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Abstract: Cassava brown streak disease (CBSD) caused by the Cassava brown streak virus (CBSV) and
Ugandan cassava brown streak virus (UCBSV) is a threat to cassava production in Africa. The potential
spread of CBSD into West Africa is a cause for concern, therefore screening for resistance in
farmer-preferred genotypes is crucial for effective control and management. We multiplied a selection
of eleven cassava cultivars grown by farmers in Ghana to test their response to a mixed infection of
CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates using a stringent top-cleft graft inoculation
method. Virus titers were quantified in the inoculated scions and cuttings propagated from the
inoculated scions to assess virus accumulation and recovery. All cultivars were susceptible to the
mixed infection although their response and symptom development varied. In the propagated infected
scions, CBSV accumulated at higher titers in leaves of eight of the eleven cultivars. Visual scoring of
storage roots from six-month-old virus-inoculated plants revealed the absence of CBSD-associated
necrosis symptoms and detectable titers of CBSVs in the cultivar, IFAD. Although all eleven cultivars
supported the replication of CBSV and UCBSYV in their leaves, the absence of virus replication and
CBSD-associated symptoms in the roots of some cultivars could be used as criteria to rapidly advance
durable CBSD tolerance using breeding and genetic engineering approaches.

Keywords: cassava brown streak disease; resistance screening; quantitative reverse transcription
PCR; top graft-inoculation; virus detection; cassava germplasm; surveillance; pre-emptive strategies

1. Introduction

In tropical and semi-tropical regions of the world, cassava (Manihot esculenta Crantz) is an important
source of carbohydrate in the diets of nearly 800 million people, one-third of whom live in sub-Saharan
Africa (SSA) [1,2]. Cassava production is severely constrained by viral diseases, mainly cassava
mosaic disease (CMD) and cassava brown streak disease (CBSD) in SSA [3]. Geographically, CMD is
widespread across all cassava-growing regions in SSA while CBSD is prevalent in low- to mid-altitude
regions of Eastern and Central Africa [3-6]. Economically, estimated annual yield losses attributable to
both CMD and CBSD has been reported to exceed USD 1 billion [2,3]. Although both viral diseases
reduce root yield in susceptible varieties, necrotic lesions caused by CBSD further exacerbate economic
losses as they make storage roots unfit for consumption and processing [7-9].
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CBSD is caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus
(UCBSV), both of which are (+) sense single-strand RNA (ssRNA) viruses of the genus Ipomovirus (family
Potyviridae) [9-13]. CBSD is transmitted over short distances by the whitefly vector, Bemisia tabacci
(Gennadius) [14,15], while long-distance spread can occur through the transport of infected planting
material [5,16]. The co-occurrence of CBSV and UCBSV species (referred to as CBSVs) has been
reported in disease endemic and epidemic zones [17-19]. The common occurrence of mixed CBSV and
UCBSV infections in the field [3,20] has prompted the research community to implement mitigation
strategies that rely on resistance to both species.

Past and current efforts to control the incidence of CBSD in Eastern Africa have focused on screening
for resistance or tolerance in both cultivated and wild species of cassava and on the introgression
of CBSD resistance and tolerance into farmer-preferred cultivars [8,21,22]. Several varieties such as
“Kiroba”, a back-cross derivative known as “Kaleso” in Kenya or "Namikonga” in Tanzania [9] or
clones MM 06/0082, MM 06/0123, MM 06/0128 and MM96/0876 have been shown to exhibit tolerance to
CBSD through one or a combination of mechanisms such as restricted virus replication, reduced virus
accumulation and movement as well as limited symptom expression [23-26]. Further investigation of
the cassava-CBSV pathosystem has led to the identification of two breeding lines, KBH 2006/18 and
KBH 2006/2, which show resistance to mixed infection of CBSV and UCBSV isolates by restricting virus
movement from the vascular tissues to the mesophyll cells [27,28]. The integration of these genotypes
into local farming systems and breeding programs has extended the sources of tolerance against CBSD
in the field [23,26]. The recent identification of seven cassava lines in the South American cassava
germplasm with high resistance to CBSD infection [29], if confirmed under field conditions, will further
expand the genetic basis for introgressing CBSD resistance into farmer-preferred cassava cultivars.

Several methods (both vector and non-vector based) have been developed to screen for CBSD
resistance in cassava under field and greenhouse conditions. The use of whiteflies to inoculate
plants with CBSV and UCSBYV isolates has been successful albeit with limited efficiency [13-15,25].
Side-grafting [30] as well as bud grafting methods [20,27] have enabled large-scale screening of cassava
plants with limited number of CBSVs-infected plants. However, both methods have lower infection
rates compared to the top grafting method, which usually achieves 100% infection rates [27,31,32].
Although the recent construction of an infectious UCBSV clone opens new opportunities to develop
robust inoculation methods [33], graft inoculation methods have so far been most effective for the
transmission of CBSV and UCBSV to non-infected cassava plants [20,27,31].

Notwithstanding progress in the control and management of CBSD, cultivars with natural
CBSD tolerance or resistance have been mostly developed for deployment in Eastern Africa [23-25].
West Africa accounts for almost 50% of cassava production in Africa, with Nigeria and Ghana
contributing the major portion of this production [34]. Although CBSD has not yet been reported in
West Africa, comprehensive and timely screening of farmers’ fields is key to prevent CBSD pandemics
in West African cassava-growing regions. The presence of CBSD in cassava fields in Burundi and
Democratic Republic of Congo indicates a westward drift of the disease into areas previously considered
as CBSD-free. Furthermore, the recent increase in B. tabaci populations in Eastern and Central Africa,
which might have played a role in CBSD outbreaks in mid-altitude regions [3,35], is a cause for concern.
Therefore, there is a need to implement pre-emptive strategies in West Africa in order to prevent the
rapid dissemination of CBSD in regions where cassava is a major staple and industry crop.

The aim of the present study was to assess the resistance of eleven cassava cultivars preferred by
farmers in Ghana to a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) [GenBank
Accession numbers JN091565.1 and KF878103.1]. In-depth characterization of leaf and root CBSD
symptom development, virus replication as well as the impact of vegetative propagation on viral
disease transmission is reported.



Plants 2020, 9, 1026 3of16

2. Results

2.1. No Detection of CBSVs in Selected Field-Grown Cassava Cultivars in Ghana

Molecular screening of leaf material from eleven field-grown cassava cultivars obtained from
the BNARI germplasm collection in Ghana (Table S2) and leaf material collected from farmers’ fields
in Ghana (Figure S1) was carried out in order to determine their phytosanitary status (Figure S2).
Leaf material from selected cassava cultivars displayed typical CMD but no CBSD symptoms. We first
screened the cultivars and leaf material from farmers’ fields for CBSVs using degenerate primers that
detect the coat protein of CBSVs in the three main phylogenetic clades [6,13,18] (Table S1, Figure S3).
Leaf samples of the cultivars from the BNARI germplasm collection were also screened for cassava
mosaic geminiviruses (CMGs) (Figure S4) with two commonly-used generic primer pairs [36,37].
We did not detect CBSVs in all analyzed leaf samples (Figure S1), which was consistent with the absence
of CBSD-associated symptoms in the plants from which leaves were collected. However, we detected
ACMYV and EACMYV species that are present in Ghana in several of the leaf samples collected from the
selected BNARI cultivars (Figure 54).

Together, our results indicate that the eleven selected cassava cultivars from Ghana obtained
from the BNARI germplasm collection were free of CBSVs and that CBSVs are currently absent from
the surveyed farmers’ fields. However, extension of molecular screening to cassava fields across
cassava-growing regions in Ghana will be important to confirm the absence of CBSVs and inform
CBSD prevention strategies.

2.2. Susceptibility of Selected Farmer-Preferred Cassava Cultivars to Mixed Infection of CBSV (TAZ-DES-01)
and UCBSV (TAZ-DES-02)

The top-cleft graft method has proven to be the most stringent method to inoculate cassava with
CBSVs as demonstrated by the reported 100% transmission rates for CBSV and UCBSV [27,28,31,32].
The eleven cassava varieties collected from the cassava germplasm available at BNARI (Table S2)
represent farmer-preferred cassava cultivars popular in the selected cassava producing regions of
Ghana. They were propagated in the greenhouse at ETH Zurich to multiply scions for grafting.
To ensure the absence of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) in the selected Ghanaian
cassava cultivars, we performed reverse-transcription-polymerase chain reaction (RT-PCR) using
specific primers that detect the coat protein of the two virus isolates (Table S1). CBSV (TAZ-DES-01)
and UCBSV (TAZ-DES-02) were not detected in the selected Ghanaian cassava cultivars.

To test the response of the selected farmer-preferred cultivars to CBSD, we used Ebwanateraka
cassava rootstocks carrying a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02).
We previously showed that Ebwanateraka rootstocks support high levels of CBSV (TAZ-DES-01) and
UCBSV (TAZ-DES-02) replication [27,31,32]. The mixed infection of CBSV (TAZ-DES-01) and UCBSV
(TAZ-DES-02) cause rapid development of visible foliar symptoms and accumulation of detectable
levels of CBSV and UCBSV in several CBSD-susceptible cultivars [27,28,31,32].

A 100% infection incidence (Figure 1A) with typical CBSD symptoms were found in all eleven
graft-challenged Ghanaian cassava cultivars (Figure 1B), although variation in symptom severity could
be observed (Table S2). Consistent with earlier results [27], we did not detect any incidence of CBSD
in the elite breeding line KBH 2006/18. All three replicates remained symptom-free throughout the
12-week screening period. The cultivar Afisiafi had the lowest mean CBSD leaf symptom severity (2.0),
while the cultivar IFAD displayed the highest mean CBSD leaf symptom severity (4.3), similar to those
observed for the two susceptible controls, Ebwanateraka and 60444 (Figure 1A). The cassava genotype
Afisiafi is the improved CMD-resistant variety TMS 30572 that was released in Ghana in 1993 [38] and
that is widely cultivated by farmers in Ghana. Although high CBSD incidence has been observed in
most of the CMD-resistant cultivars deployed over the last decade [39], our results suggest that Afisiafi
could be classified as tolerant to CBSD based on its ability to restrict symptom expression and severity
under the top-graft inoculation of mixed CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) infection [25].
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Figure 1. Cassava brown streak disease (CBSD) incidence, severity and symptom expression in leaves
of Ghanaian cassava cultivars at 12 weeks post grafting. (A) CBSD incidence and mean symptom
severity scores in Ghanaian cassava genotypes. (B) CBSD symptom expression in leaves of (a) Dagarti
(b) Santum (c) Afisiafi (d) Bosomnsia (e) IFAD (f) Megyewontem (g) Tomfa (h) Ankra (i) ADI 001
(j) Nkabom (k) Tuaka (1) KBH 2006/18 (m) Ebwanateraka and (n) 60444. No symptoms were found in
non-infected leaves of (0) Tuaka and (p) Ankra. CBSD incidence and mean symptom severity scores are
based on three biological replicates for each cultivar. CBSD symptom expression in leaves of Ghanaian

cassava cultivars was assessed using a 5-point scoring scale where 1= no visible CBSD symptoms and
5 = severe foliar symptoms and plant die-back [40-42].
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2.3. UCBSV (TAZ-DES-02) Accumulates to Higher Levels than CBSV (TAZ-DES-01) in Infected Scions and
Stem Cuttings Propagated from Scions

In order to determine the accumulation levels of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02)
in the selected cassava cultivars, we measured viral titers in top-grafted scions as well as in cuttings
propagated from inoculated scions using RT-qPCR (Figure 2A). Both CBSV (TAZ-DES-01) and UCBSV
(TAZ-DES-02) accumulated in leaves from all selected cultivars, although there were differences in
virus titers among cultivars. In all cultivars except Afisiafi, UCBSV (TAZ-DES-02) accumulated at
higher levels compared to CBSV (TAZ-DES-01) (Figure 2B and 2C). Similar observations of higher
UCBSV titers in scions of cassava genotype 60444 have been previously reported [27,31]. Under field
conditions, an increase in UCBSV titers was reported in both CBSD susceptible and tolerant cultivars
between three to seven months after planting [25]. CBSD symptom expression did not correlate
significantly (r = —0.002, P = 0.9) with relative virus titer of CBSVs in Ghanaian cassava cultivars
(Figure S5). For example, even though Afisiafi had the lowest mean CBSD incident and leaf symptom
severity (Figure 1), it accumulated higher levels of CBSV compared to IFAD or both susceptible
varieties, Ebwanateraka and 60444 (Figure 2B). Notably, in Dagarti and Megyewontem severe CBSD
leaf symptoms corresponded with high virus titers in leaves.
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Figure 2. Cassava brown streak virus (CBSV) (TAZ-DES-01) and Ugandan cassava brown streak virus
(UCBSV) (TAZ-DES-02) titers in scions and cuttings multiplied from scions at 12 weeks. (A) Stringent
approach for CBSD screening of Ghanaian cassava cultivars. (B) CBSV (TAZ-DES-01) and (C) UCBSV
titers in scions at 12 weeks post grafting (wpg) (n = 3) and cuttings multiplied from (D) CBSD
(TAZ-DES-01)- and (E) UCBSD (TAZ-DES-02)-infected scions at 12 weeks post multiplication (wpm)
(n > 8). CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) titers quantitated relative to MePP2A gene.
Cuttings made from scions of cultivar Ebwanateraka failed to sprout. X = titers of CBSV (TAZ-DES-01)
or UCBSV (TAZ-DES-02) relative to the PP2A gene standard. FPV = farmer-preferred variety.
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Virus disease management strategies in cassava have exploited the phenomenon of reversion,
which is the production of virus symptom-free plants from infected parent plants [43]. Reversion has
been considered a component of resistance and thus cultivars that display reversion after CBSD
infection could serve as sources of tolerance against CBSD. In light of this background, we multiplied
infected parental scions and evaluated the cuttings for CBSD symptoms and virus accumulation. In the
propagated infected cuttings, CBSV(TAZ-DES-01) accumulated at higher titers in the leaves of eight
out of eleven Ghanaian cultivars screened, although this increase was only significant in Bosomnsia
(P =0.03) (Figure 2D; Table S3A and 3B). In contrast, UCBSV (TAZ-DES-02) titers were significantly
lower in propagated cuttings when compared to titers in the parental scions in three cultivars, ADI 001
(P = 0.001), Ankra (P = 0.01) and Nkabom (P = 0.001) (Figure 2E; Table S4A and 4B). Except in
Bosomnsia, Santum, Tomfa, and Tuaka, which accumulated higher levels of UCBSV (TAZ-DES-02)
titers, all other cultivars had lower levels of UCBSV in the propagated cuttings.

CBSV is reportedly more aggressive than UCBSV [6,19,42], although the response to either
or both viruses is highly variable and dependent on the virulence of the virus isolate and varies
between cassava genotypes [25,42]. In our challenge of Ghanaian cassava cultivars, we observed the
accumulation of higher levels of CBSV (TAZ-DES-01) compared to UCBSV (TAZ-DES-02) in propagated
infected cuttings, which supports earlier reports [6,9]. In cassava, the response to infection by CBSVs
is displayed mainly in four forms: genotypes that have low virus load with restricted symptom
expression, genotypes that have low virus load with relatively severe symptoms, genotypes that have
high virus loads but show relatively mild symptoms, and genotypes that display severe symptoms
with high virus load [25]. In contrast, there was a reduction in UCBSV (TAZ-DES-02) titers in leaves of
propagated infected cuttings of Ghanaian genotypes. Similar declines in UCBSV viral loads in selected
East African genotypes with progression of the growing season have been previously reported [25].
Therefore, adequate assessment of CBSD resistance in cassava requires using both CBSV and UCBSV
isolates, alone or in combination. Our results indicate that all eleven Ghanaian cassava cultivars
are susceptible to CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates, although the severity of
symptoms and virus titers vary between genotypes.

2.4. CBSD Decreases Viability of Propagated Stem Cuttings in Ghanaian Cassava Cultivars

To evaluate the effect of CBSD on the viability of clonal stem cuttings propagated from infected
scions of the selected Ghanaian cultivars, we multiplied a minimum of nine stem cuttings per cultivar
(three nodes per cutting) from CBSD-infected scions and grew them under greenhouse conditions.
Compared to CBSD non-infected cuttings, the survival rates of sprouted cuttings were reduced in
all eleven Ghanaian cassava cultivars after CBSD infection. Specifically, less than 50% of cuttings
propagated from infected scions failed to sprout except in Bosomnsia, Megyewontem and Nkabom,
which had a higher percentage of cuttings that sprouted. For example, in Afisiafi, which was classified
as tolerant based on its ability to restrict CBSD symptom expression and severity, the accumulation of
high levels of CBSV titers in the inoculated scions might explain the reduced survival rates of Afisiafi
cuttings. Comparatively, between 78 to 100% of cuttings propagated from non-infected Ghanaian
cultivars sprouted by 12 weeks in the greenhouse (Table 1).

It has been previously reported that endemic CBSV isolates are associated with severe symptoms
and significant reduction in the sprouting of cuttings compared to milder epidemic isolates [9,42].
The isolates, CBSV (TAZ-DES 01) and UCBSV (TAZ-DES-02) used in this study also reduced the
survival rate of cuttings in CBSD-susceptible cultivars Ebwanateraka and 60444 [27]. CBSD infections
are known to affect growing buds and sprouting of stem cuttings, particularly in susceptible cassava
varieties [9,44]. In our infections of Ghanaian cassava cultivars with CBSVs, we recorded a significant
(P < 0.0001) reduction in sprouting and regeneration of infected stem cuttings at 12 weeks (Table 1;
Table S5A and 5B). This result confirms the impact of CBSD on cassava regeneration and survival,
although other factors such as length, number of nodes per cutting, stem age and lignification of stems
can also affect the quality of cassava planting material and subsequent sprouting of cuttings [45].
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Table 1. Survival rate of cuttings propagated from CBSD-infected Ghanaian cassava genotypes at 12 weeks old.

Control CBSV-Inoculated
Genotype Status No. of Sprouted No. of Sprouted Mean CBSD Le.af
Cuttings/no. of Survival Rate (%) Cuttings/no. of Survival Rate (%) Symptom Severity
Cuttings Made Cuttings Made
KBH 2006/18 Released variety 9/9 100 11/27 41 1.0
Ebwanateraka Released variety 7/9 78 0/15 0 -
60444 Released variety 8/8 100 3/21 14 4.3
ADI 001 Landrace 9/9 100 10/36 28 23
Afisiafi Released variety 9/9 100 3/15 20 2.0
Ankra Landrace 8/9 89 4/17 24 3.7
Bosomnsia Landrace 8/9 89 8/9 89 3.7
Dagarti Released variety 8/9 89 6/25 24 4.0
IFAD Released variety 8/9 89 4/16 25 43
Megyewontem Landrace 8/10 80 15/20 75 4.0
Nkabom Released variety 9/9 100 16/27 59 3.0
Santum Released variety 10/10 100 6/28 21 2.3
Tomfa Released variety 9/9 100 3/13 23 3.0
Tuaka Landrace 9/9 100 4/25 16 3.0

(-) = none of the propagated infected cuttings sprouted.

7 of 16
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2.5. Accumulation of CBSV's in Storage Roots of Ghanaian Cassava Cultivars

To analyze the accumulation of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) in storage roots of
the cassava cultivars, stem cuttings were propagated from CBSD-infected scions and grown for 6 months
under greenhouse conditions in order to produce storage roots. The storage roots were harvested
and visually assessed for typical CBSD root necrosis symptoms. The eleven cultivars graft-challenged
with rootstocks carrying a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) were
subsequently propagated by stem cuttings (except Ebwanateraka, for which cuttings did not sprout;
Table 1). Eight cultivars produced storage roots and typical CBSD root necrosis was observed in seven
genotypes; Megyewontem, Nkabom, ADI 001, Tomfa, Tuaka, Santum and Dagarti (Figure 3). Only the
storage roots of IFAD and Afisiafi did not develop brown necrotic symptoms at 6 months after planting
(Figure 3A).

Using a previously described scoring scale [24], mean CBSD root symptom severity ranged from
a score of 1.0 in Afisiafi, IFAD and Dagarti to a score of 4.0 in Nkabom (Figure 3B). No necrosis
was seen in the CBSD-susceptible variety 60444 at six months after planting. The appearance of
root necrosis is cultivar dependent and could take more than six months to appear in susceptible
varieties after CBSD foliar symptoms have developed [8]. It should be noted that two CBSD-infected
cultivars, Ankra and Bosomnsia, failed to form storage roots in the greenhouse after six months.
Although both cultivars produce storage roots in the field [46], screening of cultivars for resistance in
the greenhouse is constrained by planting pot volume, which could prevent storage root formation in
Ankra and Bosomnsia.

To further confirm accumulation of CBSV and UCBSV in storage roots, we quantitated virus titers
using RT-qPCR [32]. We detected both CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) accumulation in
the storage roots of all eleven cultivars except for IFAD, in which only UCBSV (TAZ-DES-02) could be
detected (Figure S6). Neither CBSV (TAZ-DES-01) nor UCBSV (TAZ-DES-02) was detected in storage
roots of the CBSD-resistant elite breeding line KBH 2006/18 at six months post-multiplication of cuttings
from infected scions. Interestingly IFAD, which had no detectable levels of CBSV (TAZ-DES-01), also did
not show necrotic symptoms in storage roots of cuttings grown for six months post multiplication of
cuttings from infected scions. Although the susceptible variety 60444 had the highest accumulation
of CBSV and UCBYV titers in storage roots, we also did not observe visible necrotic symptoms at six
months (Figure 3B; Figure S6). Our observation confirms earlier work that corky necrotic symptoms
developed in storage roots of 60444 only after seven months post-CBSD infection [31]. In Afisiafi and
Dagarti, we detected CBSV and UCBSV accumulation in storage roots in the absence of root necrosis.
This suggests that both cultivars are able to restrict CBSD symptom expression but not virus replication
in storage roots at this growth stage. Similar to leaves, we detected UCBSV (TAZ-DES-02) at higher
titers than CBSV (TAZ-DES-01) in the storage roots of the Ghanaian cultivars (r = 0.8, P < 0.0001)
(Figure 3C). However, mean CBSD symptom severity in storage roots did not correlate with CBSV
(r=-0.18, P = 0.4) or UCBSYV titers (r = —0.06, P = 0.8) (Figure 3D). Variation in cultivar response to
CBSD infection has been observed in different cassava genotypes both under field and greenhouse
conditions [9,13,25]. In CBSD-susceptible cultivars in particular, symptoms correlate with virus titers
of either CBSV (TAZ-DES-01) or UCBSV (TAZ-DES-02), while this relationship does not hold true in
genotypes displaying some level of CBSD tolerance or resistance [25].
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Figure 3. CBSD root necrosis and mean symptom severity in storage roots of Ghanaian cassava
cultivars from 6-month-old plants. (A) Examples of leaves and storage roots from CBSD-affected
plants. (a) Megyewontem (b) Nkabom (c) Tomfa (d) ADI 001 (e) IFAD (f) Tuaka (g) Afisiafi (h) 60444
(i) KBH 2006/18 = CBSD-resistant control plant. (B) Detection (presence (+) or not detected (ND))
of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) in leaves and mean symptom severity scores in
storage roots (n = 3 biological samples). CBSD symptom expression in storage roots of Ghanaian
cassava cultivars was assessed using a 5-point scoring scale where 1= no symptoms, 2 = less than 5% of
storage root necrosis, 3 = 5-10 % necrosis, 4 = 10-25% necrosis and 5 = more than 25% necrosis [24];
nil = no storage roots produced. (C) Relative titers of CBSV (TAZ-DES-01) correlates significantly
(r=10.8, P <0.001) with UCBSV (TAZ-DES-02) titers in storage roots (D) Necrosis symptom severity in
storage roots does not correlate with either CBSV(r = —0.18, P = 0.4) or UCBSV (r = —0.06, P = 0.8) titers

(Pearson correlation).
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3. Discussion

CBSD is an important constraint on the production of cassava in several regions of Africa [3].
Based on lessons learned in East Africa where less attention was given to CBSD until it reached
epidemic levels several decades after the first report in Tanzania [3,47,48], it has become necessary to
take pre-emptive measures to prevent the spread and limit the impact of CBSD in West Africa, a major
cassava-producing zone in Africa. Conventional breeding and selection for resistance to CBSD in
cassava germplasm (both wild and cultivated) have yielded hybrids (46106/27 and 4763/16) and clones
with adequate resistance to CBSD [21,49,50]. For example, CBSD resistance in the hybrid 46106/27,
which is locally known as “Kaleso” in Kenya or “Namikonga” in Tanzania has been extensively used in
breeding programs and is being cultivated by farmers [9]. In addition, several CBSD-tolerant cassava
clones have been identified and their resistance has been studied [27,28]. Some of these CBSD-tolerant
clones have been integrated into local farming systems [5,9]. However, identification of broad-spectrum
resistance remains challenging and investigation of additional gene pools can be promising to offer
new sources of broad-spectrum CBSD resistance [29]. Moreover, characterization of CBSD resistance
or tolerance has so far been performed with cassava cultivars popular in regions where CBSD is
endemic [25,42]. However, information about the CBSD susceptibility of farmer-preferred cultivars
from regions where CBSV has not yet been reported is key to the implementation of pre-emptive
measures and mitigation strategies.

Characterization of tolerance or susceptibility to CBSD in cassava cultivars based on foliar
symptoms alone tends to underestimate infection levels because symptom expression is influenced by
a number of factors including environmental conditions, genotype, plant age and viral isolates [9].
The development of observable foliar symptoms and accumulation of high levels of CBSV and UCBSV
in tissues facilitates rapid and robust screening of cassava genotypes. Therefore, we challenged
the Ghanaian cassava cultivars by grafting them on rootstocks carrying a mixed infection of
CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates under controlled greenhouse conditions.
We found important variations in CBSD leaf symptoms among the cultivars, suggesting that
CBSD symptoms in leaves are genotype-dependent. To address this variation in symptoms,
we quantitated virus titers of CBSVs in leaves of the selected cultivars at 12 weeks post-grafting using
an established protocol [27,31,32]. As previously observed in the genotype 60444, we also found a
much higher accumulation of UCBSV in both leaves and storage roots of the selected Ghanaian cassava
varieties [27,31]. In contrast, other studies have reported accumulation of higher titers of CBSV than
UCBSV in stem cuttings [20,25,42]. Since all eleven selected Ghanaian cultivars displayed CBSD leaf
symptoms and supported the replication of CBSVs used in the present study, we conclude that they
are susceptible to CBSD. In six-month-old storage roots of the CBSD-infected Ghanaian cultivars,
typical root necrosis was only observed in seven out of eleven cultivars. Although we did not identify
strong CBSD resistance or tolerance in the selected Ghanaian cassava cultivars, the absence of necrotic
symptoms in the six-month-old storage roots of Afisiafi and IFAD indicates the ability to restrict
symptoms during early storage root growth, although it is possible root necrosis can occur during
maturity [8]. However, the poor sprouting of Afisiafi from cuttings of CBSD-infected scions with high
CBSV titers in the greenhouse needs to be further investigated to determine if stem cuttings from
mature CBSD-infected Afisiafi plants show similar poor propagation ability. While our observations in
Afisiafi and IFAD should be confirmed through the entire growth cycle and with different CBSV and
UCBSV isolates, the absence of necrotic symptoms after CBSD infection remains a trait of interest when
robust CBSV resistance or immunity is not available. Promising genotypes that support the replication
of CBSVs, but are free of root symptoms have already been developed in breeding programs [5,51].

In addition, the absence of CBSVs especially CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02)
isolates in leaf material from the farmers’ fields surveyed in four cassava-producing regions in Ghana
is important because it will inform CBSD prevention strategies. The implementation of prevention
strategies in a coordinated manner among the cassava community can limit the spread of CBSD into
West Africa.
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4. Materials and Methods

4.1. Sample Collection and Plant Material

Cuttings from field-grown plants of eleven farmer-preferred cassava cultivars, Ankra, Afisiafi,
ADI 001, Bosomnsia, Dagarti, IFAD, Megyewontem, Nkabom, Santum, Tuaka and Tomfa were collected
from the cassava germplasm collection of the Biotechnology and Nuclear Agriculture Research Institute
(BNARI), Ghana. These cuttings were established in the greenhouse at ETH Zurich, Switzerland (27 °C,
16 h light, and 60% humidity) and subsequently multiplied by stem cuttings. In addition, to survey
the presence of CBSV in Ghana, eighty cassava leaf samples were collected from farmers’ fields in
four cassava-growing regions (Central region (05°41’ N, 00°34’ W, elevation 45 m; 05°35" N, 00°35" W,
elevation 115 m), Eastern region (06°17" N, 00°27” W, elevation 33 m), Ashanti region (06°08’ N,
01°25" W, elevation 90 m; 06°11’ N, 01°28" W, elevation 146 m; 06°42’ N, 01°31’ W, elevation 280 m)
and Greater Accra region (05°45’ N, 00°17" W, elevation 95 m; 05°40’ N, 00°12" W, elevation 55 m)).
Twenty samples were collected from the Greater Accra region, twenty samples from the Central region,
ten samples from the Eastern region and thirty samples from the Ashanti region. Samples were stored
at =80 °C until processed.

4.2. Virus Isolates and Inoculation

The virus isolates used in this study were CBSV (TAZ-DES-01; GenBank Accession number
KF878104.1) and UCBSV (TAZ-DES-02; GenBank Accession number KF878103.1). Both isolates were
maintained in cassava genotype Ebwanateraka under greenhouse conditions at 27 °C and 60% relative
humidity. Using a previously established top-grafting method [32] virus-free cassava stem cuttings were
grafted onto rootstocks of Ebwanateraka carrying both CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02)
virus isolates. Cassava variety 60444 and the CBSD-resistant elite breeding line KBH 2006/18 were
included as positive and negative controls, respectively. All stem cuttings were maintained under
greenhouse conditions as stated above.

4.3. CBSD Symptom Scoring

Leaves of CBSD challenged plants were visually assessed and scored for CBSD symptoms 12 weeks
post grafting using a scoring scale where 1 = no visible CBSD symptoms, 2 = mild foliar symptoms
on some leaves, 3 = pronounced foliar symptoms but no die-back, 4 = pronounced foliar symptoms
with some die-back of terminal branches, and 5 = severe foliar symptoms and plant die-back [40-42].
A detrimental effect of CBSD on cassava is the necrotic lesions induced in storage roots, which causes
major economic losses [7-9]. To assess CBSD-associated root necrosis in storage roots, graft-challenged
plants were left to grow for 6 months before harvest. Roots were cut into slices approximately 1 cm in
thickness with a razor blade and scored for CBSD-associated necrosis symptoms using a scoring scale
previously described [24].

4.4. RNA Isolation and Sample Preparation

Total RNA was isolated from 1 g of cassava leaves using the modified cetyltrimethyl ammonium
bromide (CTAB) method [52]. First strand cDNA was synthesized by pre-treating 1 ug of RNA with
1 uL of DNase I (ThermoFisher Scientific, Vilnius, Lithuania). The prepared RNA was used as template
for cDNA synthesis using a RevertAid First Strand cDNA synthesis kit (ThermoFisher, Waltham,
Massachusetts, USA) according to the manufacturer’s protocol. Specifically, 1 uL of random hexamer
primer mix was added to the prepared RNA and incubated at 65 °C for 5 min. The mixture was kept on
ice and 4 uL of 5X reaction buffer, 1 ul. of RiboLock RNNase inhibitor (20 U/ uL), 2 puL. of 10mM dNTP
mix and 1 pL of RevertAid M-MuLV RT (200 U/ uL) was added to make a total reaction volume of 20 L.
For RNA extraction, leaf material collected from farmers’ fields were pooled into six sample groups for
screening by RT-PCR as follows; leaf samples collected from the Eastern region (10 samples) pooled
into one group, Greater Accra region (20 samples) pooled into 1 group, Central region (20 samples)
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pooled into 2 groups and Ashanti region (30 samples) pooled into 2 groups. For graft-challenged
Ghanaian cassava cultivars, approximately 2 g of leaf material collected from the top, middle and
bottom of scions was pooled (6 g in total) and used for RNA extraction.

4.5. Detection and Quantitation of Virus Titers

For detection of CBSV and UCBSV, cDNA was diluted in a ratio of 1:3 (1 part of cDNA to 3 parts
of water). A total volume of 4 uL of the cDNA template dilution mixture was used for RT-PCR. PCR
thermal cycle conditions used were as follows: Initial denaturation for 20 s at 95 °C, 40 cycles of
denaturation for 3 s at 95 °C, annealing for 15 s at 60 °C and extension for 30 s at 72 °C. PCR products
were resolved on 1% w/v agarose gel with images recorded using a Gel iX20 imager gel documentation
system (INTAS science imaging system, Goettingen, Germany) to confirm the presence or absence
of cassava brown streak viruses. The selected eleven Ghanaian cassava cultivars were screened for
CBSVs prior to CBSD resistance challenge using degenerate primers designed to detect the coat protein
of CBSVs including CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) viral isolates [27]. Similarly,
leaf material collected from farmers’ fields in four cassava-growing regions in Ghana was screened for
CBSVs using the same pair of degenerate primers.

For quantitation of virus titers in leaf and storage roots of Ghanaian cultivars after CBSD
graft-challenge, we performed RT-qPCR with a 7500 Fast Real-Time PCR System (Applied Biosystems,
Waltham, Massachusetts, USA) using the ABI 7000 sequence detection system (SDS) for analysis.
The RT-gqPCR reaction mix consisted of 4 uL of cDNA template, 10 pL SYBR® Green Master Mix
(Applied Biosystems, ThermoFisher Scientific), 1 uL each of forward and reverse primers (1 uM final
concentration) and 4 pL of distilled water in a total volume of 20 uL. For each cultivar, we analyzed
samples from three individual plants (3 biological replicates) with two technical replicates each using
primers specific for CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) viral isolates [27,28] (Table S1).
For storage roots, RNA was extracted from three storage roots per individual plant (pooled as one
biological replicate). Amplification of cassava gene PP2A was included as internal control [27,31,32].
For detection of cassava mosaic geminiviruses in field-grown cassava cultivars and leaf samples
collected from famers’ fields, we used two previously published primer pairs specific for the coat
protein of both ACMV and EACMYV species [37,53] or the intergenic region of ACMYV [36].

5. Conclusions

Our screening of a panel of farmer-preferred cassava varieties in Ghana for CBSD resistance or
susceptibility is alarming because all are susceptible to infection with CBSVs. However, the identification
and characterization of locally preferred cassava cultivars that display reduced symptoms and virus
titers could help in designing mitigation strategies that take farmer and consumer preferences into
account until CBSD-resistant cultivars adapted to Ghanaian agrosystems and that meet consumer
preferences become available. The absence of CBSVs, particularly CBSV (TAZ-DES-01) and UCBSV
(TAZ-DES-02) isolates, in field-grown cassava cultivars in Ghana is encouraging for cassava production
at this time. Nonetheless, our results should also encourage extensive and continuous surveillance of
CBSVs in farmers’ fields across all cassava-producing regions in Ghana.

In addition, continued screening and characterization of cassava germplasm for responses to
CBSD infection is important to identify genotypes with CBSD tolerance or resistance traits (restricted
symptom expression, restriction of viral replication or accumulation). The deployment of such tolerant
or resistant cultivars can effectively control the spread and reduce losses associated with CBSD infection.
It is worth noting that the time and challenge associated with conventional breeding of cassava for
resistance to CBSD should also encourage other approaches. Implementation of transgenic technologies
in farmer-preferred varieties can complement conventional breeding and speed up the development of
durable resistance against CBSD in Africa [54,55].
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Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/1026/s1.
Table S1: Primer sequences used for CBSV and UCBSV detection by qPCR (upper half) and RT-PCR (bottom half)
in leaves and storage roots of Ghanaian cassava cultivars. Figure S1: Map showing location of cassava fields from
which leaf samples were collected for CBSD screening. Figure S2: PCR screening of eleven selected field-grown
cassava cultivars in Ghana. Figure S3: Homology of primers used for RT-PCR screening of cassava cultivars
and leaf material collected from farmers’ fields in Ghana. Figure S4: PCR screening of eleven selected cassava
cultivars grown in Ghana for cassava mosaic geminiviruses. Table S2: Top-cleft graft transmission of CBSV and
UCBSV to farmer-preferred Ghanaian cassava cultivars at 12 weeks. Figure S5: Pearson correlation between CBSD
symptom severity and relative CBSV titers in leaves of Ghanaian cassava genotypes. Table S3A: Two-way ANOVA
comparing CBSV titers in parental scions and cuttings propagated from scions of Ghanaian cassava cultivars.

Table S3B: Sidak’s multiple comparisons test of CBSV titers in parental scions and cuttings propagated from scions
of Ghanaian cassava cultivars. Table S4A: Two-way ANOVA comparing titers of UCBSV in parental scions and

cuttings propagated from scions of Ghanaian cassava cultivars. Table S4B: Sidak’s multiple comparisons test of
UCBSV titers in parental scions and cuttings propagated from scions of Ghanaian cassava cultivars. Table S5A:
Two-way ANOVA comparing survival rate of cuttings propagated from CBSD-infected Ghanaian cassava cultivars

at 12 weeks old. Table S5B: Sidédk’s multiple comparisons test of survival rates of cuttings propagated from
CBSD-infected Ghanaian cassava cultivars at 12 weeks old. Figure S6: RT-qPCR quantitation of CBSV and UCBSV
in roots of Ghanaian cassava genotypes (6-month-old plants).
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