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Abstract: The elements selenium (Se) and iodine (I) are both crucial for the normal functioning of
the thyroid. Biofortification with these elements is particularly feasible in areas where they show a
deficit. Iodine and selenium can have positive effects on different plants when applied at the correct
concentrations. The effects of their simultaneous addition on plant physiology and biochemistry, as well
as on seed germination and sprout biomass, were studied in pumpkin (Cucurbita pepo L. ssp. pepo).
To study the effect of Se and I on sprouts, sprouts were grown from seeds soaked in solutions of different
forms of Se, I and their combination in the growth chamber experiment. In the field experiment, pumpkins
plants were foliarly treated with the same concentrations and forms of Se and I. The combination of Se
and I treatments enhanced the germination of the soaked seeds, with no significant differences between
Se and I treatments for sprout mass. The yield of pumpkins and seed production were unaffected by
Se and I foliar application. The anthocyanin levels and respiratory potential measured via the electron
transport system’s activity showed different patterns according to treatments and plant parts (sprouts,
leaves, seeds). The redistribution of Se and I from seeds to sprouts was significant. The accumulation of
Se was higher in sprouts from the seeds treated with Se together with I, compared to sprouts from the
seeds treated with Se alone. Interactions between Se and I were also noted in the seeds, which developed
in the treated plants.
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1. Introduction

Selenium (Se) and iodine (I) are essential trace elements for human health. Iodine is a component
of the thyroid hormones thyroxine (T4; 3,5,3′,5′-tetraiodothyronine) and T3 (3,5,3′-triiodothyronine).
These hormones are important for metabolism, protein synthesis and enzymatic activities. Selenium is
known to be a cofactor of the enzyme iodothyronine deiodinase, which converts hormone T4 to the
active T3 [1,2]. Epidemiological studies have shown that a low intake of Se can increase the risk of
cardiovascular disease and cancers. Selenium deficiency can cause various health problems, such as
Keshan and Kaschin–Beck diseases.

Selenium is predominantly provided by cereals, meat and fish [3]. White and Broadley [4] stated that
Se deficiency in humans prevails due to low Se concentrations and availability in soils, with consequentially
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low concentrations in crop plants. Agronomic biofortification is considered advantageous, especially as
plants assimilate Se into the organic forms that are more available for humans (e.g., selenomethionine) [5]
than direct Se supplementation, which can also suffer from the low bioavailability of the inorganic Se and
possible accidental excessive Se intake by humans [6]. Foliar application is the most effective means of
biofortification with Se [7]. As regards soil application, losses occur via soil adsorption, and chemically and
microbiologically mediated conversion. Foliar spraying results in a high degree of uptake and assimilation
by the plants. The efficiency of foliar spraying depends on ion absorption through the above-ground plant
organs, and the Se mobility within the plant. Se ions can enter the inner tissue of the leaf, where high
concentrations can damage cells. From there, Se ions are distributed among the other plant organs [8,9].

Iodine is involved in human metabolic growth, development and regulation, and a deficit can
therefore result in a wide range of diseases. These are designated as I-deficiency diseases [4], and they
represent one of the most common preventable human health problems. The degrees of accumulation
and enrichment of I in various vegetables, and in various parts of any one vegetable, are different. Thus,
the concentration of I in a plant is determined by the plant type and by the physiological activity of
the plant [4]. The biofortification of certain plants with I might represent an alternative method to the
iodisation of table salt, for introducing I into the human diet and preventing I deficiency and the related
human disorders [10]. The effects of I on plants involve antioxidative actions and mineral nutrition [11–14].
Approximately two-thirds of the whole human population suffer from illnesses and health problems
caused by insufficient supplies of Se and I in their daily diet [15].

Plant roots can take up Se as selenate (SeO4
2−), selenite (SeO3

2−) or organoselenium compounds,
such as selenocysteine and selenomethionine. Selenite is readily converted into organoselenium compounds
in the roots, while SeO4

2− is delivered to the xylem and transported to the shoots, where it is assimilated
into organoselenium compounds and redistributed within the plant [4]. In most soils, I is present as
I−, with IO3

− also present under strongly oxidising conditions. Although I is not readily mobile in the
plant phloem, I concentrations in tubers, fruit and seeds can be increased by I fertilisation, to nutritionally
significant concentrations [4,16]. Smoleń et al. [15] indicated a synergistic interaction between IO3

− and
the SeO4

2− absorption by the leaves of lettuce during foliar applications of these two compounds.
Although it is widely recognised that Se and I are both needed for the proper functioning of the

thyroid in humans and animals, interactions between Se and I in plant uptake processes have just recently
been reported in the literature [15–22]. In addition, there are few data available on the interactions between
these two elements in terms of their negative or positive effects on the physiological and biochemical
characteristics of plants. Golob et al. [16] reported increased contents of photosynthetic pigments in the
leaves of plants sprayed with a combination of Se and I in water solution.

The pumpkin (Cucurbita pepo L. ssp. pepo) is an annual herbaceous plant that belongs to the
Cucurbitaceae family. It produces large fruits with oily seeds [23]. It has been shown that pumpkin seeds
from Se-enriched plants are useful in improving the nutritional status of Se in humans [24]. Pumpkin crops
are traditional in central Europe, because of their high nutritional value and particular culinary attraction.
The seeds are known for their high content of sterols, vitamins B and E, and the minerals Ca, K, P, Mg,
Fe and Zn. In northeastern Slovenia (Prlekija and Prekmurje regions), in southeastern Austria and in
southwestern Hungary, pumpkin seeds are used for the production of edible oil. The oil content of
pumpkin seeds varies, and is genetically determined. Seeds can contain up to 50% oil, and they have
been used for centuries in traditional medicine, against problems with the kidneys or the urinary tract,
and against tapeworms [25,26].

With the close relationships between Se and I in the functioning of the thyroid gland and thyroid
hormone biosynthesis and metabolism, we tried to find out if fortification with both of these elements at the
same time is feasible for pumpkins. Our aims were to improve food nutritional quality and yield, and we
investigated the following: (1) how plants take up added Se and I (e.g., in which form, possible interactions,
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etc.); and (2) the individual or combined effects of Se and I on growth, crop yield and the physiological and
biochemical characteristics of the plants.

2. Material and Methods

2.1. Growing Sprouts in Growth Chamber

The study of the pumpkin sprouts was performed in February 2014 in a growth chamber
at the Biotechnical Faculty, University of Ljubljana (Slovenia). Pumpkin seeds (Cucurbita pepo L.,
cultivar ‘Slovenska Golica’) were soaked in 200 mL water (MilliQ; MerkMillipore, Burlington, MA,
USA) or in aqueous solutions of Se at 10 mg/L and/or I at 1000 mg/L in the following combinations: selenate
(SeO4

2− alone); selenite (SeO3
2− alone); iodide (I− alone); iodate (IO3

− alone); SeO4
2− + I−; SeO4

2− + IO3
−;

SeO3
2− + I−; and SeO3

2− + IO3
−. The dry seeds were weighed before and after the soaking treatments to

determine the amount of water absorbed by the seeds. On average, after 6 h of soaking, 97.1 ±4.2 mg water
was absorbed by each seed. On the assumption that Se and I were taken up by the seeds in the same way
as water, this indicated that 0.971 µg Se (as SeO4

2− or SeO3
2−) was absorbed per seed, and 97.1 µg I (as I−

or IO3
−) was absorbed per seed. After the soaking, the seeds were rolled into filter paper, with 30 seeds

per roll, and put into a glass, which was put into the growth chamber. The experiment was designed as
two-factorial, in three randomised replicates. During germination, the seeds in the rolls were given tap
water at 100 mL per roll. The pumpkin sprouts were grown in a growth chamber for 10 days from the
end of February 2014 to the first week of March 2014, under controlled conditions with mean day/night
temperatures of 22 ◦C/18 ◦C, relative air humidity from 65% to 85%, and 16 h of daylight.

The sampling of the sprouts was performed when they were growing out of the rolls and their
cotyledons were fully extended (at the age of cca. 10 days). Physiological measurements (i.e., photochemical
efficiency of photosystem (PS)II, electron transport system (ETS) activity of mitochondria) were performed
on fresh leaves 2 days before sampling. Later, the anthocyanin, photosynthetic pigments and tocopherol
contents were determined in the leaves. To obtain the average sprout mass, all of the fully developed
sprouts were taken as whole sprouts and were counted and weighed. The sprouts were than lyophilised at
−50 ◦C (1-16 LSC; Christ Gamma), milled and homogenised with a planetary micro mill (MM 200; Retsch,
Haan, Germany). The samples were stored at −20 ◦C until the analysis of their Se and I contents.

2.2. Plant Treatments in the Field Experiment

The field experiment was carried out in an experimental field of the Biotechnical Faculty (University of
Ljubljana, Slovenia; latitude, 46◦2′ N; longitude, 14◦28′ E; altitude, 298 m above sea level.). The soil of the
experimental site was classified as gleic fluvisol. The 0–30-cm soil layer contained 26 g/kg soil organic
matter, 22 mg/kg assimilable phosphorus and 26 mg/kg soil assimilable potassium. The mean initial soil
nitrate content was 14 mg/kg, and the soil pH was 6.3.

Pumpkin seeds (Cucurbita pepo L., cultivar ’Slovenska Golica’) were sown in April 2014 in polystyrene
plug trays, and 1 month later the seedlings were transplanted to a raised bed (0.6 × 1.1 m). Each plot
(1.8 × 1.1 m) contained 3 plants that were grown in one row in the middle of the bed. The experiment was
laid out in a two factorial block design, with three randomised replicates. Three weeks after transplanting
(i.e., at the flowering stage), the plant foliage was sprayed one time during the growth season, with 150 mL
per plot of solution of the same concentrations and combinations of Se and I as was used for the seed
soaking treatments (see above). The terminal ETS activities and the anthocyanin levels were measured
for the leaves three times, at 10, 20 and 30 days after the Se and I treatments. Photosynthetic pigments
and tocopherol contents were determined in leaves 20 days after the foliar treatments. At an interval
14 weeks after transplanting, when the majority of the pumpkin fruits had reached their ripe phase,
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the pumpkins were counted and weighed. The seeds from each pumpkin were removed, washed with
water, dried and weighed, and then lyophilised (1-16 LSC; Christ Martin Christ Gefriertrocknungsanlagen
GmbH, Osterode am Harz, Germany), milled in a knife mill (Grindmix GM 200; Retsch, Haan, Germany),
and stored at −20 ◦C for further analysis.

Data for the temperature and precipitation during the experimental period (May to September
2014) were obtained from the meteorological station on the experimental field of the Biotechnical Faculty
(University of Ljubljana). During the study, the mean daily temperature ranged from 15.9 ◦C (May)
to 20.8 ◦C (July), and the total precipitation was 764 mm, with the highest precipitation in September
(203.6 mm) and the lowest in May (94 mm).

2.3. Selenium and Iodine Determination

For Se determination in the pumpkin sprouts, 0.20 g samples of lyophilised and milled sprouts were
digested in 50 mL PTFE tubes with the following reagents: 96% H2SO4, 65% HNO3, 30% H2O2, 40% HF
and 30% HCl. The samples were diluted with Milli-Q water. The Se contents were determined by hydride
generation atomic fluorescence spectrometry (Excalibur; PS Analytical, Orpington, UK). The full procedure
was as described by Smrkolj and Stibilj [27].

For Se determination in the pumpkin seeds, 0.25 g of lyophilised and milled pumpkin seeds were
digested with 4 mL HNO3 (Merck) in a microwave oven (Ultrawave; Milestone, Shelton, CT, USA) with
the following programme: 20 min ramp to 220 ◦C and 15 min hold at 220 ◦C. The post-digestion solutions
were cooled to room temperature and diluted to the appropriate volume. The Se contents were measured
using inductively coupled plasma–tandem mass spectrometry (ICP-MS, 7500ce Agilent Technologies,
Tokyo, Japan). Accuracy and precision were checked with standard reference material: NIST 1567b
(Wheat flour) and NIST 1570a (Spinach leaves). A good agreement between the determined (1175 ± 28 ng/g,
117 ± 22 ng/g, respectively) and certified (1140 ± 10 ng/g, 117 ± 8 ng/g, respectively) values was obtained.

For I determination, 0.15 g samples of lyophilised milled pumpkin seeds or sprouts, 10 mL of water
(Milli-Q) and 2 mL of 25% tetramethylammonium hydroxide were mixed in a glass vessel. Extraction of
I was performed in a microwave oven, followed by determination of I content by inductively coupled
plasma–tandem mass spectrometry. The detailed procedure was as reported previously [20]. The accuracy
and precision of the data were checked using reference materials BCR 129 (Hay powder) and NIST
SRM 1573a (Tomato leaves). The values obtained (±standard deviation) were 0.143 (±0.018) µg/g and
0.74 (±0.04) µg/g, respectively.

2.4. Biochemical and Physiological Analysis

The chloroplast pigments chlorophyll a, chlorophyll b, neoxanthin, violaxanthin, antheraxanthin,
zeaxanthin, lutein, α-carotene and β-carotene were determined as previously described [28], and as detailed
in Jerše et al. [20]. The method for the determination of the tocopherol concentrations, as α-tocopherol,
γ-tocopherol and δ-tocopherol, was as reported by [28], with the detailed procedures described in [20,21].

The anthocyanin levels were determined according to Drumm and Mohr [29]. The absorbances of the
extracts were measured at 530 nm using a UV/VIS spectrometer (Lambda 25; Perkin-Elmer, Norwalk, CT,
USA). The anthocyanins were extracted from the weighed fresh plant material by homogenisation in a
mortar and extraction with HCl: methanol (1:99; v/v). The absorbance of the extracts was measured at
530 nm using a UV/VIS spectrometer (Lambda 25; Perkin-Elmer, Norwalk, CT, USA). The anthocyanin
levels are expressed in relative units.

The respiratory potential was measured as described by [30], following the detailed procedure given
by [31]. In brief, samples from each of the Se and I treatments were homogenised. The ETS activities were
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measured as the rate of tetrazolium dye reduction, and then converted to oxygen equivalents, as described
by Kenner and Ahmed [32].

2.5. Statistical Analysis

The experiments with the pumpkin sprouts and the field experiments with the pumpkin plants were
treated as two-factorial experiments in three replications. The determination of Se and I, and all of the
physiological and biochemical measurements, were replicated as three to five laboratory replicates and
three analytical replicates. The data were analysed, using Statgraphics Centurion XVII (Statgraphics,
Herndon, VA, USA) with one-way analysis of variance (ANOVA), for significant differences between the
Se and I combinations. Differences were tested using Duncan tests, at a significance level of 0.05.

3. Results and Discussion

3.1. Pumpkin in a Growth Chamber and in the Field

Growth chamber: Germination is one of the most critical stages in the plant life cycle, which starts with
the uptake of water by dry seeds, and results in elongation of the seed embryo [33,34]. Many environmental
factors can influence the germination processes and further sprout growth.

For seeds soaked in Se and I that germinated to sprouts in a growth chamber, there were significant
differences between the Se and I treatments of the seeds as regards germination rates (range, 33–74%)
(Table 1). With the control germination at 50.0%, this was reduced by the treatments with SeO4

2− alone
(33.3%) and with each of the I forms alone, namely I− and IO3

− (45.6%, 48.3%, respectively), although not
significantly. The combination of SeO4

2− and I− or IO3
− led to significant improvements in the seed

germination rates compared to the control and SeO3
2− and SeO4

2− alone, and to the I forms alone (I−, IO3
−).

In contrast, there were no significant effects on the seed germination rates in the treatments with SeO3
2− in

combination with either I− or IO3
−. On the other hand, Germ et al. [22] used the same concentrations and

combinations of Se and I in their treatments for growing buckwheat microgreens, and they only observed
decreases in germination rates following treatments with SeO3

2− and IO3
− alone, and no stimulating

effects of other treatments, including combinations of Se and I. In general, there were no significant
differences between these Se and I treatments of the seeds here as regards sprout mass (range, 0.66–0.80 g).
Contrary to these results, a significant decrease in sprout mass was recorded in our previous studies:
for peas, sprout mass was reduced by all of the individual Se and I treatments used, except for SeO3

2−,
as well as for all the combinations of Se and I treatments [20]; and for buckwheat, significant decreases in
sprout yields were seen only for all of the treatments with these Se and I forms alone [22]. Furthermore,
spinach plants grown in a hydroponic system showed decreases in shoot biomass when treated with
10 and 50 µmol L−1 IO3

−, alone or in combination with SeO4
2−, which indicated an interaction between Se

and I [17].
Field experiments: For the field experiment with the foliar application of Se and I to the plants,

pumpkins yields and seed production were not affected by these treatments (Table 2). In line with the present
results, no significant improvements in seed or other yield types were reported for different biofortification
treatments with Se and/or I, such as the soil fertilisation of lettuce and carrots, fortified nutrient solutions
with hydroponically grown lettuce and spinach [15,17,35], and, as in our previous study, pea plants [21].
On the other hand, Blasco et al. [36] reported that fertilisation with I− significantly decreased shoot
biomass and reduced leaf levels of nitrate, while IO3

− application improved all of the nitrogen parameters,
including nitrogen-utilisation efficiency, and also increased the biomass of the edible parts of lettuce.
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Table 1. Effects of the various seed-soaking treatments on the characteristics of the pumpkin sprouts and
their Se and I levels. Treatments were based on Se at 10 mg/L and I at 1000 mg/L.

Treatment Germination (%) Sprout Mass (g) Sprout Selenium (µg/g DW) Sprout Iodine (µg/g DW)

Control 50.0 ± 5.5 bc 0.68 ±0.06 0.037 ± 0.005 f 0.8 ± 0.1 e

SeO3
2− 57.8 ± 2.9 bc 0.76 ± 0.04 0.197 ± 0.009 e

SeO4
2− 33.3 ± 9.6 c 0.70 ± 0.01 0.453 ± 0.013 d

I− 45.6 ± 6.8 bc 0.74 ± 0.08 279 ± 19 b

IO3
− 48.3 ± 5.6 bc 0.66 ± 0.08 217 ± 13 c

SeO3
2− + I− 50.0 ± 5.5 bc 0.77 ± 0.002 0.801 ± 0.079 c 314 ± 1 ab

SeO3
2−+ IO3

− 73.3 ± 17.8 ab 0.74 ± 0.05 0.994 ± 0.06 b 288 ± 25 ab

SeO4
2− + I− 74.4 ± 14.4 a 0.80 ± 0.04 2.0 ± 0.1 a 323 ± 12 a

SeO4
2− + IO3

− 74.4 ± 18.9 a 0.76 ± 0.04 2.3 ± 0.7 a 266 ± 28 b

Data are means ± standard deviation; a–f different superscript letters indicate statistically significant differences between
the different treatments (p < 0.05).

Table 2. Effects of the various foliar treatments on the characteristics of pumpkin yields and seed Se and I
levels. Treatments were based on Se at 10 mg/L and I at 1000 mg/L.

Treatment Pumpkin Yield (t/ha) Seed Yield (t/ha) Seed Selenium (ng/g DW) Seed Iodine (ng/g DW)

Control 92.7 ± 14.4 3.0 ± 0.7 35 ± 3 d 30 ± 10 ab

SeO3
2− 115.5 ± 17.0 3.8 ± 0.9 51 ± 8 c

SeO4
2− 114.9 ± 32.6 3.6 ± 2.1 44 ± 11 c

I− 60.7 ± 2.2 1.9 ± 0.1 9 ± 1 d

IO3
− 98.8 ± 11.0 3.4 ± 0.5 8 ± 2 d

SeO3
2− + I− 61.7 ± 12.5 2.1 ± 0.5 46 ± 9 c 31 ± 3 ab

SeO3
2−+ IO3

− 89.5 ± 19.3 2.7 ± 0.7 43 ± 10 c 15 ± 3 cd

SeO4
2− + I− 102. 8 ± 16.8 2.9 ± 0.4 74 ± 8 b 16 ± 1 cd

SeO4
2− + IO3

− 76.3 ± 4.7 2.3 ± 0.2 87 ± 5 a 20 ± 4 bc

Data are means ± standard deviation (n = 3); a–d different superscript letters indicate statistically significant differences
between the different treatments (p < 0.05).

3.2. Selenium and Iodine Content

Growth chamber: The Se and I contents of the sprouts grown from the soaked seeds were analysed.
Here, the Se contents of the resulting pumpkin sprouts were significantly increased compared to the control
with Se treatment, regardless of the Se form and combinations with I, although the SeO4

2− treatments
were more effective (Table 1). Selenate (SeO4

2−) is a highly soluble compound that is easily available to
plants [37]. To the best of our knowledge, there is no data in the literature for Se content in pumpkin
sprouts from enriched seeds. A comparison can instead be made using the studies of Cuderman et al. [38]
and Germ et al. [22], where a higher uptake of SeO4

2− was seen for buckwheat sprouts soaked in solutions
of 10 mg/L SeO4

2− or SeO3
2−. A higher accumulation of Se applied as SeO4

2−, compared to as SeO3
2−,

was recently also shown for pea sprouts [20] and spinach plants [39].
Compared to the control, the I content in these pumpkin sprouts was significantly increased if the

seeds were soaked in the I solution (both forms). Accumulation of I was more efficient when I was added
in its iodide form (I−), compared to iodate (IO3

−). Similar results were reported for pea sprouts [20]. On the
other hand, in buckwheat microgreens, the uptake of I was more efficient when the seeds were soaked in
IO3
−, as compared to I− [22]. Lawson [40] showed that I− is more readily available to plants in the solution

of soilless culture systems, while under field conditions it is subject to cumulative losses greater than with
IO3−. Blasco et al. [41] concluded that the most suitable addition rate for hydroponic cultivation of lettuce
plants was 40 µM or less, in the form of I−, because the biomass was not reduced. Whitehead [42] and
Zhu et al. [43] explained that it possible that IO3− must be reduced to I− before it can be taken up by plants,
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which is a process that requires energy. Thus, I accumulation in plants might be limited by the reduction
process itself.

Both forms of I in the soaking solutions significantly increased the sprouts’ Se contents, compared to
the single treatments with SeO3

2− or SeO4
2−. The highest Se content was seen for sprouts from seeds

treated with the combination of both elements, regardless of the forms used in the soaking solutions.
The synergistic effects of I on Se uptake have also been shown in lettuce [15], Brasica juncea [44] and pea
plants [21], while antagonistic effects have been reported for carrot [18] and lettuce [19].

The I contents in the sprouts from the seeds treated with I− in combination with SeO4
2− were higher,

compared to sprouts treated with I− alone. Furthermore, in the sprouts from seeds treated with IO3
− in

combination with both of the forms of Se, the I levels were higher than in the sprouts from the seeds treated
with IO3

− alone. The positive effects of Se on I uptake have been shown for Brasica juncea [44] and for pea
sprouts [20]. On the other hand, Se hindered the accumulation of I in spinach (slightly) [17], carrot [18]
and lettuce [19], and in the leaves of kohlrabi plants [16].

Both of these elements are transported from the roots to the vital organs through the xylem [45].
The presence of I amplified the Se uptake in these pumpkin seeds during their soaking. It is possible
that pumpkin seeds have a permeable testa for Se and I, which can in turn accelerate the uptake of both
elements. Iodine might have enhanced the permeability of the membrane to Se in order to provide this
significant reinforcing effect. In the literature, controversial data on the effects of I on Se uptake, and vice
versa, have been reported, depending on the form of the Se and I, and on crop type [16,18,20–22].

Field experiment: Seed Se contents following the foliar spraying of the pumpkin plants were slightly
increased, compared to the control plants (Table 2). There were no significant differences in the Se contents
of these pumpkin seeds between the leaves sprayed with SeO3

2− and SeO4
2−. A study by Smrkolj et al. [24],

also on pumpkin (Cucurbuta pepo L.) seeds, showed that foliar spraying of the pumpkin plants with
natrium selenite at 1.5 mg/L resulted in eightfold increase in Se content compared to the untreated plants.
The reasons for the low Se contents in our study might include (i) the small absorption of the foliar
solutions, (ii) the higher yield of pumpkin seeds under the Se treatments, or (iii) the distribution of Se
uptake throughout the pumpkin plants. The foliar applications of I− and IO3

− did not result in enriched I
contents in the pumpkin seeds. Indeed, I contents were even lower than for the control seeds. The reasons
for these low I contents might include (i) the distribution over the mass of the fruit, developed between
spraying and sampling (3.5 months), and (ii) the low I mobility through the phloem.

The treatments with both I forms in combination with SeO4
2− increased the seed Se content up to

2.5-fold, compared to the control seeds. The highest Se contents were obtained when the pumpkin plants
were sprayed with SeO4

2− + IO3
− (87 ng/g DW) and SeO4

2− + I− (74 ng/g DW). These data show that I had
a positive impact on the uptake of SeO4

2− from the leaf surfaces, and further Se translocation to the seeds.
This is comparable with the SeO4

2− and IO3
− treatments in the case of lettuce, where a higher uptake of

SeO4
2− was obtained in the presence of IO3

− [15]. In a study by Smoleń et al. [18], I in the forms of I− and
IO3

− decreased Se content when applied together with SeO3
2−.

The presence of Se in the foliar solutions with I resulted in some significant differences in seed I
contents across the treatments with I alone. For the plants treated with foliar spraying with SeO3

2− + I−

and SeO4
2− + IO3

−, the seed I contents were comparable to the control seeds. On the other hand, I levels
were lower in comparison to the control for all the other treatments. SeO3

2–, but not SeO4
2−, enhanced I

levels when they were added in the form of I−. SeO3
2– did not enhance I levels when added in the form of

IO3
−, while SeO4

2− enhanced them.
I acted synergistically on Se accumulation in sprouts and seeds, but the effects in sprouts were seen

for all combinations, whereas in seeds they were lower, and only seen for SeO4
2−. Although the patterns

are repeated, the mechanisms of this correlation remain to be discovered, as different crops react differently
according to the forms of Se and I used.
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3.3. Biochemical and Physiological Characteristics of Sprouts and Plants

Measurement of the biochemical and physiological characteristics of the sprouts and plants showed
that these Se and I treatments did not cause stress to the plants. There were no differences between the
control and the Se and I treatments with regard to the levels of chlorophyll a, chlorophyll b, neoxanthin,
violaxanthin, antheraxanthin, zeaxanthin, lutein, α-carotene, β-carotene and tocopherols, either in sprouts
from the seed treatments or in the developed plants following the foliar treatments (data not shown).

Growth chamber: However, there were some small differences among the treatments with regard to
the anthocyanin contents. The anthocyanins in the sprouts from seeds soaked in different combinations of
Se and I were similar to the control group. SeO4

2− in combination with I− lowered the anthocyanin levels
compared to the treatment with I− alone, while both forms of Se in combination with IO3

− increased the
anthocyanin levels compared to the treatment with IO3

− alone, in sprouts.
Field experiment: For the foliar treatments of the plants, there was minimal difference between the

anthocyanin levels in the treated and untreated leaves, and no difference between the anthocyanin levels
in the resulting seeds (Table 3). The anthocyanin levels also remained similar to those in the control plants
of pea sprouts from seeds treated with the same combinations of Se and I as in the present study [20].
Some stressors can promote anthocyanin synthesis [46]. However, in the present study, the anthocyanin
levels generally did not differ between the control and treated groups in sprouts, or between the leaves
of mature plants and the seeds. The highest anthocyanin levels were seen for the foliar treatment of the
leaves of mature plants. It should be noted that the light intensity is stronger in the field, and the plants
can synthesise anthocyanins to protect their photosynthetic apparatus from photo damage [47,48].

Table 3. Effects of the various seed and foliar treatments on the anthocyanin levels in the pumpkin sprouts,
leaves of mature plants, and seeds.

Treatment
Anthocyanin Content (Rel. Units/g DW)

Sprouts Leaves Seeds

1 2 3

Control 77.1 ± 22.2 bc 221.1 ± 18.2 383.0 ± 139.6 ab 233.2 ± 24.2 131.2 ± 38.3
SeO3

2− 79.2 ± 22.0 bc 222.7 ± 16.1 440.6 ± 113.0 b 254.5 ± 157.6 84.4 ± 26.4
SeO4

2− 61.9 ± 11.6 b 173.6 ± 35.8 267.5 ± 81.4 ab 298.2 ± 69.7 114.2 ± 51.9
I− 100.6 ± 4.6 c 221.8 ± 34.5 378.0 ± 166.4 ab 278.8 ± 152.7 126.3 ± 63.8

IO3
− 30.2 ± 20.8 a 322.2 ± 6.2 403.8 ± 83.9 ab 262.7 ± 59.0 132.8 ± 54.4

SeO3
2− + I− 86.9 ± 7.1 bc 177.4 ± 54.7 311.6 ± 25.5 ab 265.2 ± 134.6 102.7 ± 38.7

SeO3
2−+ IO3

− 72.7 ± 4.7 b 206.4 ± 59.0 335.1 ± 95.3 ab 163.7 ± 48.8 159.3 ± 73.6
SeO4

2− + I− 69.1 ± 2.3 b 242.8 ± 30.2 235.9 ± 44.7 a 141.9 ± 23.5 131.8 ± 32.6
SeO4

2− + IO3
− 67.5 ± 12.6 b 219.8 ± 10.3 261.8 ± 61.5 ab 197.2 ± 68.7 128.0 ± 46.8

Data are means ± standard deviation (n = 3; leaves of mature plants, seeds), (n = 4; sprouts). Leaves 1, 2, 3, the three
measurements of the leaves, at 10, 20 and 30 days after Se and I treatments. a–d different superscripted letters indicate
statistically significant differences between the different treatments (p < 0.05).

Growth chamber: ETS activities in the sprouts from the Se and I-treated seeds were similar to the
control for the majority of the treatments (Table 4). Enhanced ETS activity in the sprouts was observed for
the treatments with SeO3

2− in combination with I− and IO3
−. Field experiment: ETS activity did not differ

in the leaves from the control and treated plants following the foliar treatments. Spraying with both forms
of Se enhanced ETS activity in the resulting seeds, in comparison to the controls, well as compared to all of
the other treatments.
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Table 4. Effects of the various seed and foliar treatments on the activities of the electron transport system in
the pumpkin sprouts, leaves of mature plants and seeds.

Treatment
Electron Transport System Activity (Rel. Units/g DW)

Sprouts Leaves Seeds

1 2 3

Control 9.82 ± 1.54 a 14.99 ± 3.45 13.01 ± 0.94 8.27 ± 3.14 0.11 ± 0.08 ab

SeO3
2− 10.31 ± 0.40 ab 21.33 ± 2.22 12.06 ± 3.81 8.14 ± 5.79 0.27 ± 0.20 c

SeO4
2− 11.01 ± 2.46 ab 18.92 ± 3.85 14.87 ± 3.13 8.41 ± 3.16 0.19 ± 0.07b c

I− 12.19 ± 1.74 abc 17.00 ± 2.04 14.10 ± 3.33 10.00 ± 2.56 0.12 ± 0.04 a

IO3
− 11.19 ± 1.05 ab 15.01 ± 4.12 10.79 ± 1.06 10.51 ± 4.04 0.10 ± 0.05 ab

SeO3
2− + I− 12.43 ± 0.51 bc 19.64 ± 0.63 11.12 ± 0.68 8.09 ± 0.84 0.16 ± 0.03 ab

SeO3
2−+ IO3

− 14.42 ± 2.26 c 20.29 ± 4.30 14.90 ± 3.23 7.39 ± 2.13 0.07 ± 0.04 a

SeO4
2− + I− 11.0 ± 0.51 ab 21.97 ± 4.38 12.35 ± 0.67 7.61 ± 1.64 0.15 ± 0.04 ab

SeO4
2− + IO3

− 11.58 ± 2.95 abc 21.37 ± 5.40 13.70 ± 2.47 7.52 ± 1.69 0.10 ± 0.05 ab

Data are means± standard deviation (n = 3; leaves of mature plants, seeds), (n = 4; sprouts). Leaves 1, 2, 3, measurements of
the leaves, at 10, 20 and 30 days after Se and I treatments. a–d different superscripted letters indicate statistically significant
differences between the different treatments (p < 0.05).

Field experiment: Similar ETS activities in seeds from the control and treated plants were seen in our
previous study [21], wherein pea plants were treated with the same concentrations and combinations of Se
and I. Considering these treatments with SeO3

2−, SeO4
2−, I− and IO3

−, there is scarce information available
about the ETS activities in treated plants [16,20–22]. The effects of these treatments appear to be dependent
on the crop, plant part and forms of Se and I. There was a trend in the declining of ETS activity, from the
first to the third measurement, in the leaves of the control and treated plants (Tables 3 and 4, Leaves 1–3).
Plants require more energy during intensive growth and development, in order to build their structural
components. Similar data were reported by Smrkolj et al. [49], where pea plants underwent foliar spraying
with an aqueous solution containing Se 10 mg/L in the form of sodium selenate.

The ETS activities were the same for sprouts and developed plants, while they were only about one
tenth of these for seeds. This might be connected with the low oxygen supply in the pumpkin fruit [23].
Similarly, Borisjuk et al. [50] reported that respiration in the developing faba bean embryos (Vicia faba) is
limited by hypoxia.

4. Conclusions

The pumpkin sprouts and seeds accumulated both Se and I. Both of these elements were translocated
from the soaked seeds to the sprouts in the growth chamber experiment, and from the treated leaves
to the seeds of plants in field experiment. Transportation from the leaves to the seeds was lower than
translocation from the soaking solutions to the sprouts. The synergistic effects of I on Se uptake in the
sprouts can be attributed to the effects of I on the permeability of the testa for Se. This mechanism needs to
be studied in further detail. The results show that the application of Se and I can be an effective strategy for
enhancing those elements in pumpkin plants, without negative impacts on the yield. The amounts of Se
and I in 100 g of fresh pumpkin sprouts and seeds from the present study did not exceed the recommended
daily intake of these two elements. However, in the supplementation of food with iodine and selenium
caution is recommended, so as to diminish the risk of overdosing.
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