryo maturation of Picea abies, in which PEG
is reported to stimulate embryogenesis but inhibit the subsequent germination process [72]. Partial
desiccation and/or cold treatments after maturation on medium containing PEG have been reported
necessary to improve somatic embryo germination and conversion in a number of conifer species,
including some pines [73–79], spruces [80–83], hybrid larch [84], Fraser fir [66], and Chinese fir [85].

Somatic male sterile plants developed in vitro (Figure 5E–H) were successfully acclimatized in
plant containers (Figure 7A–D) and grew well with no signs of abnormal appearance (Figure 7E,F),
and the subsequent growth of male sterile somatic plants in the field was monitored [86]. A previous
comparison of traits between male sterile and fertile sugi trees in selected stands indicated that no
marked differences were observed in any of the physical characteristics examined (tree height, diameter
at breast height, basal bending, modulus of elasticity of tree trunk, and types of snow damage) [87].
The indications are, therefore, that the somatic MSPs produced in this study will grow normally, and
pollen production will be their only deficiency. However, in addition to growth performance in the
field, it will be essential to monitor the genetic stability of the somatic plants using molecular marker
technology in order to confirm that a practical and efficient protocol for sugi MSP propagation has
been established.Plants 2020, 9, x FOR PEER REVIEW 8 of 15 
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3. Materials and Methods

3.1. Initial Explant, Medium, and Culture Conditions

Four seed collections were carried out at 1-week intervals during the month of July (2017) from
four full sib seed families of sugi carrying the male sterility gene MS1 (Table 1). At each collection date,
samples of zygotic embryos were observed to determine their developmental stage according to the
scale used to classify zygotic embryo development in loblolly pine [88]. The developmental stage of
explants collected on July 03 was pre-embryo stage equivalent to stages 1–2. Collections on July 10
and 18 were mostly represented by early embryo stages equivalent to stages 3–4 and 5–6, respectively.
Seeds collected on July 28 showed pre-cotyledonary stages equivalent to stages 7–8 in the scale of
Pullman and Buchanan [88].

The whole megagametophyte (about 3–4 mm long) containing the zygotic embryo was used
as the initial explant for SE initiation. Seeds were surface sterilized with 1% (w/v available chlorine)
sodium hypochlorite solution for 15 min and then rinsed 3 times with sterile distilled water for 5 min
each time before isolation of megagametophyte explants. For induction of embryogenic cells, explants



Plants 2020, 9, 1029 9 of 15

were placed horizontally onto initiation medium contained in 90 × 15 mm quad-plates (3 explants
per well, 12 per plate) and cultured in darkness at 25 ◦C. Initiation medium containing basal salts
reduced to half concentration from the standard EM medium [33] was supplemented with 10 g L−1

sucrose, 10 µM 2,4-dichlorophenoxyacetic acid (2,4-D), 5 µM 6-benzylaminopurine (BA), 0.5 g L−1

casein acid hydrolysate, 0.5 g L−1 glutamine, and solidified with 3 g L−1 gellan gum (Gelrite®; Wako
Pure Chemical, Osaka, Japan). The pH was adjusted to 5.8 prior to autoclaving the medium for 15 min
at 121 ◦C.

3.2. Maintenance and Proliferation of ECLs

Induced ECLs were subcultured every 2–3 weeks on maintenance/proliferation medium containing
basal salts reduced to half concentration from the standard EM medium [33] was supplemented with
3 µM 2,4-D, 1 µM BA, 30 g L−1 sucrose, 1.5 g L−1 glutamine, and 3 g L−1 gellan gum. Clumps of
embryogenic cells (12 per plate) were cultured in darkness at 25 ◦C.

3.3. Selection of Male Sterile ECLs

Male sterile ECLs were selected according to the methodology described elsewhere [12].
Embryogenic cells for DNA extraction were sampled from each culture line using a microspatula. One
spoonful of sampled tissue (30–40 mg under wet conditions) was dispersed into 200 µL of 2 × CTAB
buffer [59] and stored at −30 ◦C until DNA extraction. The freeze-thawed samples were disrupted
using a TissueLyser II (Qiagen) at a frequency of 30 Hz for 30 s. Samples were then incubated at
65 ◦C for 10 min. Chloroform (50 µL) was then added, the samples emulsified, and centrifuged at
12,000 rpm at room temperature for 10 min. The aqueous phase was transferred to a new 1.5 mL
tube and a two-thirds volume of isopropanol was added to precipitate DNA, which was collected
by centrifugation at 12,000 rpm at 4 ◦C for 15 min. The pellet was washed by 70% ethanol and
vacuum-dried for 5 min, before finally dissolving the dried nucleic acid pellet in 100 µL of TE buffer.
One microliter of RNase solution (2 mg/mL) was added and incubated at 37 ◦C for 2 h with a little
agitation on a shaker. To identify the marker (dD_Contig_3995-165) for male sterility [12] by PCR,
a 1 µL sample of each DNA solution was used as a template. The reaction mixture, totaling 10 µL,
contained 3 µL of 2 ×Multiplex (Qiagen), 0.2 µM of each forward and reverse primers, and 1 µL of
DNA, which was then amplified in a GeneAmp PCR System 9700 (Applied Biosystems, Foster City,
CA, USA) with the following thermal conditions: initial denaturation at 95 ◦C for 15 min, 4 cycles of
95 ◦C for 30 s, 64 ◦C for 90 s with −1 ◦C per cycle and 72 ◦C for 30 s, and 34 cycles of 95 ◦C for 30 s,
60 ◦C for 90 s, and 72 ◦C for 30 s. The PCR products were visualized by 2% agarose gel electrophoresis
and ethidium bromide staining.

3.4. Maturation of Somatic Embryos

For development and maturation of somatic embryos, proliferated ECLs (early stage of somatic
embryos characterized by an embryonal head with suspensor system) [33] were cultured in clumps
(5 masses per 90 × 20 mm plate, 100 mg each) on maturation medium for 8 weeks. Maturation medium
contained the basal salt concentration of the standard EM medium [33], supplemented with 30 g L−1

maltose, 2 g L−1 activated charcoal (AC), 100 µM abscisic acid (ABA), amino acids (in g L−1: glutamine
2, asparagine 1, arginine 0.5, citrulline 0.079, ornithine 0.076, lysine 0.055, alanine 0.04, and proline
0.035), 175 g L−1 PEG (Av. Mol. Wt.: 7300–9300; Wako Pure Chemical, Osaka, Japan), and 3.3 g L−1

gellan gum. The plates were sealed with Parafilm® and kept in darkness at 25 ◦C.

3.5. Germination and Plant Conversion

Cotyledonary embryos collected from the maturation medium were laid horizontally onto the
germination medium (maintenance/proliferation medium containing 20 g L−1 sucrose, 2 g L−1 AC, and
10 g L−1 agar but without addition of plant growth regulators) and cultured at 25 ◦C under a photon flux
density of 45–65 µmol m−2 s−1 provided by 100 V, 40 W white fluorescent lamps. The photoperiod was
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16 h. Germination, taken as the emergence of the root, and plant conversion, taken as the emergence of
both root and epicotyl, were recorded after 8 weeks of culturing.

3.6. Growth In Vitro and Acclimatization of Somatic Plants

The growth of emblings was promoted by transferring them to culture flasks containing
germination medium supplemented with 30 g L−1 sucrose and 5 g L−1 AC, and culturing under the
same conditions described above for about 10–12 weeks before ex vitro acclimatization. Developed
somatic plants removed from the culture flasks were transplanted into plant containers filled with
spagmoss (Sphagnum moss) and kept inside plastic boxes with transparent covers. Plant containers
were irrigated with tap water as needed during the first 2 weeks. After this initial 2-week period,
the covers were opened gradually and the plant containers were fertilized with Nagao’s nutrient
solution [17]. The covers were completely removed 4 weeks after transplanting. Acclimatized somatic
plants were grown in a greenhouse (about 3 months) until an approximate height of 30 cm was attained,
after which they were transplanted to the field.

3.7. Statistical Analysis

The differentiation of the proportion of the explants with SE initiation response among families
and seed collection dates were examined using Pearson’s Chi-squared test. To further elucidate which
part of the data was causing the significant differentiation, the residuals of the Chi-squared test were
used to conduct the post hoc analysis and the p-values were adjusted with a Bonferroni correction [89].
Pearson’s Chi-squared test was performed using R version 3.6.2 [90] and the post hoc analysis based
on the residuals of the Chi-squared test was done using R package “chisq.posthoc.test” [91]. The data
for somatic embryo production efficiency, somatic embryo germination, and plant conversion were
analyzed using one-way analysis of variance, followed by Tukey’s multiple-range test.

4. Conclusions

An efficient protocol to propagate male sterile somatic plants of sugi combining selection of
ECLs with MAS and propagation via SE has been established (Figure 8). Using four different seed
families of sugi carrying the male sterility gene MS1, collected during the month of July, initiation
of SE was demonstrated. Despite some differences in the initiation rate, the numbers of male sterile
ECLs selected, and somatic embryo maturation among the four seed families, large numbers of stable
culture lines were established, and we were able to produce pollen-free somatic plants arising from
all families. By selecting for male sterility at the embryogenic cell stage, SE can ultimately generate
multiple somatic MSPs in a fraction of the time taken by existing conventional methods. We believe
that the methodology developed in this study will serve as a powerful tool to establish an efficient
breeding technology for MSPs of sugi.
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