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Abstract: Upstream open reading frames (uORFs) are present in the 5’ leader sequences (or 5’
untranslated regions) upstream of the protein-coding main ORFs (mORFs) in eukaryotic polycistronic
mRNA. It is well known that a uORF negatively affects translation of the mORF. Emerging ribosome
profiling approaches have revealed that uORFs themselves, as well as downstream mORFs, can
be translated. However, it has also been revealed that plants can fine-tune gene expression by
modulating uORF-mediated regulation in some situations. This article reviews several proposed
mechanisms that enable genes to escape from uORF-mediated negative regulation and gives insight
into the application of uORF-mediated regulation for precisely controlling gene expression.
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1. Introduction

In the 5’ untranslated regions (UTRs) of mRNAs, there are a variety of cis-regulatory sequence
elements that affect the subsequent fate (e.g., transportation, stability and translation efficiency), of the
mRNAs [1]. One of the most characterized elements is an upstream open reading frame (uORF) that
is distinct from the protein-coding main ORF (mORF) on the same polycistronic mRNA [2]. It is
estimated that up to half of genes possess one or more uORFs in Arabidopsis thaliana [2]. Emerging
ribosome profiling approaches have revealed that uORFs themselves can possibly be translated into
short peptides [3–9] and that translation of some uORFs starts with non-AUG initiation codons [10,11].
Peptide lengths encoded by uORFs are variable but are typically between 1–100 amino acids [12].
Taking into consideration the actual translation of uORFs, it is better to rephrase “5’UTR” as “5’ leader
sequence” in this review.

It is well known that uORFs negatively affect expression of downstream protein-coding
mORFs [2,13,14]. In this context, uORFs act as repressors of translation of mORFs (Figure 1). The general
process of eukaryotic translation is well described in previous review articles [6,15]. uORF translation
precedes mORF translation, because ribosome scanning starts from the cap structure at the 5’-distal end.
It is proposed that uORF-mediated translational repression of mORFs occurs by releasing ribosomes
after uORF translation or by stalling ribosomes in the uORF and then preventing them from accessing
the mORF [2]. Some features, such as an increasing number of uORFs and a shorter distance between
the uORF and mORF, may enhance efficiency of uORF-mediated repression of mORF translation [16].
A recent paper revealed that even minimum uORFs comprising AUG-STOP inhibit translation of
mORFs by stalling ribosomes on the uORFs in Arabidopsis [17]. It is known that conservation in the
sequence of uORF-encoded peptides among plant species is an important factor for the efficiency of
uORF-mediated translational repression, because mutations reducing the conservation diminished the
repressive efficiency of the uORFs [18,19]. Furthermore, some physiological roles of plant-conserved
uORFs have been reported [20].
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In addition, uORFs can also act as triggers of nonsense-mediated mRNA decay (NMD), which is
a selective mRNA decay mechanism (Figure 1) [21,22]. In this case, it has been speculated that the
stop codon of the uORF and the long provisional 3’UTR—which starts downstream of the uORF—are
recognized as NMD targets [23] and the mRNA is thus selectively degraded. Transcripts with longer
uORFs are likely to be more efficiently eliminated by NMD in plants [24]. Uchiyama-Kadokura et al.
suggest that induction of NMD by the uORF of the AdoMetDC1 mRNA is associated with ribosome
stalling at the uORF stop codon in Arabidopsis. A similar relationship has been reported in yeast,
supporting the possibility that ribosome stalling at a uORF could be one of the determinants of
NMD [25,26]. In other cases, ribosome stalling might induce other RNA decay like no-go decay [27].
Thus, uORFs repress gene expression not only as translational repressors but also as triggers of
RNA decay.
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2.1. Leaky Scanning and Reinitiation  

Viruses often use leaky scanning by ribosomes and translational reinitiation to produce more 
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Figure 1. Overview of upstream open reading frame (uORF)-mediated repression of gene expression.
(A) The uORF mRNA is translated into protein by ribosomes. (B) On the other hand, uORF-mediated
repression of the main ORF (mORF) occurs in polycistronic uORF+ mRNA. Translation repression of
an mORF occurs by ribosome releasing after uORF translation or ribosome stalling in the uORF. Some
are eliminated by RNA decay pathways like nonsense-mediated mRNA decay (NMD).

2. Mechanisms for Evading uORF-Mediated Regulation

Some mechanisms for evading uORF-mediated negative regulation of gene expression have been
proposed. This review explains not only well-known ones (leaky scanning and reinitiation) but also
more recent ones, including those that have been experimentally proven and those that have yet to
be. This includes alternative transcription start sites (TSSs) selection, splicing out of uORF initiation
codons and initiation of cap-independent translation. In particular, alternative TSS and splicing can
produce two mRNA variants, uORF+ and uORF–. Some plant stimuli result in shuffling the amount of
variants by inducing a TSS positional shift or alternative splicing.

2.1. Leaky Scanning and Reinitiation

Viruses often use leaky scanning by ribosomes and translational reinitiation to produce more than
one kind of protein from their polycistronic RNAs [28]. Eukaryotes, including plants, also use leaky
scanning and reinitiation to evade uORF-mediated translational repression and then translate mORFs.
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Their mechanisms have been analyzed often and reviewed by others [20,29], so they are introduced
only briefly here.

Translation generally starts by recruiting 40S ribosome subunits to the 5’ cap structures of the
mRNAs. In canonical scanning, uORF is first recognized prior to the mORF. However, in leaky
scanning, the 40S scanning ribosomal subunit in 48S preinitiation complexes passes over the initiation
codon of the uORF avoiding uORF translation (Figure 2A). When the 40S scanning subunit reaches
the initiation codon of the mORF, the 60S ribosomal subunit is recruited, forming an 80S-translating
ribosome with a 40S subunit. Once this happens, translation of the mORF starts.
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Figure 2. Schematic representation of leaky scanning (A) and translational reinitiation (B). There are
two types of uORFs. One is an independent uORF that does not overlap with an mORF and the other
is a uORF that does overlap. Two mechanisms, leaky scanning and translational reinitiation, can
overcome the uORF-mediated repression of an mORF.

In another case, after translation of a uORF, the translating ribosome is disassembled and the 60S
subunit is released (Figure 1B). In translational reinitiation, the remaining 40S subunit on the mRNA
still continues scanning the downstream initiation codon and an 80S-translating ribosome is formed
again at the initiation codon of the mORF (Figure 2B).

Some events of leaky scanning or translational reinitiation have been reported in Arabidopsis [20].
For example, ribosomes are stalled at the stop codon of the second uORF of bZIP11 mRNAs in a
peptide sequence-dependent manner under high sucrose conditions, resulting in low translation of
a bZIP-encoding mORF [30,31]. This translational repression of an mORF is alleviated by sucrose
depletion because leaky scanning may occur. Thus, environmental changes sometimes reinforce
translational initiation of mORFs. Leaky scanning of uORFs and reinitiation of the mORF on the
GCN4 mRNA in yeast have also been well exemplified [15,32]. Taking this and other evidence into
account [2], translational reinitiation or leaky scanning may be the most common mechanism for
evading uORF-mediated translational repression of mORFs.

There are two types of uORF: one is an independent uORF that does not overlap with the mORF
and the other is an overlapping uORF (Figure 2A). Leaky scanning but not reinitiation can overcome
overlapping uORF-mediated repression.

2.2. Selection of Transcription Start Sites

Approximately 75% of genes are estimated to use multiple TSSs in Arabidopsis [33,34]. The TSS
is one of the most striking determinants of the 5’ leader sequence. It is conceivable that the leader
sequences of transcripts derived from more upstream TSSs possess more information than those from
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downstream TSSs. In this context, a few papers have reported that the selection of alternative TSSs
affects the translation of genes [33,35].

Transcription from TSSs upstream of the uORF (uTSS) produces uORF+ mRNAs, while that
from downstream TSSs (dTSSs) generates uORF– mRNAs [33,36]. It is assumed that environmental
differences may reinforce the occurrence of alternative TSS selection, which determines whether a gene
dominantly produces uORF+ or uORF– mRNAs. In fact, our previous report showed that the main
TSS position in more than two hundred light-responsive genes was shifted from upstream of the uORF
to downstream of the translation initiation codon of the uORF (Figure 3A), when young Arabidopsis
seedlings grown in dark were exposed to blue light [33]. Ribosome profiling analysis demonstrated
that these TSS shifts were likely to upregulate translation efficiency of mORFs upon blue light exposure,
indicating that blue light alleviated uORF-mediated translational repression in genes by positionally
shifting the main TSS, resulting in the production of more uORF– mRNAs. Furthermore, in some of
the genes showing a TSS shift, accumulation of uORF+ mRNAs was detected in upf1 NMD-deficient
mutants compared to wild-type plants, indicating they are targeted by NMD [33]. Taken together,
these TSS shifts from uTSS to dTSS not only avoid uORF-mediated translational repression of the
mORFs but also NMD in some genes.
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Figure 3. Schematic representation of three newly proposed mechanisms for evading uORF-mediated
repression of gene expression. (A) Alternative transcription start site (TSS) selection. (B) Alternative
splicing out of the uORF. (C) Cap-independent translational initiation mediated by an internal ribosomal
entry site (IRES). The environment around plants may affect the occurrence of these mechanisms.

Alternative TSS selection as described above can also overcome translational repression by uORFs
overlapping with mORF initiation codons.

2.3. Alternative Slicing Excluding or Modifying uORFs

In addition to alternative TSSs, alternative splicing is also one of the most important determinants
of the 5’ leader sequence. Indeed, it has been reported that alternative splicing that occurs in the 5’
leader sequence also affects the translation efficiency of genes in plants [35].
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Splicing out of introns containing the initiation codon of the uORF or a part of the uORF sequence
from the 5’ leader sequence of pre-mRNAs produces mRNAs without uORFs or mRNAs with truncated
uORFs, respectively (Figure 3B), while intron retention produces mRNAs with full uORFs. Furthermore,
the splicing out of an intron located between the uORF and the mORF reduces the distance between
the two. As with alternative TSS selection, such splicing has the potential to avoid NMD and so
it is possible that the gene evades or alleviates uORF-mediated repression by splicing out uORF
sequences. In contrast, alternative splicing may produce a de novo initiation codon of a uORF at the
splicing junction.

However, at present, there have been a limited number of examples showing a possible link
between splicing and uORFs [2,37–40]. For example, Pasentsis et al. showed that the PHY2 gene
in Ceratodon purpureus produces two splicing variants harboring different uORF sequences in a
light-dependent manner [39]. Combier et al. suggest that, in Medicago truncatula, alternative splicing of
an intron containing uORFs in the HAP2-1 mRNA regulates root nodule development [40].

Alternative splicing events frequently occur in response to environmental changes in plants [41].
It is easy to speculate that splicing of uORF-containing introns might be responsible for the plant’s
physiological response through fine-tuning the translation of the gene. Therefore, some issues, such
as how many genes undergo alternative splicing of uORFs, which stimuli induce them and whether
splicing out of the uORF actually impacts translation or expression of genes, remain to be elucidated
by future research.

2.4. Cap-Independent Translation Initiation

Cap-independent translation is commonly driven by internal ribosomal entry sites (IRESs) that
form dynamic RNA secondary structures. IRESs are widely used by viruses for producing proteins
from their polycistronic mRNAs [42]. In plant systems, a viral IRES has been used for expressing two
genes from a polycistronic mRNA [43,44].

A variety of endogenous IRESs or IRES-like structures have been discovered not only in viruses
but also in eukaryotes including plants [45–48]. If an IRES is located between the initiation codon of
a uORF and an mORF, internal entry of ribosomes should overcome uORF-mediated translational
repression as proposed in Figure 3C.

Although there have not been any examples illustrating such avoidance of translational repression
(Figure 3C) at least in plants, some work has reported that environmental changes enhance the
occurrence of IRES-dependent translation in plants [47,48]. For example, the IRES-mediated translation
of the WUSCHEL mRNA in Arabidopsis is enhanced by environmental hazard stress [47]. In addition,
recent reports have demonstrated that N6-methyladenosine (m6A) methylation of 5’ leader sequences
promotes cap-independent translation by IRESs in mammals [49,50]. Thus, it is speculated that
environmental changes could induce hypermethylation of adenosine in 5’ leader sequences and then
promote IRES activity.

Regarding m6A modification, it has also been reported that amino acid starvation induces
demethylation at the m6A site within overlapping uORF on the mammalian ATF4 mRNA and increases
mORF translation [51]. However, in this case, translation of the ATF4 mORF may be cap-dependent
but not cap-independent.

3. Application of uORF-Mediated Regulation

Regulatory mechanisms of gene expression have often been modified and/or applied to expressing
preferable genes under particular conditions. Application of transcriptional regulation using
tissue-specific or stimulus-inducible promoters is the most popular. Recent papers have reported that
translational fine-tuning by artificial modification of uORFs enables proper transgene expression to be
achieved [14,52]. In particular, Zhang et al. showed that CRISPR/Cas9 editing of the uORF sequence of
the GGP2 gene encoding a key enzyme for vitamin C biosynthesis results in an increased amount of
vitamin C through enhanced mORF translation in lettuce [14].
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This review proposes that there are various ways this regulation can be applied. A dynamic range
of spatial and temporal gene expression is controlled at the transcriptional level. In the case where an
appropriate level of gene expression is required, fine-tuning by translational regulatory elements such
as uORFs can be applied to elicit the required function of the gene. Adjustment of gene expression
may also be achieved by combining the use of both uORFs and IRESs. In particular, the uORF is an
attractive candidate for controlling gene expression at the translational level.

4. Future Perspectives

This review introduces several mechanisms that can overcome uORF-mediated translational
repression of mORFs in polycistronic mRNAs. In particular, uORF shuffling by alternative TSS selection
or alternative splicing may be a notable concept. It is expected that a growing body of future research
will elucidate the unknown parts of the mechanisms. For this purpose, integrated analysis of multiple
omics data derived from not only the transcriptome but also ribosome profiling and proteome will be
required. As effectiveness of uORFs on mORF translation varies case by case and the action of IRESs is
still obscure in plant biological processes, deeper understanding of the regulatory mechanisms of gene
expression is necessary for their application in crops.
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