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Abstract: Aims: The aim of this study was to assess the effect of BC204 as a plant biostimulant on Arabidopsis
thaliana plants under normal and NaCl-stressed conditions. Methods: For this study, ex vitro and in vitro
growth experiments were conducted to assess the effect of both NaCl and BC204 on basic physiological
parameters such as biomass, chlorophyll, proline, malondialdehyde, stomatal conductivity, Fv/Fm and the
expression of four NaCl-responsive genes. Results: This study provides preliminary evidence that BC204
mitigates salt stress in Arabidopsis thaliana. BC204 treatment increased chlorophyll content, fresh and dry
weights, whilst reducing proline, anthocyanin and malondialdehyde content in the presence of 10 dS·m−1

electroconductivity (EC) salt stress. Stomatal conductivity was also reduced by BC204 and NaCl in source
leaves. In addition, BC204 had a significant effect on the expression of salinity-related genes, stimulating
the expression of salinity-related genes RD29A and SOS1 independently of NaCl-stress. Conclusions:
BC204 stimulated plant growth under normal growth conditions by increasing above-ground shoot tissue
and root and shoot growth in vitro. BC204 also increased chlorophyll content while reducing stomatal
conductivity. BC204 furthermore mitigated moderate to severe salt stress (10–20 dS·m−1) in A. thaliana.
Under salt stress conditions, BC204 reduced the levels of proline, anthocyanin and malondialdehyde.
The exact mechanism by which this occurs is unknown, but the results in this study suggest that BC204
may act as a priming agent, stimulating the expression of genes such as SOS1 and RD29A.

Keywords: anthocyanin; Arabidopsis; BC204; biostimulants; malondialdehyde; proline; salinity;
SOS1

1. Introduction

Soil salinity is a global problem, affecting more than 100 countries [1,2] and approximately 20% of
the world’s irrigated cropland [3,4]. It is estimated that more than 50% of global arable land will be
affected by 2050 [5]. Primary salinisation occurs naturally via precipitation and through groundwater,
resulting from rock erosion over long periods of time [6], while secondary or human-induced salinisation
is caused by a combination of poor drainage and irrigation [7]. Both combine to change the soil for
the worse, leading to the accumulation of ions such as Na+, K+, Ca2+, Mg2+ and Cl−. Although all of
these ions can cause soil salinisation, high concentrations of Na+ as a result of excess NaCl is the most
prevalent and the subject of most salt-stress related research [8]. This build-up of Na+ is the major
culprit in the detrimental effects seen on plant growth, but it remains unclear how this is sensed by the
plant [9].

Saline conditions drastically reduce the yield of major crops, due to the toxic effects of Na+

accumulating in plant tissue leading to stunted growth and eventually cell death. High salinity
influences all aspects of plant growth and growth stages, leading to ion toxicity, osmotic stress,
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nutrient deficiency and oxidative stress [10]. Most plant/crop species that are used to feed the global
population are highly sensitive to high salinity [11,12].

Salty soil initially induces osmotic stress which results in nutrient imbalances, interruption of
membranes and disrupts the plant’s ability to detoxify reactive oxygen species (ROS) which damage
the plant at a molecular level [13]. The exact mechanisms by which plants mitigate salt stress have not
been fully elucidated, but several role-players have been implicated.

In response to environmental stimuli such as salt stress, cellular abscisic acid (ABA) levels are
increased [11], which triggers the expression of numerous stress-responsive genes [14]. This regulation
occurs via transcription factors which are elevated in response to salt stress and also through histone H3
acetylation and methylation which further regulates stress-inducible gene expression [15]. One example
is the induction of RD29A expression [16]. The increase in ABA levels also stimulates an increase in
the production of ROS, which is used in research to monitor intracellular levels of oxidative stress in
plants [17,18]. The increase in production of ROS, previously thought to only be a toxic by-product
of stress, also serves to provide signaling molecules leading to the production of antioxidants and
antioxidative enzymes, forming part of a concerted plant defense reaction [19,20]. If not sufficiently
detoxified and scavenged, ROS can cause oxidative damage to proteins, lipids and DNA [21]. The role
of ROS in the mitigation of oxidative stress has recently been extensively reviewed [22]. Following
prolonged oxidative stress caused by the Na+ build-up and subsequent ROS production, ion-toxicity is
the inevitable next stage, unless the plant sufficiently deals with the excess Na+, which is not the case
in most plants. The build-up of Na+, which is generally not essential for plants, in the cytosol causes
K+ deficiency, which disrupts enzymatic processes since K+ activates more than 50 key enzymes [9].

The accumulation of proline [23], malondialdehyde [24] and anthocyanin [25] are commonly used
in research as indicators of salt stress. Proline, a low molecular weight non-enzymatic antioxidant [26],
is an osmolyte biosynthesized through the glutamate and ornithine pathways. It plays an important
protectory role in plant cells experiencing salt stress [27], alleviating the negative impact of salt
by decreasing osmotic stress to maintain membrane integrity and function [26]. Under saline
conditions, histone demethylase irreversibly removes the methylation of the ∆1-1-pyrroline-5-carboxylate
synthetase (P5CS) coding sequence, leading to the overexpression of P5CS and thus an accumulation of
proline [28,29]. As an extended effect of the presence of ROS, cell membranes are damaged via the
oxidation of acids in the bilayer, a process also known as lipid peroxidation [30]. Lipid peroxidation
causes an increase in malondialdehyde levels [2,4], which is the first product formed during free
radical-induced damage and the decomposition of polyunsaturated fatty acids in membranes [31].
The production of anthocyanins, also antioxidants, increases in the presence of salt stress as these
play a similar protectory role to proline while serving as a signal molecule activating downstream
stress-responsive pathways [32,33]. Anthocyanins are also suggested to play roles in quenching ROS,
photoprotection and xenohormesis [34]. Elevated levels of anthocyanins in A. thaliana have been shown
to increase salinity tolerance [35].

Salinity stress induces the expression of a large number of genes and pathways as outlined in
two extensive review papers [36,37]. The expression of these genes is often used as indicators of salt
stress. The model organism A. thaliana has been pivotal in unravelling the Salt Overly Sensitive (SOS)
signaling pathway which is involved in salt stress, which was also the first abiotic stress-signaling
pathway elucidated in plants [38–40]. Independently of ABA signaling, salt stress upregulates the
expression of the AtWRKY8 transcription factor [41] which directly binds to the RD29A promoter,
leading to upregulation of the gene [37]. The expression of RD29A is also induced by cold and
drought stress and although its induction and overexpression increase a plant’s resistance to abiotic
stress, it was concluded that the RD29A protein is unlikely to serve directly as a protective molecule.
The exact function of RD29A is still unknown but it likely serves as a warning signal for abiotic stress
responses [42]. NaCl-stress also strongly induces AtSOT12, which codes for a sulfotransferase that is
also implicated in pathogen resistance via salicylic acid signaling [43].
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Three membrane transporters, AtSOS1, AtHKT1 and AtNHX1 are critical Na+ carriers which
reduce salt toxicity in plants [12]. AtSOS1 and AtHKT1 are suggested to mediate Na+ transport, control
ion uptake and spatial distribution of Na+ and K+ by regulating the expression levels of relevant Na+

and K+ transporter genes [44]. These membrane transporters remove Na+ from the cytoplasm by
transporting it into the vacuole or out of the cell [45]. The signaling pathway involves a salt-elicited Ca2+

signal in the cytosol, where a myristoylated calcium binding protein, SOS3, activates a serine/threonine
protein kinase, SOS2 [46]. The SOS3/SOS2 complex subsequently phosphorylates and activates
SOS1 [40,47] which codes for a Na+/H+ antiporter, expressed and located at the plasma membrane,
which exports Na+ out of the cytosol into the apoplastic space [45,48–50]. AtSOS1 transcripts can be
stabilized by plasma membrane-localized NAPDH oxidase generated ROS [51]. This pathway is highly
conserved in plants and its main role seems to be to maintain ion homeostasis [38,52].

Some strategies implemented thus far to address salt stress in agriculture have been to elucidate salt
tolerance mechanisms and signaling [11,13,53–56] and use the information for two genetic approaches
to create more salt-tolerant crops. The first approach is creating more salt tolerant varieties through
breeding programs, while the second approach is to genetically modify crop plant to be more salt
tolerant [4,57,58]. In addition to the usual fertilizers and crop protection agrochemicals used in efforts
to improve the plant’s immediate environment, plant biostimulants (PBs) are a novel collection of
agrochemicals recently introduced in agriculture. PBs, described as materials that can promote plant
growth in minute quantities regardless of nutrient composition [59], have been shown to alleviate
the effects of abiotic stress, which includes salt stress, in crop plants. There are a wide variety of
commercially available PBs routinely used in agriculture. Examples of commercially patented PBs
are extensively reviewed elsewhere [60]. PBs improve plant growth, yield, fruit quality and tolerance
to abiotic stress [60–65]. Some researchers are developing and finetuning efforts to discover and
characterize new PBs suitable for agricultural use [66–68]. The priming effect of PBs can be described
as preparing the plant for abiotic stress by activating plant defense mechanisms against stress [69–72].

Ascophyllum nodosum extracts (seaweed-extracts), the most well-characterized group of PBs,
have been shown to induce salinity tolerance in A. thaliana by regulating the expression of stress
responsive genes [73] and by modulating miRNAs involved in nutrient acquisition and stress
tolerance [74]. There are also other reports where exogenous application of PBs has alleviated
or mitigated the effects of NaCl-stress. In sweet pepper, exogenous application of citric acid, humic acid,
putrescine and seaweed extracts to unstressed and NaCl-stressed plants increased sugar and potassium
(K+) content while decreasing Na+ and proline content, which was exactly the opposite to the
NaCl-stressed plants [75]. In salt -stressed Solanum lycopersicum plants, an exopolysaccharide-type
PB reduced the levels of proline, Na+, phenolic compounds and antioxidant enzyme activity [76].
The effects of PB applications on crop plants to alleviate abiotic stresses such as salinity and improve
plant growth have been recently reviewed [61]. BC204 is a citrus-based PB currently used in South Africa,
Australia, China and USA as an agrochemical to improve crop growth. There is no published literature
which describes the effects of BC204 on plant growth and abiotic stress tolerance. Here, we examined
the effects of BC204 on the growth of the model organism A. thaliana, and whether BC204 was able to
mitigate salinity stress in this species.

2. Results

2.1. BC204 Increases A. thaliana Above-Ground Fresh and Dry Weight While Increasing Leaf Number under
Both Normal and Salinity Stress Conditions

BC204 treatment resulted in enhanced shoot growth of A. thaliana Columbia-O plants, even in the
presence of 50 mM and 100 mM salinity stress. Plants were germinated and grown on peat discs for
three weeks before being treated with 0.01% (v/v) BC204 every six days and/or NaCl every three days.
BC204-treated plants (Figure 1D) were visibly larger and healthier than the untreated control plants
(Figure 1A). Salinity stress had a significant impact on plant growth (Figure 1B,C), salt-stressed plants
were visibly smaller than their non-stressed counterparts. BC204 treatment resulted in an obvious
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enhancement of plant growth under saline conditions (Figure 1E,F), such that BC204-treated stressed
plants had similar growth characteristics to the untreated unstressed plants. Fresh (Figure 2A) and
dry (Figure 2B) mass measurements reflected these observations, with BC204-treated plants being
significantly heavier than their control counterparts under both non-stressed and salinity-stressed
conditions. BC204 treatment was able to return biomass levels in both 50 mM and 100 mM salt-treated
plants to at least those of the untreated control plants. BC204 treatment also increased the leaf number
(Figure 2C). The average electroconductivity (EC) of the peat discs for control (water only) and
BC204-treated plants were similar, ranging between 0 and 1 dS·m−1, while 50 mM NaCl-treated peat
discs had an average EC of 10 dS·m−1 and 100 mM NaCl-treated disks recorded an average EC of
20 dS·m−1.
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Figure 1. Rosette growth of Arabidopsis thaliana plants in response to salt (NaCl) and BC204 treatments.
Plants were treated with water (A), 50 mM NaCl (B), 100 mM NaCl (C), 0.01% (v/v) BC204 (D) and
combinations of BC204 and 50 mM (E) and 100 mM (F) NaCl.
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Figure 2. Above-ground fresh (A) and dry (B) biomass production and total leaf number (C) of 
Arabidopsis thaliana plants treated with BC204 and two different concentrations of NaCl. Bars 
represent the mean of 20 replicates (n = 20) ± standard error. Different letters indicate values that were 
determined by one-way ANOVA with Fisher’s LSD post-hoc test to be significantly different (p < 0.05) 
from the control. 
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Figure 2. Above-ground fresh (A) and dry (B) biomass production and total leaf number (C) of
Arabidopsis thaliana plants treated with BC204 and two different concentrations of NaCl. Bars represent
the mean of 20 replicates (n = 20) ± standard error. Different letters indicate values that were determined
by one-way ANOVA with Fisher’s LSD post-hoc test to be significantly different (p < 0.05) from
the control.
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2.2. BC204 Increases A. thaliana Root and Shoot Growth in the Presence and Absence of NaCl-Stress in In Vitro
Growth Conditions

To test for the effect of BC204 in vitro, A. thaliana seedlings were grown on media supplemented
with BC204, NaCl and a combination of both. After germination on media containing no BC204 or
NaCl, 4-day old A. thaliana Columbia-0 seedlings of identical sizes were transferred to 1

2 MS media
supplemented with either 0.001% (v/v) BC204, 50 mM NaCl, 50 mM NaCl + 0.001% (v/v) BC204, 100 mM
NaCl or 100 mM NaCl + 0.001% (v/v) BC204. Roots of BC204-treated seedlings (Figure 3D–F) were
visibly larger in comparison to the control (Figure 3A) and NaCl-stressed seedlings (Figure 3B,C).
Shoots of BC204-treated seedlings were visibly larger than the untreated control plants on media
containing 0 mM and 100 mM NaCl, although no differences were observed between the shoots of
50 mM NaCl treated seedlings and their BC204-treated counterparts. Fresh (Figure 4A,B) and dry
masses (Figure 4C,D) of shoots and roots were significantly increased in the presence of 0.001% BC204
after 10 days. BC204 treatment improved biomass accumulation for both shoots and roots under both
50 mM and 100 mM salt to levels comparable to those of the untreated control plants. Primary root
length was also increased by BC204, both in the absence and presence of NaCl-stress (Figure 4E).
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Figure 3. Growth of Arabidopsis thaliana seedlings in vitro in response to salt (NaCl) and BC204
treatments. Seedlings were grown on half-strength Murashige and Skoog (MS) media (A), supplemented
with 50 mM NaCl (B), 100 mM NaCl (C), 0.001% (v/v) BC204 (D), 50 mM NaCl and BC204 (E), and 100 mM
NaCl and BC204 (F).
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Figure 4. Shoot (A) and root (B) fresh mass, shoot (C) and root (D) dry mass and primary root length
(E) of in vitro grown Arabidopsis thaliana seedlings treated with BC204 and NaCl. Bars for tissue fresh
weight and primary root length represent the mean of 20 replicates (n = 20) ± standard error. Bars for
tissue dry weight represent the mean of three pooled samples of 10 replicates (n = 3). Different letters
indicate values that were determined by one-way ANOVA with Fisher’s LSD post-hoc test to be
significantly different (p < 0.05) from the control.
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2.3. BC204 Increased Chlorophyll Content, Lowered Stomatal Conductance and Increased Fv/FM in Unstressed
and NaCl-Stressed Conditions

To test for the effects of BC204, NaCl, and a combination of both, on Fv/Fm measurements,
the same plants from the initial growth experiment were used. The 100 mM NaCl-stressed plants
were excluded from these analyses in order to investigate a more moderate salt stress rather than
a severe stress [77–79]. All measurements were taken and tissues harvested 90 min after the final
BC204 treatment. Chlorophyll content increased in BC204-treated plants in comparison to the control.
While 50 mM NaCl reduced the amount of chlorophyll in the shoot tissue (Figure 5A), plants treated
with BC204 in conjunction with 50 mM NaCl had a chlorophyll content that was similar to that
observed in the control group. Fv/Fm values were slightly enhanced by 0.01% BC204 and 50 mM NaCl
as individual treatments compared to the untreated control, and a combination of both resulted in
the highest Fv/Fm value (Figure 5B). There were no significant differences in stomatal conductance
rates in the sink leaves between any of the treatments. However, in the source leaves, 0.01% BC204,
50 mM NaCl and the combination of both all resulted in similarly reduced stomatal conductance levels
compared to control plants (Figure 5C).
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Figure 5. Total chlorophyll content (A), Fv/Fm (B) and stomatal conductance (C) in Arabidopsis thaliana
plants subjected to NaCl-stress, BC204 treatment and a combination of BC204 and NaCl. Bars represent
the mean of 9 replicates (n = 9)± standard error. Different letters indicate values that were determined by
one-way ANOVA with Fisher’s LSD post-hoc test to be significantly different (p < 0.05) from the control.

2.4. BC204 Attenuates the High Levels of Anthocyanin, Proline and Malondialdehyde Content Elicited by
NaCl-Stress

To test for the effect of BC204 and NaCl on anthocyanin, proline and malondialdehyde content,
the same plants from the initial growth experiment were used, again excluding the 100 mM
NaCl-stressed plants since the aim of the study was to investigate a moderate rather than a severe
stress [77–79]. Anthocyanin (Figure 6A), proline (Figure 6B) and malondialdehyde (Figure 6C) contents
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were significantly higher in NaCl-treated plants than in the control plants. BC204 on its own had no
direct effect on anthocyanin and malondialdehyde levels, but significantly reduced proline levels even
under unstressed conditions. The addition of BC204 to the NaCl-treated plants reduced the levels of
anthocyanins and malondialdehyde to those of the control plants. BC204-treatment also significantly
reduced proline levels under saline conditions, although these were still elevated compared with
control plants. None of the treatments affected SOD activity (Figure 6D).
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Figure 6. Anthocyanin content (A), proline content (B), malondialdehyde concentration (C) and % SOD
inhibition (D) in Arabidopsis thaliana shoot tissue following BC204 and NaCl treatment. Bars represent
the mean of 9 replicates (n = 9)± standard error. Different letters indicate values that were determined by
one-way ANOVA with Fisher’s LSD post-hoc test to be significantly different (p < 0.05) from the control.
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2.5. BC204 Stimulates the Expression of Two NaCl-Responsive Genes

Expression of salt-responsive genes P5CS1, SOT1 and SOS1 was examined through RT-qPCR to
determine the effects of salinity and BC204 treatments. BC204 significantly increased the expression
of RD29A and SOS1, while decreasing the expression of P5CS1 and SOT1 (Figure 7). NaCl induced
the expression of SOT1 and SOS1, while having no significant effect on the expression of P5CS1 and
RD29A (Figure 7). A combination of both BC204 and NaCl resulted in a similar expression profile to
NaCl treatment, except for a significant increase in SOS1 expression levels (Figure 7), similar to that
observed following the individual BC204 treatment (Figure 7).
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Figure 7. Relative fold expression of NaCl-responsive genes in A. thaliana shoot tissue under BC204
and NaCl-stress and a combination of both. Histograms represent relative transcript expression levels
of Reverse Transcriptase Quantitative PCR (RT-qPCR) in the shoot tissue of plants treated with BC204
(0.01%), NaCl-stressed (50 mM) and BC204 (0.01%) combined with NaCl-stress (50 mM). Ct values were
averaged and normalized to Eflα (At1g18070) according to the 2−∆∆Ct method [80]. The expression
values for all genes for the untreated control plants were set as 1. Bars represent the mean of three
replicates (n = 3) ± standard error. Different letters indicate values that were determined by one-way
ANOVA with Fisher’s LSD post-hoc test to be significantly different (p < 0.05) from the control.

3. Discussion

Soil salinity is one of the largest constraints in agriculture, leading to a decrease in plant productivity
and agriculture, resulting in approximately 20% of all yield loss [1,2,81]. There is a time constraint on
this issue as the world population is growing extensively and a 50% increase in food production will
be needed by as early as 2030 [82], while it is estimated that 50% of all arable soil will be salinized
by 2050 [36]. However, unravelling these mechanisms and implementing the knowledge gained is a
slow process and a large number of questions still remain unanswered [52], a common theme in plant
research due to the complexity of the regulatory networks and crosstalk between signaling pathways
and plant metabolism as a whole. Our results confirm a mitigating and possible priming effect of
BC204 as a PB towards salt-stress, as it enhances tissue fresh and dry mass accumulation, primary root
length, and certain stress markers including the accumulation of stress-responsive metabolites and
alters the expression patterns of genes involved in NaCl-stress responses.

3.1. Bc204 Improved Plant Growth in A. thaliana Grown under Moderate and High Saline Conditions

Plant size, fresh and dry mass and leaf number are the most basic indicators of plant health
and are used as initial markers of a positive response to plant growth promotion. The majority of
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PBs display an increase in these basic indicators of plant growth promotion [83–86] while plants
experiencing abiotic stress are generally smaller with reduced biomass [87,88]. A protein hydrolysate
PB from Medicago sativa L. has been shown to alleviate salt-stress effects in maize plants by increasing
biomass and stimulating plant nitrogen metabolism and antioxidant systems [89]. In tomato plants,
Dunaliella salina exopolysaccharides alleviated salt stress by increasing tissue fresh and dry weight,
root and shoot length while decreasing proline levels, phenolic compounds, Na+ levels and antioxidant
enzyme activity [76]. In tall fescue turf-grass, foliar application of glycine betaine increased fresh
weight clippings under salt stress conditions [90]. Under saline stress conditions, sorghum tissue
fresh and dry weight were also increased by humic substances and Moringa oleifera leaf extract [91].
In cowpea plants, selenium, glycine betaine and seaweed extract increased biomass under salt stress
conditions [92].

In this study, BC204 increased plant biomass under normal growth conditions in both ex vitro
(Figure 1) and in vitro (Figure 3) experiments. Furthermore, BC204 visibly increased above-ground
rosette growth of A. thaliana under both 50 Mm and 100 Mm saline conditions (Figure 1), while an
increase in root growth was also observed in vitro at the same NaCl concentrations (Figure 3).
BC204 significantly increased rosette fresh (Figure 2A) and dry biomass (Figure 2B) of these plants
in unstressed and NaCl-stressed conditions, while an increase in leaf number was also observed
(Figure 2C). Tissue (root and shoot) fresh and dry biomass and primary root length were also significantly
increased in vitro (Figures 3 and 4). The ex vitro experiment simulated salinity conditions which would
closely correlate to how NaCl build-up occurs in nature. The addition of 10 mL of either 50 Mm or
100 Mm NaCl to each plant every three days for 21 days resulted in EC values of the peat disks of
approximately 10 dS·m−1 and 20 dS·m−1 respectively at the end of the experiment. Moderately saline
water (primary drainage water and groundwater) has an EC of 2 to 10 dS·m−1 while highly saline
water (secondary drainage water and groundwater) falls between 10 and 25 dS·m−1. Irrigation water
usually has a measurement of 0.7 to 2 dS·m−1 [79]. Most studies on salt responses focus more on short
term responses (6 to 48 hours) and single salt treatments, which could often simulate salt shock rather
than salt stress [93]. Also, most studies focus on the response in the roots rather than the shoot tissue,
since roots represent the site where the plants directly experience the stress [94,95].

Studies investigating PB action in vitro are rather scarce, with only a few reporting that certain
PBs improve root growth of plants in vitro [96] or an increase in biomass production under saline
conditions [97]. For the in vitro experiment in this study, 100 Mm NaCl would be regarded as high
salt stress, but A. thaliana can grow and survive in concentrations of up to 150 Mm NaCl, which is
regarded as salt shock [93,98]. A. thaliana grows relatively normally in 50 Mm NaCl [77], as shown in
our results (Figure 3). BC204 stimulated root growth under saline conditions (Figure 4). A reduction in
primary root length is one of the most common indicators of salt stress in plants [99,100]. Primary root
length was significantly reduced in vitro on media containing 100 mM NaCl, however, a significant
increase in primary root length was observed in these plants where BC204 was added to the medium in
addition to the salt (Figure 4E). To narrow the scope of the study, further analysis was conducted only
on peat-grown plants treated with 50 mM NaCl, in order to investigate plant response to moderate
salinity stress (~10 dS·m−1).

3.2. BC204 Increased Total Chlorophyll Content while Reducing Stomatal Conductivity in Unstressed and
NaCl-Stress Conditions

It is well documented that abiotic stresses such as salinity stress inhibit photosynthesis, including via
stomatal closure. The exact mechanism by which salinity affects photosynthesis, however, remains largely
unclear [87]. Since photosynthesis is the main driver of energy production and storage in plants, it is tightly
regulated and highly sensitive to environmental stimuli [101]. Chlorophyll, a photosynthetic pigment,
is one of the most important components of photosynthesis [102]. An increase in chlorophyll content
usually correlates with an increase in photosynthesis and subsequent increase in plant biomass [103]. It is
well-documented that under saline stress conditions, chlorophyll content decreases [64,104–107]. In several
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reports, PB treatment led to a significant increase in total chlorophyll [108–110]. PBs have also been shown
to preserve chlorophyll in plants under abiotic stress conditions [67,111]. In this study, BC204 mitigated
the reduced total chlorophyll levels observed in 50 mM NaCl-stressed plants, returning these to the same
levels as in the untreated control plants (Figure 5A). A significant increase in chlorophyll was also recorded
in unstressed plants treated with BC204 (Figure 5A), which may partly explain the enhanced biomass
accumulation observed in these plants via its contribution to possible enhanced photosynthesis.

Chlorophyll fluorescence can also be an indicator of the level of stress the plant experiences.
Salt stress has been reported to decrease Fv/Fm values [112]. Slight decreases in Fv/Fm have also been
reported in A. thaliana under salinity stress [113]. In another study, exposure to either 100 Mm or
150 Mm NaCl resulted in Fv/Fm values of approximately 0.78 and 0.75 respectively, compared to the
control of 0.8 [114]. Atonik, a PB, did not affect Fv/Fm measurements [115]. BC204, 50 Mm NaCl and a
combination of both significantly increased Fv/Fm values compared to the control (Figure 5B).

Plants regulate stomatal conductance to optimize carbon uptake with respect to water [116].
Stomatal conductance is also used in plant research as an indicator of the level of stress the plant
experiences [13] and is mediated through ABA signaling [54]. Increased stomatal conductivity is
therefore an indication that plants are experiencing no to low levels of environmental stress. Under saline
conditions, plants experience a variety of stresses including water stress. In order to prevent water loss,
plants close their stomata which lead to a decrease in carbon dioxide in chloroplasts [93]. Under saline
conditions, foliar application of glycine betaine as a PB significantly increased stomatal conductance of
tomato leaves [117]. In the source leaves in Arabidopsis, BC204, 50 Mm NaCl, and a combination of both
all reduced stomatal conductance compared to the control (Figure 5C). This was a surprising result as
PBs have been reported to increase stomatal conductivity [115,118,119]. Plants close their stomata when
they experience abiotic stress in order to prevent water-loss [120]. The lowered stomatal conductance
could have been a short-term priming response to the BC204 treatments, as only one measurement was
taken at the end of the experiment, 90 min after the final BC204 treatment. Alternatively, increased
chlorophyll levels and enhanced Fv/Fm by BC204 allowed the plants to photosynthesize more efficiently
without the need to open their stomata further. This remains highly speculative since Fv/Fm as an
indicator of stress was measured, and photosynthesis was not measured directly. The lack of effect of
any of the treatments on stomatal conductance in the sink leaves is most likely explained by the fact
that these leaves are still growing and developing and are not yet fully photosynthetic.

3.3. BC204 Attenuated Increased Anthocyanin, Proline and Malondialdehyde Levels under NaCl-Stress

Anthocyanin and proline accumulation under stress-conditions, such as NaCl-stress, provides
important protection in plant leaves [31] possibly mediated by salicylic acid [121]. BC204 reduced
the levels of both anthocyanin (Figure 6A) and proline (Figure 6B) in shoot tissues of NaCl-stressed
plants. Proline is involved in membrane stability while malondialdehyde is a breakdown product of
unsaturated fatty acids [122]. Flavonoids, one of the major ingredients in BC204, are known to be
synthesized under stress conditions in the plant. If BC204 provides the plants with anthocyanin-like
metabolites or precursors, the plant does not have to produce these itself and can rather invest its energy
into primary metabolism such as biomass production. This, however, remains highly speculative as the
concentration of BC204 used in the treatments is extremely low and would be unlikely to induce such a
major metabolic process. Oxidative stress is known to increase the activity of antioxidant enzymes such
as ascorbate peroxidase, phenol peroxidase, glutathione peroxidase, catalase and dismutase [17,18].
The percentage (%) SOD activity, however, remained unchanged under all experimental conditions
(Figure 6D).

3.4. BC204 Treatment Alters the Expression of Genes Involved in the Salt Response

NaCl-stress induces the expression of a large number of genes, some of which have been
flagged as markers for NaCl-stress [123]. For example, NaCl-stress commonly induces the expression
of RESPONSIVE TO DESICCATION (RD29A) [59], SALT OVERLY SENSITIVE (SOS1) [124] and
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SULFOTRANSFERASE 12 (SOT12) [43]. SOT12 codes for a sulfotransferase known to sulfonate salicylic
acid [43]. The up-regulation of SOT12 by BC204 suggests a possible activation of defense against biotic
stress as well as abiotic stress, something not investigated in this study.

The expression of RD29A is induced by abiotic stresses such as cold temperatures, drought and
saline conditions [124,125], while ABA has also been also been shown to up-regulate the expression of
RD29A [126]. PBs developed from brown seaweed extracts have been shown to increase the expression
of RD29A in A. thaliana [127], acting as a priming agent. RD29A and its homologue, RD29B, code for
enzymes unlikely to be directly involved in a protectory role in abiotic stress although their exact
functions are still unknown [42]. Transcript abundance of RD29A is the highest approximately 2 h
after salt treatment [16]. In our results, NaCl treatment did not induce the expression of RD29A
(Figure 7). This is strange but could be explained by the fact that plant tissue was harvested at the
end of the experiment, meaning that possible elevated levels of RD29A returned to normal at the time
of harvesting.

In the absence of SOS1 expression, plants are highly susceptible to salt stress [128] while the
overexpression of this gene results in an increase in salt tolerance [58]. SOS1 is suggested to also be
involved in the control of long-distance Na+ transport from the root to the shoot, where under mild
salt stress it loads Na+ into the xylem and under severe salt stress it retrieves Na+ from the xylem [50].
Although the expression of SOS1 is generally more abundant in root tissue under saline conditions,
NaCl has also been shown to up-regulate its expression in shoot tissue [124]. As SOS1 mRNA has a
half-life of approximately 10 min [51], expression might have been even higher if the plant tissue was
harvested earlier than 90 min after treatment.

P5CS1 codes for an enzyme involved in a rate-limiting step of proline biosynthesis [129].
The unchanged levels of expression of P5CS1 in the presence of BC204 is in contrast to the reduction in
proline content observed in this study following BC204 treatments, and particularly with the increase
in proline levels observed following 50 mM salt treatment. As mentioned, the expression of this gene is
a rate-limiting step in proline biosynthesis and is also subjected to feedback mechanisms. High levels
of proline have been shown to suppress the expression of proline biosynthesis genes in A. thaliana [130]
and Enterobacteriaceae [131]. It is possible that at the time of tissue harvesting, the P5CS1 mRNA levels
had been reduced in response to feedback inhibition, although the metabolite levels remained elevated
in response to the stress.

BC204 could aid the plant in dealing with salt stress by stimulating the expression of RD29A and
SOS1 in the absence of salt stress. BC204 therefore possibly primes the plant by activating the SOS
pathway, which is known to improve salt stress tolerance in plants [38]. Although the function of
RD29A is still unknown [42], a study revealed that RD29A promoter functions in almost all tissues
and organs in vegetative plants during water deficiency [132]. Therefore, it is hypothesized that
RD29A-induced expression by BC204 further serves as possible priming.

4. Materials and Methods

4.1. Plant Material and Growth Conditions

For pot trials, A. thaliana (ecotype Columbia-0) seeds were surface decontaminated via vapour
sterilization from an adapted protocol [133] by placing open microcentrifuge tubes containing the seed
under a glass dome with a beaker containing 100 mL sodium hypochlorite and 2 mL hydrochloric acid
(37%) for 4 h. After vapor sterilization, seeds were sown onto peat disks (JiffyTM no. 9, Johannesburg,
South Africa), subjected to seed stratification (48 h, 4 ◦C) before being placed in controlled conditions
(10 h light, 22 ± 1 ◦C, 14 h dark, 18 ± 1 ◦C, 75% relative humidity). As the seeds germinated,
excess seedlings were removed with forceps until only one seedling remained on each peat disc.
Care was taken to ensure that all remaining seedlings were of the same size. Plants were maintained for
three weeks and received no fertilizer. Plants were arranged randomly within the growth chamber and
harvested in a random order. Plants were treated with 10 mL 0.01% BC204 weekly, starting 21 days after
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germination (DAG). Also starting 21 DAG, NaCl-treated plants were treated with 10 mL NaCl solution
(either 50 mM or 100 mM) every three days via a soil drench. BC204 and NaCl treatment continued
for 3 weeks and all tissues were harvested 3 days after the final treatment. Although A. thaliana can
tolerate and grow normally at 50 mM NaCl [78], the salt concentration in the peat discs was gradually
increased to simulate a moderate salt stress rather than imposing an immediate salt shock [78]. Control
plants were watered with 10 mL dH2O and all plants were similarly watered on non-treatment days to
prevent the peat discs from drying out. Electroconductivity was measured by at room temperature by
combining the wet peat from three plants and gently compressing it before inserting the electrodes
from a Procheck soil conductivity sensor (Decagon Devices, Pullman, WA, USA). This was repeated
three times for each treatment group.

For in vitro trials, A. thaliana seeds were surface decontaminated via vapor sterilization as
described above. Surface decontaminated seed was sown onto petri dishes containing half-strength
Murashige and Skoog (MS) media (Sigma-Aldrich, St Loius, MO, USA) solidified with 0.9% (w/v)
Phytoagar (DUCHEFA Biochemie, Haarlem, The Netherlands) with the pH adjusted to 5.8 using
potassium hydroxide (KOH). Growth media were sterilized by autoclaving for 20 min at a temperature
of 121 ◦C and pressure of 103 kPa. Five DAG, seedlings were transferred to a CELLSTAR® petri
dish (120 mm × 120 mm) (Greiner Bio-One, Frickenhausen, Germany) with media supplemented
with 50 mM NaCl, 100 mM NaCl, 0.001% BC204 and combinations of these. The plates were placed
almost vertically under cool white fluorescent tubes (Osram L 58V/740, 50 µmol photons.m−2

·s−1) in
controlled conditions (16 h light, 23 ± 2 ◦C, 8 h dark, 18 ± 1 ◦C, 75% relative humidity). After 10 d
further growth, the plates were opened and photographed with a Canon camera (model E0S 550D).
Primary root length was determined using ImageJ (version 1.49) software [134].

4.2. Stomatal Conductance, Fv/Fm Measurements

Ninety minutes after the final BC204 treatment, 12 plants from each treatment group
(Control, 0.01% [v/v] BC204, 50 mM NaCl, 50 mM NaCl+ 0.01% [v/v] BC204) were selected for
measurement of stomatal conductance, using a SC-1 leaf porometer (ICT International, Armidale,
Australia), and Fv/Fm, using an 0S30p+ chlorophyll fluorometer (Optiscience, Hudson, NH, USA).

4.3. Total Chlorophyll Extraction and Quantification

Chlorophyll was extracted from plants grown on peat disks using an adapted protocol [135].
Nine plants were ground to a fine powder using liquid nitrogen in a pre-chilled mortar and pestle.
Thereafter, 1 mL dimethylsulfoxide (DMSO) was added to approximately 50 mg ground tissue in a
microcentrifuge tube. The extract was vortexed and centrifuged at 10,000× g for 2 min. The supernatant
was removed to a fresh tube and retained. The pellet was re-extracted twice in further 1 mL aliquots of
DMSO and the supernatant liquids combined in a microcentrifuge tube. Absorbance of the samples
was measured in triplicate at 645 nm and 663 nm against a DMSO blank. Total chlorophyll was
calculated using the formula: (0.0202 × A663) + (0.00802 × A645).

4.4. Anthocyanin, Proline, Malondialdehyde and Superoxide Dismutase (SOD)

Anthocyanins were extracted from plants grown on Jiffy peat disks (JiffyTM no.9, South Africa)
using an adapted protocol [136]. Nine plants were randomly selected per treatment, flash frozen in
liquid nitrogen and ground to a fine powder in a pre-chilled mortar and pestle. Total anthocyanins were
extracted using a methanol/acetic acid/H2O (9:1:10) buffer. Absorbance was measured at 530 nm and
637 nm, then anthocyanin content was calculated as A530 − (0.25 −A637) and expressed as Abs530/g·FW.

Proline content was determined using an adapted protocol [137]. Nine plants were selected at
random, pooled, flash frozen and ground in liquid nitrogen using a mortar and pestle and proline
extracted using approximately 50 mg tissue and 5 µL/mg FW 3% (w/v) sulfosalicylic acid (SAS).
Samples were vortexed and centrifuged at 10,000× g for 5 min. A 100 µL aliquot of the supernatant
was added to 500 µL of a reaction mixture of 3% (w/v) SAS/glacial acetic acid/acidic ninhydrin
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(1:2:2). This mixture was heated at 95 ◦C for 60 min before being centrifuged at 10,000× g for 5 min.
Absorbance was measured at 520 nm.

Malondialdehyde was extracted and quantified according to Rao and Sresty [136]. Leaf tissue
was homogenized with 0.1% (w/v) trichloroacetic acid (TCA), centrifuged at 10,000× g for 5 min and
the supernatant mixed with 20% (w/v) TCA and 0.5% (w/v) thiobarbituric acid (TBA). The mixture was
boiled for 15 min before being transferred to ice and centrifuged at 10,000× g for 2 min. The absorbance
of the supernatant was measured at 532 nm. SOD activity was determined according to manufacturer’s
protocol using the InvitrogenTM K335-100 Superoxide Dismutase (SOD) Activity Colorimetric Assay
kit (ThermoFisher Scientific, Waltham, MA, USA).

4.5. RNA Extractions and Reverse Transcriptase Quantitative PCR (RT-qPCR) Analysis

Nine plants from each treatment were randomly selected and pooled into three representative
samples (3 plants per sample), flash frozen, ground in liquid nitrogen using a mortar and pestle and
total RNA extracted in a Maxwell® 16 AS2000 Instrument with the Maxwell® 16 Total RNA Purification
Kit, as per the manufacturer’s protocol (Promega, Madison, WI, USA). One microgram of total RNA
was used to obtain complementary DNA (cDNA) via reverse transcription using an oligo(dT)18
primer and RevertAid reverse transcriptase (Thermo ScientificTM, Waltham, MA, USA), according
to manufacturer’s protocol. The PowerUpTM SYBRTM Green Master Mix kit and the QuantStudio 3
Real-Time PCR System was used for reverse transcriptase quantitative PCR (RT-qPCR) analysis and the
relative expression calculated using the 2−∆∆CT method [80]. Expression of each gene for the untreated
control plants was set as 1. Ef1α (At1g18070) was used for as an internal control as it has previously
been shown to be a suitable reference gene for A. thaliana under abiotic stress conditions, including salt
stress [138]. Primer sequences for RT-qPCR analyses are given in Supplementary Table S1.

4.6. Data and Statistical Analysis

All experiments were independently replicated at least three times to ensure reproducibility.
Statistical significance between control, treated and NaCl-stressed groups was determined by the
one-way ANOVA function in Excel followed by the Fischer’s least significant difference (LSD) test at
the 0.05 probability level.

5. Conclusions

BC204 stimulates plant growth under normal growth conditions by increasing above-ground shoot
tissue and root and shoot growth in vitro. BC204 also increases chlorophyll content while reducing
stomatal conductivity. BC204 furthermore mitigates moderate salt stress (10–20 dS·m−1) in A. thaliana.
Under salt stress conditions, BC204 reduces the levels of proline, anthocyanin and malondialdehyde.
The exact mechanism is unknown, but the results in this study indicate that BC204 acts as a priming
agent in some sense, stimulating the expression of genes such as SOS1 and RD29A.

This study focused on salt stress at a single growth stage, at the end of vegetative growth.
However, investigating how the plant reacts to BC204 during oxidative stress/early salt stress will
be valuable as it will give insight into a possible priming effect of BC204 during earlier stages of
plant growth. Ion measurements (Na+ and K+) will also be valuable to shed light on the effect of
BC204. For gene expression, several samples should be harvested at different time points within the
experiment to account for the circadian control of specifically genes like RD29A [16].

There is an overlap in how plants perceive and respond to salt, drought and, to a lesser extent
cold stress as many genes that are regulated by salt stress also respond to cold or drought stress [39].
Therefore, it is possible that BC204 could have similar alleviating effects on these other abiotic stress
conditions. This, however, remains purely speculative and an interesting topic for future investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/8/1010/s1,
Table S1: Primer pairs sequences for RT-qPCR analysis.

http://www.mdpi.com/2223-7747/9/8/1010/s1
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Abbreviations

ABA abscisic acid
DAG days after germination
EC electroconductivity
g·FW gram fresh weight
LSD least significant difference
MS Murashige and Skoog
NaCl sodium chloride
P5CS ∆1-1-pyrroline-5-carboxylate synthetase
PB plant biostimulant
PCR polymerase chain reaction
RD29A responsive to desiccation
ROS reactive oxygen species
RT-qPCR reverse transcriptase quantitative PCR
SOD superoxide dismutase
SOS Salt Overly Sensitive
SOT12 sulfotransferase 12
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