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Abstract: Phospholipid-hydrolyzing enzymes include members of the phospholipase C (PLC) family
that play important roles in regulating plant growth and responding to stress. In the present study,
a systematic in silico analysis of the wheat PLC gene family revealed a total of 26 wheat PLC
genes (TaPLCs). Phylogenetic and sequence alignment analyses divided the wheat PLC genes into
2 subfamilies, TaPI-PLC (containing the typical X, Y, and C2 domains) and TaNPC (containing a
phosphatase domain). TaPLC expression patterns differed among tissues, organs, and under abiotic
stress conditions. The transcript levels of 8 TaPLC genes were validated through qPCR analyses.
Most of the TaPLC genes were sensitive to salt stress and were up-regulated rapidly, and some were
sensitive to low temperatures and drought. Overexpression of TaPI-PLC1-2B significantly improved
resistance to salt and drought stress in Arabidopsis, and the primary root of P1-OE was significantly
longer than that of the wild type under stress conditions. Our results not only provide comprehensive
information for understanding the PLC gene family in wheat, but can also provide a solid foundation
for functional characterization of the wheat PLC gene family.
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1. Introduction

Phospholipids are an important component of cytoplasmic membranes, playing a vital role in
plant growth, development, and regulation of responses to abiotic stresses and biotic challenges [1,2].
Phospholipases in plants are responsible for the hydrolysis of phospholipids and are divided into four
types: phospholipase A1 (PLA1), phospholipase A2 (PLA2), phospholipase C (PLC), and phospholipase
D (PLD). Within each type, there also are subfamilies that differ in structure, substrate, binding site
and reaction conditions under which they are active [3]. Based on their substrates, PLCs can be
divided into two subfamilies: the phosphatidylinositol specific PLC (PI-PLC) and the nonspecific
PLC (NPC) [4,5]. PI-PLC can hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two
important signaling molecules, inositol triphosphate (IP3) and diacylglycerol (DAG) [6], which release
Ca2+ from cells and activate members of the protein kinase C (PKC) family, thus participating in plant
growth and development [7,8]. Members of the NPC hydrolyze a series of membrane phospholipids
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such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) to generate phosphatidylserine
(PS), diacetylglycerol (DAG), and the corresponding phosphate groups [9–12]. When plants NPCs
were first discovered, they were not related to any other known members of the plant phospholipase
family, but had three conserved regions shared with phospholipase in Mycobacterium tuberculosis [12].
Although NPC does not have the C2, X, Y, and EF domains, it contains a phosphatase domain and can
hydrolyze phospholipid, so it is classified as a subfamily of the PLCs [6,12,13].

Members of the phospholipase C gene family have been categorized and described in many plant
species [3,5,14–16] including 9 PI-PLC and 6 NPC genes in Arabidopsis thaliana, 4 PI-PLC, and 5 NPC
genes in rice (Oryza sativa L.), 5 PI-PLC and 4 NPC genes in maize (Zea mays L.), and 12 PI-PLC and 9 NPC
genes in cotton (Gossypium spp.). In A. thaliana, AtPI-PLC1 played an important role in hyperosmotic
stress independent of ABA treatment [17]. AtPI-PLC2 is involved in seedling growth, the endoplasmic
reticulum stress response, and regulation of male and female gametophyte development [18,19],
whereas AtPI-PLC3 and AtPI-PLC9 contributed to heat resistance [20,21]. Overexpression of AtPI-PLC5
caused premature leaf decay [22], the AtNPC4 gene enhanced resistance to high osmotic stress [23].
Abscisic acid induced up-regulation of AtPI-PLC6 expression and participation in the cold stress
response [24]. In Brassica napus, overexpression of BnPI-PLC2 enhanced plant drought tolerance and
positively affected phytohormone levels [25,26]. In potato, StPLC was involved in regulation of DNA
synthesis and the cell cycle [27], and in maize, ZmPI-PLC1 affected plant development by promoting
asymmetric cell division [14].

PLC enzymes also are known to be involved in growth, development and stress responses in
wheat (Triticum aestivum L.) [5,28–31]. However, the genes in wheat have not previously been analyzed
systematically. In this study, we identified and characterized the wheat PLC gene family, including
sequence features, conserved domains, chromosomal locations, phylogenetic relationships, cis-acting
elements, tissue specific expression levels, and expression patterns in response to abiotic stresses
including low temperature, drought, and salt stress. One of the family members, TaPI-PLC1-2B,
was demonstrated to play an important role in responding to drought and salt stress. Our study not
only presents comprehensive information for understanding the PLC gene family in wheat, but can
also provide a solid foundation for the functional characterization of the wheat PLC gene family.

2. Results

2.1. Identification and Analysis of Phospholipase C (PLC) Gene Family Members in Wheat

Following analysis of the PLAZA protein database with HMM and confirmation of the conserved
domains by CDD, Pfam, and SMART search tools, a total of 26 wheat PLC genes were identified
and named TaPI-PLC1-2A to TaNPC7-4A, based on their subfamily, chromosomal position, and
genomic homology. Results of analysis by ExPasy indicated that the physicochemical properties of the
two groups of encoded proteins differed (Table 1). TaPI-PLC proteins comprised of 585–633 amino
acids with molecular weights of 65.7–71.1 kDa and a slightly acidic isoelectric point of less than 7.
In contrast, TaNPC proteins were smaller, only 513-554 amino acids in length, with molecular weights
of 56.7–61.7 kDa. Seven TaNPC proteins had isoelectric points less than 7, while the other 8 all had
isoelectric points greater than 7 and were slightly alkaline. The GRAVY values of TaPI-PLC and TaNPC
proteins were less than 0, indicating that members of both families were hydrophilic.
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Table 1. Features of TaPLC genes identified in wheat.

Gene Name Transcript ID Family Exon no. Location Protein
(AA)

MW
(kDa) PI GRAVY

TaPI-PLC1-2A TraesCS2A02G084000 PI-PLC 8 2A:38534860-38538480 608 68.4 5.91 −0.576
TaPI-PLC1-2B TraesCS2B02G098500 PI-PLC 8 2B:58321242-58325230 606 68.2 6.06 −0.590
TaPI-PLC2-2D TraesCS2D02G082000 PI-PLC 8 2D:35259471-35263395 607 68.5 5.88 −0.581
TaPI-PLC2-1A TraesCS1A02G069300 PI-PLC 9 1A:51700021-51707185 585 66.0 6.07 −0.462
TaPI-PLC1-1D TraesCS1D02G071800 PI-PLC 9 1D:52338417-52345805 586 66.2 6.03 −0.470
TaPI-PLC3-4A TraesCS4A02G109000 PI-PLC 9 4A:129086595-129090166 633 71.1 5.54 −0.446
TaPI-PLC3-4B TraesCS4B02G195200 PI-PLC 9 4B:420197892-420201623 633 71.0 5.75 −0.425
TaPI-PLC3-4D TraesCS4D02G195800 PI-PLC 9 4D:340085748-340090648 633 71.1 5.84 −0.434
TaPI-PLC4-5A TraesCS5A02G155300 PI-PLC 9 5A:333407514-333413175 590 65.7 6.05 −0.443
TaPI-PLC4-5B TraesCS5B02G153600 PI-PLC 9 5B:283008744-283014326 589 65.7 6.06 −0.425
TaPI-PLC4-5D TraesCS5D02G160300 PI-PLC 9 5D:250061407-250066699 589 65.7 6.06 −0.437

TaNPC1-3A TraesCS3A02G083200 NPC 2 3A:53559328-53561696 531 58.4 7.81 −0.199
TaNPC1-3B TraesCS3B02G098100 NPC 2 3B:65552302-65554643 531 58.6 7.26 −0.239
TaNPC1-3D TraesCS3D02G083000 NPC 2 3D:42093593-42095880 531 58.3 8.32 −0.202
TaNPC2-3A TraesCS3A02G492100 NPC 4 3A:719301726-719305850 533 60.0 5.98 −0.408
TaNPC2-3B TraesCS3B02G552800 NPC 4 3B:787478591-787485906 530 58.6 5.94 −0.387
TaNPC2-3D TraesCS3D02G499600 NPC 4 3D:589374117-589378796 537 59.4 6.07 −0.385
TaNPC3-4A TraesCS4A02G298300 NPC 2 4A:597023152-597025088 513 56.7 6.05 −0.347
TaNPC3-4B TraesCS4B02G015300 NPC 2 4B:11567063-11569283 516 57.1 5.95 −0.358
TaNPC3-4D TraesCS4D02G013500 NPC 2 4D:6291692-6293849 514 57.0 5.88 −0.364
TaNPC4-5A TraesCS5A02G489800 NPC 3 5A:659456675-659460043 540 60.0 7.01 −0.362
TaNPC4-5B TraesCS5B02G503200 NPC 3 5B:669895600-669898631 542 60.2 7.31 −0.354
TaNPC4-5D TraesCS5D02G504100 NPC 3 5D:530645503-530649282 541 60.1 7.01 −0.352
TaNPC5-3A TraesCS3A02G439600 NPC 3 3A:682746317-682754957 554 61.7 7.13 −0.309
TaNPC6-3B TraesCS3B02G553200 NPC 4 3B:787850236-787854279 530 58.6 5.98 −0.382
TaNPC7-4A TraesCS4A02G369500 NPC 3 4A:641504088-641508259 540 60.1 7.01 −0.383

2.2. Exon–Intron Structure and Conserved Motifs of TaPLC Genes

As shown in Figure 1, there are structural differences among TaPLC genes, but genes clustered
on a branch have similar exon-intron structures, numbers, and distributions of functional motifs.
TaPI-PLC genes share 4 motifs designated 2, 3, 4 and 10. Except for TaPI-PLC1-2A, TaPI-PLC1-2B,
and TaPI-PLC1-2D, which have 8 exons and 7 introns, all the others have 9 exons and 8 introns.
The TaNPC genes mainly contain 6 motifs including 1, 5, 6, 7, 8, and 9. TaNPC6-3B and the three
homologous copies of TaNPC2 contain 4 exons; TaNPC7-4A, TaNPC5-3A, and the three homologous
copies of TaNPC4 contain 3 exons, while the homologous copies of TaNPC1 and TaNPC2 have only
two exons. From the protein sequence alignment results, it can be found that motifs 1, 5, 6, 7, 8, and 9
together constitute the phospholipase domain of NPC (Figure 2). While motifs 2 and 10 form the
PI-PLC-X domain, motifs 3 and 4 correspond to PI-PLC-Y and PI-PLC-C2, respectively (Figure 3).

2.3. Phylogenetic Analysis of TaPLC Genes

In order to precisely reveal the evolutionary relationships of the TaPLC proteins, we performed
phylogenetic analyses of 4 monocotyledons (wheat, rice, maize, and orchid) and 3 dicotyledons
(Arabidopsis, soybean, and cotton) using a neighbor-joining method (Figure 4, Table S1). From the
results we can see that the phylogenetic tree showed that 89 PLC genes were divided into PI-PLC
and NPC groups totaling 50 PI-PLC genes and 39 NPC genes, respectively. Genes from monocots and
dicots were relatively distantly related, wheat and rice were evolutionarily closer to each other than
wheat and maize or wheat and orchid, and Arabidopsis PLCs showed high homology to PI-PLCs from
soybean and cotton. Similar trends were found for the TaNPC proteins, which more closely resembled
those in rice and maize.
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Figure 1. Evolutionary relationship (left), sequence prediction (center), and gene structure (right) of 
TaPLC genes. The evolutionary history was inferred by using the Neighbor-joining method in 
MEGA7, and the bootstrap value was 1000. The combination of motifs associated with each TaPLC 
protein is shown in the middle. Ten motifs are marked with boxes of different colors. The EvolView 
online tool was used to compare the predicted coding sequence (CDS) with the corresponding 
genomic sequence to detect the exon/intron distribution of the corresponding TaPLC gene. The 
yellow box represents an exon and the gray solid line represents an intron. 

Figure 1. Evolutionary relationship (left), sequence prediction (center), and gene structure (right) of
TaPLC genes. The evolutionary history was inferred by using the Neighbor-joining method in MEGA7,
and the bootstrap value was 1000. The combination of motifs associated with each TaPLC protein is
shown in the middle. Ten motifs are marked with boxes of different colors. The EvolView online tool
was used to compare the predicted coding sequence (CDS) with the corresponding genomic sequence
to detect the exon/intron distribution of the corresponding TaPLC gene. The yellow box represents an
exon and the gray solid line represents an intron.
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Figure 2. Sequence alignment of the 15 members of wheat NPC proteins. The black lines indicate
motifs 1, 5, 6, 7, 8, and 9. The purple lines denote the NPC domain.
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PI-PLC-X, PI-PLC-Y, and PI-PLC-C2 domains, respectively.
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Figure 4. Phylogenetic tree of TaPLCs from wheat, rice, maize, orchid, Arabidopsis, soybean, and cotton.
The phylogenetic tree was constructed by using the Neighbor-joining method with 1000 bootstrap
replications. The PI-PLC and NPC subfamilies are shown in purple and green colors.

2.4. Chromosome Localization, Gene Duplication, and Collinearity Analysis of TaPLC Genes

The 26 members of the TaPLC family are randomly distributed on 14 chromosomes of wheat
(Figure 5), among which the 3A, 3B, and 4A chromosomes carried the most TaPLC genes. Chromosomes
1A, 1D, 2A, 2B, and 2D contained fewer members, with only one gene per chromosome. Among the
26 TaPLC genes, there were 10, 8, and 8 members distributed on wheat sub-genomes A, B,
and D, respectively.

In terms of gene duplication, there were 7 TaPLC members (TaPI-PLC1, 3, 4, and TaNPC1, 2,
3, 4) containing three copies and only TaPI-PLC2 containing two copies, TaNPC5-3A, TaNPC6-3B,
and TaNPC7-4A had only one copy each, which was on chromosomes 3A, 3B, and 4A (Figure 6).
Interestingly, TaNPC7-4A had the greatest sequence similarity to TaNPC4-5A (93.67%), TaNPC4-5B
(96.13%), and TaNPC4-5D (96.31%). Therefore, TaNPC7-4A was identified as a segmental duplication
gene. TaNPC5-3A had the greatest sequence similarity to TaNPC2-3A (88.94%), and TaNPC6-3B had the
greatest sequence similarity to TaNPC2-3B (95.17%). Because the genes were distantly located, they were
also identified as segmental duplication gene. Therefore, TaNPC7-4A, TaNPC5-3A, and TaNPC6-3B
were segmental duplications, and no tandem duplication events involving TaPLCs were discovered in
the wheat genome. In addition, we found that TaPI-PLC3-4A and TaNPC3-4A on chromosome 4A were
reversed with their homologous genes on chromosomes 4B and 4D (Figure 6).
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Figure 6. Schematic diagram of the homologous TaPLC genes in wheat A, B and D sub-genomes and
the duplicated genes pairs identified in wheat.

To better understand the evolutionary factors that affect the TaPLC gene family, we calculated the
Ka (Nonsynonymous) and Ks (Synonymous) ratios between TaPLC gene pairs (Table S2). The Ka/Ks
values of the segmentally duplicated TaPLC gene pairs, as well as of the orthologous TaPLC gene pairs
were less than 1, suggesting that members of this gene family might have undergone strong purifying
selective pressure during evolution in wheat.
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Next, synteny analysis between wheat and rice was conducted (Figure 7, Table S3), and 23
orthologous PLC gene pairs were found, reinforcing the strong relationship between these plant species
revealed by phylogenetic analyses. These results indicated that there was a strong genetic relationship
between PLC genes in monocotyledons.
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2.5. Cis-Regulatory Elements in the Promoters of Wheat PLC Genes

To further evaluate the mechanism of TaPLC gene regulation in the abiotic stress response, the 2.0 kb
upstream sequences from the translation initiation sites of TaPLC genes were submitted to PlantCARE
for detection of cis-acting elements. Six such elements related to abiotic stress were evaluated
including ABRE (Involved in the abscisic acid responsiveness), W-box (involved in dehydration
responsiveness), MYB (Involved in drought-inducibility), MYC (involved in the drought and abscisic
acid responsiveness), LTR (involved in low-temperature responsiveness), and TC-rich repeats (involved
in defense and stress responsiveness) (Figure 8). Each TaPLC gene contained at least two stress-related
cis-acting elements, with ABRE, MYC, and MYB found in almost all TaPLCs. From 1 to 3 LTRs were
present in 13 TaPLCs, and TC-rich repeats and W-boxes were located in 6 and 16 TaPLCs, respectively.
These results indicated that the individual TaPLC genes can respond to multiple abiotic stresses.
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2.6. Expression Patterns of TaPLC Genes in Different Tissues, Organs, and Stresses

The heatmap of 26 TaPLC genes was constructed by using RNA-seq data from the wheat expression
database, and these genes were represented by TPM (Transcripts per million reads) values in seven
different tissues and organs (root, stem, leaf, spike, grain, embryo, endosperm) (Figure 9). Within
the TaPI-PLC subtype, only TaPI-PLC3-4B and TaPI-PLC3-4D were barely expressed in all tissues
and organs, and the other 9 genes were significantly expressed in at least one tissue or organ.
TaPI-PLC1-2A, TaPI-PLC1-2B, TaPI-PLC1-2D, and TaPI-PLC2-1D were highly expressed in roots and
stems, while TaPI-PLC4-5A, TaPI-PLC4-5B, and TaPI-PLC4-5D were mainly expressed in roots, stems,
and grains. Among TaNPCs, only TaNPC7-4A, TaNPC4-5A, TaNPC4-5B, and TaNPC4-5D had high
expression levels, which were expressed in all seven tissues and organs. The heatmap results also
showed that most homologous gene copies such as TaPI-PLC1, TaPI-PLC4, TaNPC3, and TaNPC4 had
similar expression patterns and were highly expressed in the same tissues.

These results for gene expression under various abiotic stresses highlight the great importance of
PLC family members in response to adverse conditions in plants (Figure 10). Under low temperature,
drought, and salt stress, multiple copies of TaPI-PLC1, TaPI-PLC2, TaPI-PLC3, and TaNPC4 were
up-regulated in the PLC family of wheat. Conversely, TaPI-PLC3-4A, TaPI-PLC3-4B, TaNPC1-3A,
TaNPC1-3D, and TaNPC5-3A were almost not expressed under the three abiotic stresses. Most TaPLC
genes were expressed under salt stress, which indicated that members of the PLC gene family might be
sensitive to salt.Plants 2020, 9, x FOR PEER REVIEW 11 of 22 
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2.7. Expression Profiles of TaPLCs in Leaves under Abiotic Stress

To further explore the expression changes in the TaPLC genes under various abiotic stresses
including low temperature, salt, and drought, qRT-PCR was used to investigate the transcript levels
of TaPI-PLC1-2B, TaPI-PLC2-1D, TaPI-PLC3-4A, TaPI-PLC4-5D, TaNPC1-3B, TaNPC2-3A, TaNPC3-4B,
and TaNPC4-5D (Figure 11).

Under drought stress, the expression levels of 8 TaPLC genes differed in leaves. The results
showed that only the expressions of TaPI-PLC1-2B, TaPI-PLC2-1D, TaPI-PLC3-4A, and TaNPC2-3A were
up-regulated after PEG treatment, while the others were significantly down-regulated. TaPI-PLC2-1D,
TaPI-PLC3-4A and TANPC2-3A were firstly up-regulated, reached a peak at 2h, and then were
down-regulated, while TaPI-PLC1-2B reached a peak at 12h. There was a high degree of agreement of
TaPI-PLC between qPCR and public data, while data for TaNPC were quite different.

Under low temperature stress at 4 ◦C, the expression levels of 8 TaPLC genes were significantly
down-regulated. Interestingly, except for TaPI-PLC3-4A and TaPI-PLC4-5A, the other six genes showed
only a slight upward and downward trend. The expression pattern of TaNPC was basically consistent
with the results in Figure 10 and showed different expression pattern compares with TaPI-PLCs.

Under salt stress, PLC genes were significantly up-regulated except for TaPI-PLC2-1D.
The expressions of TaPI-PLC1-2B, TaPI-PLC3-4A, TaPI-PLC4-5A, TaNPC2-3A, and TaNPC4-5D reached
their peak values at 2h and then decreased, while the expressions of TaNPC1-3B and TaNPC3-4B did
not reach peak values until 12h. The results were basically consistent with Figure 10, indicating that
PLC genes were indeed sensitive to salt stress. Further, the different patterns of expression under
different stress treatments indicated that members of the TaPLC gene family differ in their responses
and regulatory mechanisms when exposed to conditions of abiotic stress.
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expression. In order to calculate the relative expression, the expression of each gene under the control
treatment was set as 1. Error bars indicate standard deviations of three biological replicates. Different
letters marked on the same bar chart indicate significant differences at the 0.05 level.

2.8. Overexpression of TaPI-PLC1-2B Enhanced Abiotic Stress Resistance in Arabidopsis Transgenic Plants

The TaPI-PLC1-2B gene is evolutionarily close to OsPI-PLC1 in rice (Figure 4). In addition,
the expression of TaPI-PLC1-2B was consistent with OsPI-PLC1 under drought, salt and low temperature
stress. Therefore, we hypothesized that TaPI-PLC1-2B might play an important role in abiotic stress
response. In order to reveal the potential function of TaPI-PLC1-2B, an overexpression vector for it was
constructed (Figure 12) and transgenic Arabidopsis plants were obtained.

The independent homozygous transgenic line (T3) was used for the experiments, and wild type
(WT) Arabidopsis was used as the control. The TaPI-PLC1-2B transgenic seedlings (P1-OE) and the WT
were planted on medium containing 100 mM NaCl and 200 mM mannitol. After 10 days of growth,
the taproot lengths of P1-OE and WT plants were counted and photographed (Figure 13). The results
showed that under the conditions of salt (100 mM NaCl) and drought (200 mM mannitol) stress,



Plants 2020, 9, 885 13 of 20

there were significant phenotypic differences between P1-OE and WT seedlings. On MS medium
containing NaCl (Figure 13A, C) and mannitol (Figure 13B, C), the primary roots lengths of P1-OE
seedlings were 31.15% and 25.39% longer than WT seedlings, respectively. These data indicated
that overexpression of TaPI-PLC1-2B could significantly enhance salt and drought stress responses
in Arabidopsis.
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expansion also has enhanced the ability of wheat to adapt to complex and variable environments. 
However, there was considerable variation among the basic characteristics of wheat PLC proteins in 
features such as protein length, molecular weight, and isoelectric point. Due to the continuous 
insertion and deletion of introns, wheat PLC gene structure also has evolved considerably. Each 
member of the family contains from 1 to 8 introns and 2 to 9 exons, and some PLC genes contain UTR 
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Figure 13. Analysis of the sensitivity of WT and TaPI-PLC1-2B overexpression (P1-OE) seedlings
to NaCl and mannitol. (A) Phenotype of WT and TaPI-PLC1-2B transgenic seedlings grown on MS
medium containing 100Mm NaCl for 10 days. (B) Ten-day-old WT and TaPI-PLC1-2B transgenic
seedlings grown on MS medium containing 200 mM mannitol. (C) Primary roots lengths of the WT and
TaPI-PLC1-2B transgenic plants at 10 day after sowing. The green rectangle represents NaCl treatment
and the purple rectangle represents mannitol treatment. Bars = 10 mm. Mean values were calculated
from 20 biological replicates, with error bars representing standard deviations. Statistically significant
differences are indicated: **, p < 0.01.
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3. Discussion

Improvements in sequencing and bioanalytical tools have opened the large genomes of crop
plants to investigation, providing avenues to the identification of plant gene families and the mining of
their functions [32,33]. This study used bioinformatics to identify a family of 26 PLC genes in wheat,
a number greater than that in Arabidopsis (15), rice (9), and maize (9). These 26 genes had arisen
through whole genome replication and tandem gene duplication events [34], and gene expansion
also has enhanced the ability of wheat to adapt to complex and variable environments. However,
there was considerable variation among the basic characteristics of wheat PLC proteins in features
such as protein length, molecular weight, and isoelectric point. Due to the continuous insertion and
deletion of introns, wheat PLC gene structure also has evolved considerably. Each member of the family
contains from 1 to 8 introns and 2 to 9 exons, and some PLC genes contain UTR regions. Amino acid
sequence analysis showed that all TaPI-PLCs have retained the three conserved X, Y and C2 domains,
and only TaPI-PLC2-1A and TaPI-PLC2-1D have an EF-hand. All TaNPCs have phosphoesterase
domains. The conserved amino acid sequences in the EF-hand and the X, Y, C2, and phosphoesterase
domains may affect gene transcription and the activation and inhibition of wheat PLC proteins by
binding or interacting with other factors. In the phylogenetic tree we constructed for the Arabidopsis,
cotton, soybean, orchid, maize, rice, and wheat PLC gene families, the wheat, rice, and maize PLC
genes were widely distributed within the same branch, indicating that they have higher homology,
and the genetic relationship between wheat, rice, and maize PLC genes is closer than the relationship
to Arabidopsis. Especially between wheat and rice, the relationship in Figure 7 showed syntenic TaPLC
gene pairs between wheat and rice, and in combination with phylogenetic analysis, these results
indicate that the TaPLC genes in wheat and rice share high homology. Further chromosome location
analysis showed that the 26 TaPLC genes are located unevenly on 14 chromosomes, with most of them
near the terminal regions. TaPLC genes were not found on chromosomes 6 and 7, which may be the
result of genome-wide replication events during wheat evolution.

The expression patterns of PLC genes in different tissues have been described in different plant
species such as Arabidopsis, rice, soybean, and cotton [3,5,15,35]. According to the RNAseq data
provided by the database, expression patterns of the PLC genes in wheat were investigated in various
tissues and organs. High transcript levels of TaNPC4-5D were detected in all tissues and organs,
especially root and stem. TaPI-PLC4-5A showed the highest expression level in root, while TaNPC2 and
TaPI-PLC8 showed low expression in various tissues and organs. A previous study showed AtPLC2
transcripts were highly expressed in all organs in Arabidopsis [35], GmPI-PLC7 were detected in all
organs of cotton [3], OsPLC1 and OsPLC3 were highly expressed in all organs, but OsPLC2 was detected
in various organs with lower expression in rice [5]. The varied expression patterns of the wheat PLC
genes imply that those genes may be involved in different stage or organ development of wheat.

Abiotic stress can induce a series of plant responses ranging from transcriptional regulation
to signal transduction and the expression and activation of functionally specialized proteins [36].
Phospholipase genes play an important regulatory role in responding to environmental stress and
because of their importance, members of the PLC gene family have been studied in considerable depth
in other plants. For example, expression of all of the Arabidopsis PI-PLCs except for AtPI-PLC2 was
induced by abiotic stresses [5,35], and abscisic acid also induced up-regulation of AtPI-PLC6 [24,37].
AtPI-PLC6, AtPI-PLC7, and AtPI-PLC8 were up-regulated by auxin and cytokinin [9,31]. In other
plants, the expression of mung bean VrPI-PLC3, tobacco NtPI-PLC1, potato StPI-PLC1, and StPI-PLC2,
and tempeh bean TluPI-PLC1 and TluPI-PLC2 was influenced by drought stress [38–41]. In our study,
the results of qRT-PCR showed that the TaPLC genes were responsive to drought, salt, and cold stress.
Among the three abiotic stresses, the TaPLC genes were more sensitive to salt stress (Figures 10 and 11).

Phylogenetic analysis suggests that proteins from different species belonging to the same
evolutionary branch may have similar functions. For example, OsNPC2 in rice was more sensitive
to salt, and its expression level increased nearly eight times under salt stress [42]. The evolutionary
relationship between TaNPC2 and OsNPC2 was relatively close (Figures 4 and 11), and the expression
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of TaNPC2-3A increased by 2.5 times under salt stress. Similarly, OsPI-PLC1 was simultaneously
induced by various stresses and especially by salt treatment, and under salt stress its expression
increased 2 times [43]. A study on maize showed that overexpression of a ZmPI-PLC1 could improve
drought tolerance of maize [44]. TaPI-PLC1-2B was highly homologous with OsPI-PLC1 and ZmPI-PLC1,
and showed good resistance to both salt and drought stress, which was verified by the stress treatment
of transgenic plants (Figure 13). Therefore, our study has shown that the expression of TaPLC genes
changes under one or more abiotic stresses, indicating that they potentially have important roles in
responses to environmentally adverse conditions.

4. Materials and Methods

4.1. Identification of PLC Family Members in the Wheat Genome

To identify potential PLC gene family members, we screened the entire protein sequence of the
wheat genome from the PLAZA database (https://bioinformatics.psb.ugent.be/plaza/) with the HMM
profiles (http://pfam.xfam.org/) PI-PLC-X (PF00388), PI-PLC-Y (PF00387), and PI-PLC-C2 (PF00168),
the three domains characteristic of PI-PLC, and (PF04185) the domain characteristic of NPC proteins [5].
Those sequences with a cutoff value <0.001 and containing all three PLC-X, PLC-Y, and PLC-C2
domains were considered to be candidate members of the TaPI-PLC family, while those with only
a phosphoesterase domain were designated potential TaNPC proteins. Putative PI-PLC protein
sequences were submitted to CDD (https://www.ncbi.nlm.nih.gov/cdd), Pfam (http://pfam.xfam.org/),
and SMART (http://smart.embl-heidelberg.de/) to confirm the presence of all three conserved domains.

4.2. Sequence Analysis and Structural Characterization of PLC Genes/Proteins in Wheat

PLC family member sequences were submitted to ExPASy (https://web.expasy.org/protparam/) to
calculate the number of amino acids, molecular weight, theoretical isoelectric point (pI), and the grand
average of hydrophobicity (GRAVY) of each protein [45]. MEME (http://meme-suite.org/tools/meme)
was used to identify conserved domains with motifs = 10 [46]. The EvolView online tool (http:
//www.evolgenius.info/evolview/#login) was used to compare the predicted coding sequence (CDS)
with the corresponding genomic sequence to detect the exon/intron distribution of the corresponding
TaPLC genes [47].

4.3. Phylogenetic Distribution, Chromosome Location, and Gene Duplication Analyses

Phylogenetic analysis was performed using the protein sequences of rice, Arabidopsis, orchid,
cotton, maize, and the newly identified TaPLCs (Table S1). MEGA7 software was used to perform
multiple amino acid alignments of the sequences, with a bootstrap value of 1000 to construct a rootless
phylogenetic tree by neighbor-joining (NJ) [48,49].

We used Map Gene 2 chromosome v 2 (MG2C) (http://mg2c.iask.in/mg2c_v2.0/?tdsourcetag=

s_pcqq_aiomsg) to generate the map showing the position of the TaPLC genes in the chromosomes.
To identify duplicated gene pairs, we defined gene duplication according to the following criteria [50]:
(1) the alignable nucleotide sequence covered was >70% of the longer aligned gene, and (2) the
aligned region had an identity >70%. The duplicated gene pairs were visualized using circle diagram.
Non-synonymous (Ka) and synonymous (Ks) values were calculated by TBtools software [51].

4.4. Analysis of Cis-Acting Elements in TaPLC Genes’ Promoters

The upstream sequences (2000 bp) of the TaPLC coding sequences (CDS) were retrieved from
PLAZA and submitted to PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) to
identify cis-acting element. The Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/) was used
to draw diagrams [52].

https://bioinformatics.psb.ugent.be/plaza/
http://pfam.xfam.org/
https://www.ncbi.nlm.nih.gov/cdd
http://pfam.xfam.org/
http://smart.embl-heidelberg.de/
https://web.expasy.org/protparam/
http://meme-suite.org/tools/meme
http://www.evolgenius.info/evolview/#login
http://www.evolgenius.info/evolview/#login
http://mg2c.iask.in/mg2c_v2.0/?tdsourcetag=s_pcqq_aiomsg
http://mg2c.iask.in/mg2c_v2.0/?tdsourcetag=s_pcqq_aiomsg
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
http://gsds.cbi.pku.edu.cn/
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4.5. RNA-Sequencing (RNA-seq) Data Analysis of PLC Genes

RNA-seq data for seven different abiotic stress, tissues, and organs (root, stem, leaf, spike, grain,
embryo, endosperm) were obtained from the gene expression site of Chinese spring (http://202.194.139.
32/expression/index.html?tdsourcetag=s_pcqq_aiomsg) and used to study the expression patterns of
TaPLCs. Cluster analysis of the data was performed using TBtools software to generate heatmaps.

4.6. Plant Materials and Abiotic Stress Treatments

Common wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42) Chinese spring (CS) was used as
experimental material. Seeds with the same degree of fullness were selected for disinfection (70%
alcohol for 1 min, 10% NaClO for 10 min, then washed by sterilized water 3 times). The sterilized
seeds were placed on moistened filter paper in a sterile Petri dish and germinated in the dark for 48 h
(25 ◦C). Seedlings were cultured with 16/8 h light, 25/20 ◦C temperature, and 70% relative humidity.
The seedlings (15 days after germination) were cultured to two leaves. Salt stress was administered
with 200mM sodium chloride (NaCl) and drought was simulated by treatment with 20% polyethylene
glycol (PEG6000) [53]. The seedlings were incubated at 4 ◦C for low temperature stress. The leaves
of the control and treatment groups were collected at 0, 2, 6, 12, and 24 h (Three duplicate samples
were taken for each period.), immediately frozen with liquid nitrogen, and stored at −80 ◦C until
RNA extraction.

4.7. Total RNA Extraction and Expression Analyses of Wheat PLC Genes

Oligo7 was used to design RT-PCR primers for TaPLC genes. Total RNA was extracted using the
plant total RNA extraction kit (TIANGEN, Beijing, China). The cDNA was synthesized with a First
Strand cDNA Synthesis Kit (TIANGEN, Beijing, China). 18S RNA was used as the internal reference
gene [28], and the specific primer sequences of each gene are shown in Table S4. Reactions of 20 µL
contained 2× Super-Real Mix 10 µL, 50× ROXII 2 µL, forward and reverse primers 1 µL for each, cDNA
2µL, and ddH2O 4 µL. Reaction conditions included pre-denaturation at 95 ◦C for 15 min, denaturation
at 95 ◦C for 10 s, annealing at 60 ◦C for 32 s, and 40 cycles. Three biological replicates and three
technical replicates were applied for all qPCR analyses in this study. The 2-∆∆CT method was used to
calculate relative gene expression. Software SPSS 19 was used for significance analysis and standard
deviation calculation.

4.8. Generation of Transgenic Plants

The TaPI-PLC1-2B CDS was amplified through PCR using primers TaPI-PLC1-2B-C,
and subsequently cloned into the PBI121 plant expression vector harboring the ubi promoter.
Arabidopsis Columbia-0 was used to generate TaPI-PLC1-2B transgenic plants. Seedlings were
cultured on half-strength Murashige and Skoog (MS) medium with 16/8 h light, 22/20 ◦C temperature,
and 70% relative humidity. Salt stress was treated with 200 mM NaCl and drought was simulated by
treatment with 200 mM mannitol [54]. Mannitol and NaCl were added directly to the MS medium.
The transformation of the obtained recombinant vector into wild type (WT) Arabidopsis was performed
via an Agrobacterium tumefaciens (Strain GV3101) mediated floral-dip method [55]. The transgenic
plants were screened by using 50mg/L kanamycin [56].

5. Conclusions

In this study, we successfully performed a genome-wide analysis of the PLC family genes in wheat.
26 TaPLC genes in two subfamilies (TaPI-PLC and TaNPC) were identified in the genome of wheat.
Both PI-PLC and NPC gene sequences showed high conservation as well as significant differences in
wheat. Moreover, the 26 wheat PLC genes had different types and numbers of cis-regulatory elements
in their respective promoters, consistent with their unique expression patterns in specific tissues and
under different abiotic stresses. Through the analysis of the expression levels of some TaPLC gene family

http://202.194.139.32/expression/index.html?tdsourcetag=s_pcqq_aiomsg
http://202.194.139.32/expression/index.html?tdsourcetag=s_pcqq_aiomsg
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members under salt, drought, and low temperature stress, it was found that the PLC family members
responded to the three abiotic stresses, especially salt stress. Furthermore, the TaPI-PLC1-2B gene
was further studied and its overexpression vector was constructed and transferred to Arabidopsis for
functional verification. The results showed that the TaPI-PLC1-2B transgenic seedlings had significantly
improved resistance to salt stress and drought stress, and the primary root of P1-OE was significantly
longer than that of the wild type. These results provide a solid basis for further investigation of
biological functions of wheat PLC genes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/7/885/s1,
Figure S1: The TaPLC families motifs, Table S1: The IDs of PLC genes from Arabidopsis, soybean, rice, cotton,
maize and Orchid, Table S2: The homologous TaPLC genes in wheat A, B and D sub-genomes and the Duplicated
genes pairs identified in wheat, Table S3: Orthologous PLC gene pairs between wheat and rice, Table S4: Specific
primers used for qRT-PCR analysis.
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