Next Issue
Volume 9, April
Previous Issue
Volume 9, February
 
 

Plants, Volume 9, Issue 3 (March 2020) – 120 articles

Cover Story (view full-size image): The root cap is a small tissue located at the tip of the root that protects the root apical meristem and maintains a constant size by coupling cell production with the release of the last layer into the rhizosphere. Based on whether the last layer is released intact or as individual cells, these cells are referred to as border-like cells (BLCs) or border cells (BCs), respectively. BLC/BC separation is an intricate mechanism that is regulated by multiple transcriptional factors, signal peptides, and auxin. BLCs and BCs also have critical roles in root defense against abiotic and biotic stresses. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 4997 KiB  
Article
Nitro-Oleic Acid in Seeds and Differently Developed Seedlings of Brassica napus L.
by Martin Vollár, Gábor Feigl, Dóra Oláh, Attila Horváth, Árpád Molnár, Norbert Kúsz, Attila Ördög, Dezső Csupor and Zsuzsanna Kolbert
Plants 2020, 9(3), 406; https://doi.org/10.3390/plants9030406 - 24 Mar 2020
Cited by 12 | Viewed by 3501
Abstract
Similar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO2-OA) have relevant physiological roles as signalling molecules also in plants. Although NO2-OA is of great therapeutic importance, its presence in [...] Read more.
Similar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO2-OA) have relevant physiological roles as signalling molecules also in plants. Although NO2-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since Brassica napus (oilseed rape) is a crop with high oleic acid content, the abundance of NO2-OA in its tissues can be assumed. Therefore, we quantified NO2-OA in B. napus seeds and differently developed seedlings. In all samples, NO2-OA was detectable at nanomolar concentrations. The seeds showed the highest NO2-OA content, which decreased during germination. In contrast, nitric oxide (•NO) levels increased in the early stages of germination and seedling growth. Exogenous NO2-OA treatment (100 µM, 24 h) of Brassica seeds resulted in significantly increased •NO level and induced germination capacity compared to untreated seeds. The results of in vitro approaches (4-Amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM) fluorescence, •NO-sensitive electrode) supported the •NO liberating capacity of NO2-OA. We observed for the first time that Brassica seeds and seedlings contain free NO2-OA which may be involved in germination as an •NO donor as suggested both by the results of exogenous NO2-OA treatment of seeds and in vitro approaches. Due to their high NO2-OA content, Brassica sprouts can be considered as a good source of dietary NO2-OA intake. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 2900 KiB  
Article
De novo Sequencing and Analysis of Salvia hispanica Tissue-Specific Transcriptome and Identification of Genes Involved in Terpenoid Biosynthesis
by James Wimberley, Joseph Cahill and Hagop S. Atamian
Plants 2020, 9(3), 405; https://doi.org/10.3390/plants9030405 - 24 Mar 2020
Cited by 11 | Viewed by 3369
Abstract
Salvia hispanica (commonly known as chia) is gaining popularity worldwide as a healthy food supplement due to its low saturated fatty acid and high polyunsaturated fatty acid content, in addition to being rich in protein, fiber, and antioxidants. Chia leaves contain plethora of [...] Read more.
Salvia hispanica (commonly known as chia) is gaining popularity worldwide as a healthy food supplement due to its low saturated fatty acid and high polyunsaturated fatty acid content, in addition to being rich in protein, fiber, and antioxidants. Chia leaves contain plethora of secondary metabolites with medicinal properties. In this study, we sequenced chia leaf and root transcriptomes using the Illumina platform. The short reads were assembled into contigs using the Trinity software and annotated against the Uniprot database. The reads were de novo assembled into 103,367 contigs, which represented 92.8% transcriptome completeness and a diverse set of Gene Ontology terms. Differential expression analysis identified 6151 and 8116 contigs significantly upregulated in the leaf and root tissues, respectively. In addition, we identified 30 contigs belonging to the Terpene synthase (TPS) family and demonstrated their evolutionary relationships to tomato TPS family members. Finally, we characterized the expression of S. hispanica TPS members in leaves subjected to abiotic stresses and hormone treatments. Abscisic acid had the most pronounced effect on the expression of the TPS genes tested in this study. Our work provides valuable community resources for future studies aimed at improving and utilizing the beneficial constituents of this emerging healthy food source. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

16 pages, 2899 KiB  
Article
Copper Uptake and Accumulation, Ultra-Structural Alteration, and Bast Fibre Yield and Quality of Fibrous Jute (Corchorus capsularis L.) Plants Grown under Two Different Soils of China
by Muhammad Hamzah Saleem, Shafaqat Ali, Sana Irshad, Muhammad Hussaan, Muhammad Rizwan, Muhammad Shoaib Rana, Abeer Hashem, Elsayed Fathi Abd_Allah and Parvaiz Ahmad
Plants 2020, 9(3), 404; https://doi.org/10.3390/plants9030404 - 24 Mar 2020
Cited by 52 | Viewed by 3949
Abstract
Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage [...] Read more.
Copper (Cu) is an essential heavy metal for plants, but high Cu concentration in the soil causes phytotoxicity. Some plants, however, possess a system that can overcome Cu toxicity, such as Cu localization, and an active antioxidant defence system to reduce oxidative damage induced by high Cu concentration. The present study was conducted to explore the phytoremediation potential, morpho-physiological traits, antioxidant capacity, and fibre quality of jute (Corchorus capsularis) grown in a mixture of Cu-contaminated soil and natural soil at ratios of 0:1 (control), 1:0, 1:1, 1:2 and 1:4. Our results showed that high Cu concentration in the soil decreased plant growth, plant biomass, chlorophyll content, gaseous exchange, and fibre yield while increasing reactive oxygen species (ROS), which indicated oxidative stress induced by high Cu concentration in the soil. Antioxidant enzymes, such as superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) scavenge ROS in plant cells/tissues. Furthermore, high Cu concentration did not significantly worsen the fibre quality of C. capsularis, and this plant was able to accumulate a large amount of Cu, with higher Cu accumulation in its shoots than in its roots. Transmission electron microscopy (TEM) revealed that Cu toxicity affected different organelles of C. capsularis, with the chloroplast as the most affected organelle. On the basis of these results, we concluded that high Cu concentration was toxic to C. capsularis, reducing crop yield and plant productivity, but showing little effect on plant fibre yield. Hence, C. capsularis, as a fibrous crop, can accumulate a high concentration of Cu when grown in Cu-contaminated sites. Full article
Show Figures

Figure 1

16 pages, 948 KiB  
Review
Heterosis Breeding in Eggplant (Solanum melongena L.): Gains and Provocations
by Ashish Kumar, Vinay Sharma, Bharat Taindu Jain and Prashant Kaushik
Plants 2020, 9(3), 403; https://doi.org/10.3390/plants9030403 - 24 Mar 2020
Cited by 36 | Viewed by 10715
Abstract
Heterosis (or hybrid vigor) results in a hybrid’s phenotypic superiority over its founder parents for quantitative and qualitative traits. Hybrid vigor is defined by mechanisms such as dominant complementation, over-dominance, and epistasis. Eggplant (Solanum melongena L.) is an essential vegetable crop and [...] Read more.
Heterosis (or hybrid vigor) results in a hybrid’s phenotypic superiority over its founder parents for quantitative and qualitative traits. Hybrid vigor is defined by mechanisms such as dominant complementation, over-dominance, and epistasis. Eggplant (Solanum melongena L.) is an essential vegetable crop and a good source of dietary minerals, vitamins, and anthocyanins, with a high oxygen radical absorbance capacity and low caloric value. Given the economic and nutritional significance of eggplants, breeding efforts focus on developing high-yielding varieties—mostly F1 hybrids—with important traits. Studies indicate the successful exploitation of heterosis in the eggplant for a considerable improvement with respect to quantitative traits. In this direction, estimating heterosis for yield-related traits could well be useful for examining the most beneficial hybrid mix with the exploitation of top-quality hybrid. This review examines the current perception of the breeding and molecular aspects of heterosis in eggplants and cites several studies describing the mechanisms. Rendering and combining recent genomics, epigenetic, proteomic, and metabolomics studies present new prospects towards the understanding of the regulatory events of heterosis involved in the evolution and the domestication of the eggplant ideotype. Full article
(This article belongs to the Special Issue Plants Heterosis)
Show Figures

Figure 1

11 pages, 928 KiB  
Article
The Effect of Recombinant Tags on Citrus paradisi Flavonol-Specific 3-O Glucosyltransferase Activity
by Aaron S. Birchfield and Cecilia A. McIntosh
Plants 2020, 9(3), 402; https://doi.org/10.3390/plants9030402 - 24 Mar 2020
Cited by 2 | Viewed by 2248
Abstract
Recombinant tags are used extensively in protein expression systems to allow purification through IMAC (Immobilized Metal Affinity Chromatography), identification through Western blot, and to facilitate crystal formation for structural analysis. While widely used, their role in enzyme characterization has raised concerns with respect [...] Read more.
Recombinant tags are used extensively in protein expression systems to allow purification through IMAC (Immobilized Metal Affinity Chromatography), identification through Western blot, and to facilitate crystal formation for structural analysis. While widely used, their role in enzyme characterization has raised concerns with respect to potential impact on activity. In this study, a flavonol-specific 3-O glucosyltransferase (Cp3GT) from grapefruit (Citrus paradisi) was expressed in Pichia pastoris, and was assayed in its untagged form and with a C-terminal c-myc/6x His tag under various conditions to determine the effect of tags. Prior characterization of pH optima for Cp3GT obtained through expression in Escherichia coli, containing an N-terminal thioredoxin/6x His tag, indicated an optimal pH of 7–7.5, which is indicative of a normal physiological pH and agrees with other glucosyltransferase (GT) pH optima. However, characterization of Cp3GT expressed using P. pastoris with a C-terminal c-myc-6x His tag showed a higher optimal pH of 8.5–9. This suggests a possible tag effect or an effect related to physiological differences between the cell expression systems. Results testing recombinant Cp3GT expressed in Pichia with and without C-terminal tags showed a possible tag effect with regard to substrate preference and interactions with metals, but no apparent effect on enzymatic kinetics or pH optima. Full article
(This article belongs to the Special Issue Advances in Citrus Research)
Show Figures

Figure 1

15 pages, 726 KiB  
Article
Phytochemicals, Antioxidant Activity and Ethnobotanical Uses of Balanites aegyptiaca (L.) Del. Fruits from the Arid Zone of Mauritania, Northwest Africa
by Selouka Mint Abdelaziz, Fouteye Mint Mohamed Lemine, Hasni Ould Tfeil, Abdelkarim Filali-Maltouf and Ali Ould Mohamed Salem Boukhary
Plants 2020, 9(3), 401; https://doi.org/10.3390/plants9030401 - 24 Mar 2020
Cited by 16 | Viewed by 3477
Abstract
Phytochemicals and antioxidant activity of fruits of 30 B. aegyptiaca trees naturally growing in the hyper-arid and arid zones in Mauritania were evaluated by following standard procedures. Ethnobotanical uses of fruit pulps and kernel were assessed using a structured questionnaire. Balanites aegyptiaca fruit [...] Read more.
Phytochemicals and antioxidant activity of fruits of 30 B. aegyptiaca trees naturally growing in the hyper-arid and arid zones in Mauritania were evaluated by following standard procedures. Ethnobotanical uses of fruit pulps and kernel were assessed using a structured questionnaire. Balanites aegyptiaca fruit pulp is a good source of sugars (33 g/100 g dry matter (DM)), polyphenols (264 mg GAE/100 g DM) and flavonoids (34.2 mg/100 g DM) with an average antioxidant activity of 519 µmol TEAC/100 g DM. The fruit kernel is rich in lipids (46.2 g/100 g DM) and proteins (29.5 g/100 g DM). Fruits from the hyper-arid zone exhibited high level of polyphenols, antioxidant activity and soluble tannins. Almost all of the informants (97.14%) reported the use of fruit pulp in folk medicine to treat diabetes, while 72.86% reported using the fruit pulp to treat hypertension. Kernel oil is mainly employed as ointments in the treatment of paronychia (57.14%) and dermal infections (35.71%). The predominant methods for preparing/administering fruit pulp/Kernel were maceration (58.8%), sucking fruit pulp (25.7%) and decoction (24.2%). Balanites aegyptiaca fruit contain both nutritional and health-promoting phytochemicals that could be of interest in the development of strategies for sustainable use of this neglected indigenous fruit tree. Full article
Show Figures

Figure 1

16 pages, 2643 KiB  
Article
Identification and Expression Analysis of Stress-Associated Proteins (SAPs) Containing A20/AN1 Zinc Finger in Cucumber
by Wei Lai, Yong Zhou, Rao Pan, Liting Liao, Juncheng He, Haoju Liu, Yingui Yang and Shiqiang Liu
Plants 2020, 9(3), 400; https://doi.org/10.3390/plants9030400 - 24 Mar 2020
Cited by 25 | Viewed by 3373
Abstract
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family [...] Read more.
Stress-associated proteins (SAPs) are a class of zinc finger proteins that confer tolerance to a variety of abiotic and biotic stresses in diverse plant species. However, in cucumber (Cucumis sativus L.), very little is known about the roles of SAP gene family members in regulating plant growth, development, and stress responses. In this study, a total of 12 SAP genes (named as CsSAP1-CsSAP12) were identified in the cucumber genome, which were unevenly distributed on six chromosomes. Gene duplication analysis detected one tandem duplication and two segmental duplication events. Phylogenetic analysis of SAP proteins from cucumber and other plants suggested that they could be divided into seven groups (sub-families), and proteins in the same group generally had the same arrangement of AN1 (ZnF-AN1) and A20 (ZnF-A20) domains. Most of the CsSAP genes were intronless and harbored a number of stress- and hormone-responsive cis-elements in their promoter regions. Tissue expression analysis showed that the CsSAP genes had a broad spectrum of expression in different tissues, and some of them displayed remarkable alteration in expression during fruit development. RT-qPCR results indicated that all the selected CsSAP genes displayed transcriptional responses to cold, drought, and salt stresses. These results enable the first comprehensive description of the SAP gene family in cucumber and lay a solid foundation for future research on the biological functions of CsSAP genes. Full article
(This article belongs to the Special Issue Molecular Breeding in Horticultural Plants)
Show Figures

Figure 1

12 pages, 2076 KiB  
Article
Effect of the Applied Fertilization Method under Full Straw Return on the Growth of Mechanically Transplanted Rice
by Jichao Tang, Ruoyu Zhang, Hechao Li, Jun Zhang, Shaoqiang Chen and Bilin Lu
Plants 2020, 9(3), 399; https://doi.org/10.3390/plants9030399 - 23 Mar 2020
Cited by 14 | Viewed by 2469
Abstract
This study aimed to improve nitrogen utilization and alleviate the inhibition of straw decomposition during early tillering and the growth of paddy after straw return. Specifically, three different nitrogen fertilizer (base fertilizer) application methods were tested under full straw return: applying the compound [...] Read more.
This study aimed to improve nitrogen utilization and alleviate the inhibition of straw decomposition during early tillering and the growth of paddy after straw return. Specifically, three different nitrogen fertilizer (base fertilizer) application methods were tested under full straw return: applying the compound fertilizer once (J1), applying the compound fertilizer twice (J3) and applying the ammonium carbonate fertilizer plus compound fertilizer (J2). Full straw return without fertilizer (CK1) and no straw return without fertilizer (CK2) were used as the controls. The results showed that treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) significantly enhanced straw decomposition, light interception and dry matter accumulation at an early stage of tillering, but reduced tiller occurrence at a late tillering stage. Grain yield was affected due to reduced dry matter accumulation, nitrogen use efficiency and number of effective panicles. There were no significant differences in rice growth, nitrogen use efficiency and grain yield between the one-time or two-time compound fertilizer application methods. In contrast, treatment with ammonium carbonate fertilizer combined with compound fertilizer (J2) under full straw return effectively improved straw decomposition and accelerated the return of green and tillering. In addition, the proportion of ammonium carbonate fertilizer affected the nutrient utilization efficiency and yield at later stages. Full article
Show Figures

Figure 1

11 pages, 1981 KiB  
Article
In Vitro Rooting of Capparis spinosa L. as Affected by Genotype and by the Proliferation Method Adopted During the Multiplication Phase
by Valeria Gianguzzi, Ettore Barone and Francesco Sottile
Plants 2020, 9(3), 398; https://doi.org/10.3390/plants9030398 - 23 Mar 2020
Cited by 11 | Viewed by 3057
Abstract
The in vitro rooting of three caper (Capparis spinosa L.) selected biotypes, grown in a commercial orchard on the Sicilian island of Salina (38°33′49” N), was performed using—as base material for rooting experiments—shoot explants proceeding from two different in vitro culture systems: [...] Read more.
The in vitro rooting of three caper (Capparis spinosa L.) selected biotypes, grown in a commercial orchard on the Sicilian island of Salina (38°33′49” N), was performed using—as base material for rooting experiments—shoot explants proceeding from two different in vitro culture systems: solid medium and liquid culture in a PlantForm bioreactor (TIS). The regenerated shoots of each accession were submitted to different auxin treatments (NAA, IBA, IAA - 1 or 2 mg L−1; NAA+IBA 0.75 and 0.25 mg L−1, respectively), supplemented with sucrose or fructose (mg L−1). The highest rooting rate in terms of root percentage (67%) was reached with the explants of the selected accession ‘Sal 39’ proceeding from liquid culture in PlantForm and induced in the MS medium with sucrose, as a carbon source, supplemented with NAA 0.75 mg L−1 + IBA 0.25 mg L−1, after six days in a climatic growth chamber at 25 ± 1 °C in the dark and then placed under a cool white fluorescent lamp, with a PPFD of 35 μmol m−1 s−1 and a photoperiod of 16 h. On the other hand, poor rooting rate was generally achieved under all the tested experimental conditions with the other biotypes, ‘Sal 37’ and ‘Sal 35’, demonstrating the strong role exerted by the previously adopted proliferation method and by the genotype for successful caper in vitro rooting. Full article
(This article belongs to the Special Issue Adventitious Root Formation in Tree Species)
Show Figures

Figure 1

18 pages, 2984 KiB  
Article
Flower Colour Polymorphism, Pollination Modes, Breeding System and Gene Flow in Anemone coronaria
by Amots Dafni, Hagai Tzohari, Rachel Ben-Shlomo, Nicolas J. Vereecken and Gidi Ne’eman
Plants 2020, 9(3), 397; https://doi.org/10.3390/plants9030397 - 23 Mar 2020
Cited by 11 | Viewed by 5949
Abstract
The flower colour of Anemone coronaria (Ranunculaceae) is a genetically inherited trait. Such intra-specific flower colour polymorphism might be driven by pollinators, other non-pollinating agents, or by abiotic factors. We investigated the genetic relations among red, white and purple-blue flower colour morphs growing [...] Read more.
The flower colour of Anemone coronaria (Ranunculaceae) is a genetically inherited trait. Such intra-specific flower colour polymorphism might be driven by pollinators, other non-pollinating agents, or by abiotic factors. We investigated the genetic relations among red, white and purple-blue flower colour morphs growing in 10 populations of A. coronaria in Israel, in relation to their breeding system, pollination modes, differential perception by bees and visitors’ behaviour. Flowers of these three morphs differed in their reflectance that could be perceived by bees. Honeybees, solitary bees and flies demonstrated only partial preferences for the different colour morphs. No spontaneous self-pollination was found; however, fruit set under nets, excluding insects but allowing wind pollination, was not significantly lower than that of natural free pollinated flowers, indicating a potential role of wind pollination. Anemone coronaria flowers were visited by various insects, honeybees and Andrena sp. preferred the white and purple-blue morphs, while the syrphid flies preferred the white flowers. Thus, visitor behaviour can only partially explain the evolution or maintenance of the colour polymorphism. No significant genetic differences were found among the populations or colour morphs. Wind pollination, causing random gene flow, may explain why no significant genetic divergence was found among all studied populations and their colour morphs. The existence of monomorphic red populations, along other polymorphic populations, might be explained by linked resistance to aridity and/or grazing. Full article
(This article belongs to the Special Issue Plant-Pollinator Interactions in Mediterranean-Type Ecosystems)
Show Figures

Figure 1

16 pages, 4468 KiB  
Article
Development and Characterization of an Ethyl Methane Sulfonate (EMS) Induced Mutant Population in Capsicum annuum L.
by Muhammad Irfan Siddique, Seungki Back, Joung-Ho Lee, Jinkwan Jo, Siyoung Jang, Koeun Han, Jelli Venkatesh, Jin-Kyung Kwon, Yeong Deuk Jo and Byoung-Cheorl Kang
Plants 2020, 9(3), 396; https://doi.org/10.3390/plants9030396 - 23 Mar 2020
Cited by 27 | Viewed by 8789
Abstract
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to [...] Read more.
Plant breeding explores genetic diversity in useful traits to develop new, high-yielding, and improved cultivars. Ethyl methane sulfonate (EMS) is a chemical widely used to induce mutations at loci that regulate economically essential traits. Additionally, it can knock out genes, facilitating efforts to elucidate gene functions through the analysis of mutant phenotypes. Here, we developed a mutant population using the small and pungent ornamental Capsicum annuum pepper “Micro-Pep”. This accession is particularly suitable for mutation studies and molecular research due to its compact growth habit and small size. We treated 9500 seeds with 1.3% EMS and harvested 3996 M2 lines. We then selected 1300 (32.5%) independent M2 families and evaluated their phenotypes over four years. The mutants displayed phenotypic variations in plant growth, habit, leaf color and shape, and flower and fruit morphology. An experiment to optimize Targeting Induced Local Lesions IN Genomes (TILLING) in pepper detected nine EMS-induced mutations in the eIF4E gene. The M2 families developed here exhibited broad phenotypic variation and should be valuable genetic resources for functional gene analysis in pepper molecular breeding programs using reverse genetics tools, including TILLING. Full article
(This article belongs to the Special Issue Plant Mutation Breeding)
Show Figures

Figure 1

12 pages, 1912 KiB  
Article
Changes in Foliar Functional Traits of S. pyrenaicus subsp. carpetanus under the Ongoing Climate Change: A Retrospective Survey
by Rosina Magaña Ugarte, Adrián Escudero, Daniel Sánchez Mata and Rosario G. Gavilán
Plants 2020, 9(3), 395; https://doi.org/10.3390/plants9030395 - 23 Mar 2020
Cited by 5 | Viewed by 2946
Abstract
The sensitivity of stomatal behavior and patterning (i.e., distribution, density, size) to environmental stimuli, renders them crucial for defining the physiological performance of leaves. Thus, assessing long-term modifications in stomatal traits in conserved specimens arises as a valuable eco-physiological approach to predict how [...] Read more.
The sensitivity of stomatal behavior and patterning (i.e., distribution, density, size) to environmental stimuli, renders them crucial for defining the physiological performance of leaves. Thus, assessing long-term modifications in stomatal traits in conserved specimens arises as a valuable eco-physiological approach to predict how the rising trend of warmer, drier summers could affect plant fitness; particularly in mountain areas already experiencing climate aggravation and lacking the related monitoring schemes like Mediterranean high-mountains. Variations in foliar and stomatal traits were studied in conserved specimens of Senecio pyrenaicus subsp. carpetanus from Sierra de Guadarrama over the past 71 years. Our findings revealed decreasing trends in leaf width, stomatal size, and increasing tendency in stomatal density, all correlated with the recent 30-year climate exacerbation in these mountains. This evidenced a positive selection favoring traits that allow safeguarding plant performance under drier, hotter weather conditions. The significant relation between stomatal traits and climatic variables upholds the role of stomatal patterning in sensing environmental cues in this species, feasibly optimizing physiological responses involved in the growth–water loss trade-off. The transition to smaller, densely packed stomata observed in recent decades could indicate local-adaptive plasticity in this species, enhancing stomatal response, as coarser environmental conditions take place in Sierra de Guadarrama. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Graphical abstract

13 pages, 1170 KiB  
Article
Ecological and Landscape Factors Affecting the Spread of European Mistletoe (Viscum album L.) in Urban Areas (A Case Study of the Kaliningrad City, Russia)
by Liubov Skrypnik, Pavel Maslennikov, Pavel Feduraev, Artem Pungin and Nikolay Belov
Plants 2020, 9(3), 394; https://doi.org/10.3390/plants9030394 - 23 Mar 2020
Cited by 14 | Viewed by 4671
Abstract
Green spaces are very important for an urban environment. Trees in cities develop under more stressful conditions and are, therefore, more susceptible to parasite including mistletoe infestation. The aim of this study was to investigate the ecological, microclimatic, and landscape factors causing the [...] Read more.
Green spaces are very important for an urban environment. Trees in cities develop under more stressful conditions and are, therefore, more susceptible to parasite including mistletoe infestation. The aim of this study was to investigate the ecological, microclimatic, and landscape factors causing the spread of European mistletoe (Viscum album L.) in urban conditions. The most numerous hosts of mistletoe were Tilia cordata (24.4%), Acer platanoides (22.7%), and Populus nigra (16.7%). On average, there were more than 10 mistletoe bushes per tree. The mass mistletoe infestations (more than 50 bushes per the tree) were detected for Populus × berolinensis, Populus nigra, and Acer saccharinum. The largest number of infected trees was detected in the green zone (city parks), historical housing estates, and green zone along water bodies. Based on the results of principal component analysis (PCA), the main factors causing the spread of mistletoe on the urban territories are trees’ age and relative air humidity. The factors reflecting environmental pollution (the content of heavy metals in the soil and the concentration of nitrogen dioxide in the air) did not statistically affect the mistletoe distribution in the study area. However, this result may be due to the heterogeneity of other parameters in the studied areas. Therefore, additional research is required to more accurately interpret the data on the relationship between environmental pollutions and distribution of mistletoe infestation of trees in urban areas. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Genetic and Epigenetic Stability in Rye Seeds under Different Storage Conditions: Ageing and Oxygen Effect
by Michela Pirredda, M. Elena González-Benito, Carmen Martín and Sara Mira
Plants 2020, 9(3), 393; https://doi.org/10.3390/plants9030393 - 23 Mar 2020
Cited by 18 | Viewed by 2769
Abstract
Seed ageing is a complex process and can be described as the loss of viability or quality with time. It is important to elucidate whether genetic and epigenetic stability is altered in stored seeds and in seedlings produced from them. Non-stored and stored [...] Read more.
Seed ageing is a complex process and can be described as the loss of viability or quality with time. It is important to elucidate whether genetic and epigenetic stability is altered in stored seeds and in seedlings produced from them. Non-stored and stored rye seeds at different stages of ageing were compared, as well as the seedlings obtained from them. Seeds were stored at 35 °C and 15% water content, under vacuum or air atmosphere. DNA of seeds and seedlings was isolated at three stages of the deterioration curve: P75 (13 days), P20 (29 days), and P0 (36 days). Genetic stability was assessed by RAPD technique, and epigenetic changes by MSAP markers. While seeds showed genetic stability after storage, the similarity of seedlings obtained from seeds stored for 29 days was lower (95%) when compared to seedlings from control seeds. Epigenetic changes were between 15% and 30% (both de novo methylation and demethylation) in the stored seeds compared to control seeds, with no differences between 13 and 29 days of storage with either air or vacuum atmospheres. In seedlings, epigenetic changes significantly increased with storage time. In conclusion, ageing increased epigenetic instability in both seeds and seedlings, when compared to controls. Full article
(This article belongs to the Special Issue Genetics of Seed Germination and Growth)
Show Figures

Figure 1

15 pages, 4013 KiB  
Article
Parameter Optimization and Potential Bioactivity Evaluation of a Betulin Extract from White Birch Bark
by Haiyan Chen, Han Xiao and Jiwei Pang
Plants 2020, 9(3), 392; https://doi.org/10.3390/plants9030392 - 23 Mar 2020
Cited by 12 | Viewed by 3318
Abstract
Owing to its pharmacological potential, betulin has attracted substantial attention in the past two decades. The present work attempts to extract betulin from Betula platyphylla Suk. bark by the ultrasonic-assisted ethanol method and to evaluate its potential bioactivities. The critical process variables affecting [...] Read more.
Owing to its pharmacological potential, betulin has attracted substantial attention in the past two decades. The present work attempts to extract betulin from Betula platyphylla Suk. bark by the ultrasonic-assisted ethanol method and to evaluate its potential bioactivities. The critical process variables affecting the yield were optimized by a four-factor, three-level, central composite response surface methodology (RSM). A betulin yield of 92.67% was achieved under the optimum conditions: 65% ethanol concentration, 1:25 ratio of white birch bark to solvent, an extraction temperature of 30 °C, and an extraction time of 30 min. The ratio of solid to solvent is the most significant parameter in terms of yield. The optimal conditions were validated through experiments, and the observed value (92.67 ± 2.3%) was interrelated with the predicted value (92.86 ± 1.5%). The betulin extract was analyzed quantitatively by HPLC and quantitatively by LC/MS, before its potential biological activities were evaluated. Bioactivity surveys confirmed that the betulin extract showed not only no embryo deformity through zebrafish administration experiments, but also no cytotoxicity through MTT assays. Furthermore, the betulin extract had strong antioxidant activities in vitro by scavenging ferric reducing power (FRAP), 1,1-diphenyl-2-picryl hydrazyl(DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and chelating metal ions. This study demonstrates that ultrasonic-assisted ethanol extraction may be a green, efficient method for the extraction of betulin from white birch bark, and that betulin extracts are potentially useful in cosmetics, food supplements, or pharmaceutical applications. Full article
Show Figures

Graphical abstract

17 pages, 3300 KiB  
Article
Taxonomic Notes on the ‘Mahat’ (Artocarpus lacucha and A. thailandicus, Moraceae) Species Complex in Thailand
by Chaiwat Aneklaphakij, Somnuk Bunsupa, Yotsawate Sirichamorn, Bhanubong Bongcheewin and Veena Satitpatipan
Plants 2020, 9(3), 391; https://doi.org/10.3390/plants9030391 - 22 Mar 2020
Cited by 9 | Viewed by 4857
Abstract
‘Mahat’ is a well-known medicinal plant utilized in Thailand. The Thai name ‘Mahat’ has been used in many scientific articles for years. However, it is, unpredictably, a homonym of two scientific names in Flora of Thailand, i.e., A. lacucha and A. thailandicus. [...] Read more.
‘Mahat’ is a well-known medicinal plant utilized in Thailand. The Thai name ‘Mahat’ has been used in many scientific articles for years. However, it is, unpredictably, a homonym of two scientific names in Flora of Thailand, i.e., A. lacucha and A. thailandicus. Additionally, both species are complex due to their high morphological variation. This causes difficulties in species identification especially when this Thai name is referred to as the scientific name for research publication, quality control of pharmaceutical raw materials, and registration of pharmaceutical products. In this study, we scrutinized the taxonomy of ‘Mahat’ by detailed examination of its morphology and distribution, including molecular and qualitative phytochemical studies. Leaf surfaces were inspected using scanning electron microscopy. The phylogeny of both species was studied using DNA sequences of nuclear and plastid regions. Chromatographic fingerprints, focusing on the major active compound oxyresveratrol, were identified using high-performance liquid chromatography. According to our current study, phylogenetic evidence showed that some samples of both species were clustered together in the same clade and phytochemical fingerprints were almost identical. These results are valuable data for taxonomic revision in the near future and reveal the possible utilization of A. thailandicus as a new material source of oxyresveratrol in the pharmaceutical industry. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

10 pages, 1397 KiB  
Article
Mutations of OsPLDa1 Increase Lysophospholipid Content and Enhance Cooking and Eating Quality in Rice
by Muhammad Saad Shoaib Khan, Rasbin Basnet, Sulaiman Ahmed, Jinsong Bao and Qingyao Shu
Plants 2020, 9(3), 390; https://doi.org/10.3390/plants9030390 - 21 Mar 2020
Cited by 12 | Viewed by 3041
Abstract
Phospholipids belong to a significant class of lipids and comprise ~10% of total lipids in rice grains. Lysophospholipid (LPL) is derived from the hydrolysis of phospholipids and plays an important role in rice grain quality. Our previous study demonstrated that mutations in a [...] Read more.
Phospholipids belong to a significant class of lipids and comprise ~10% of total lipids in rice grains. Lysophospholipid (LPL) is derived from the hydrolysis of phospholipids and plays an important role in rice grain quality. Our previous study demonstrated that mutations in a phospholipase D gene (OsPLDα1) significantly altered lipid metabolites and reduced phytic acid content. In the present study, the effect of two ospldα1 mutations on LPL and other physicochemical prosperities of brown rice was further investigated, with the aim of assessing the overall importance of ospldα1 mutations in rice grain quality. Metabolite profiling revealed a ~15% increase in LPL level in both ospldα1 mutants as compared with their wild-type (WT) parent. Both ospldα1 mutations significantly lowered the apparent amylose content in brown rice flour (~1.9%) and altered viscosity profiles with significantly increased breakdown (+12.4%) and significantly reduced setback viscosity (−6.2%). Moreover, both ospldα1 mutations significantly lowered the gelatinization onset, peak temperature and retrogradation percentage of brown rice flour. This study demonstrated that OsPLDα1 plays a crucial role in rice grain quality and its mutation could, in general, improve the cooking and eating quality and nourishment of brown rice. Full article
(This article belongs to the Special Issue Plant Mutation Breeding)
Show Figures

Graphical abstract

18 pages, 1002 KiB  
Review
Plant Cells under Attack: Unconventional Endomembrane Trafficking during Plant Defense
by Guillermo Ruano and David Scheuring
Plants 2020, 9(3), 389; https://doi.org/10.3390/plants9030389 - 21 Mar 2020
Cited by 21 | Viewed by 6639
Abstract
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane [...] Read more.
Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking. Full article
(This article belongs to the Special Issue Plant Endomembranes Organization and Trafficking)
Show Figures

Figure 1

11 pages, 1652 KiB  
Communication
HPLC–PDA Polyphenolic Quantification, UHPLC–MS Secondary Metabolite Composition, and In Vitro Enzyme Inhibition Potential of Bougainvillea glabra
by Hammad Saleem, Thet Thet Htar, Rakesh Naidu, Sirajudheen Anwar, Gokhan Zengin, Marcello Locatelli and Nafees Ahemad
Plants 2020, 9(3), 388; https://doi.org/10.3390/plants9030388 - 20 Mar 2020
Cited by 15 | Viewed by 4086
Abstract
The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC–PDA), ultra-high-performance [...] Read more.
The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC–PDA), ultra-high-performance liquid chromatography–mass spectrometry (UHPLC–MS) phytochemical composition, and enzyme inhibition potential against key enzymes involved in diabetes (α-amylase), skin problems (tyrosinase), and inflammatory disorders (lipoxygenase (LOX)). HPLC–PDA quantification revealed the identification of nine different polyphenolics, amongst which both flower extracts were richest. The flower MeOH extract contained the highest amount of catechin (6.31 μg/g), gallic acid (2.39 μg/g), and rutin (1.26 μg/g). However, none of the quantified compounds were detected in the aerial DCM extract. UHPLC–MS analysis of DCM extracts revealed the tentative identification of 27 secondary metabolites, where the most common belonged to terpenoid, alkaloid, and phenolic derivatives. Similarly, for enzyme inhibition, all the extracts presented moderate activity against tyrosinase and α-amylases, whereas, for LOX, both methanolic extracts showed higher percentage inhibition compared with DCM extracts. Based on our findings, B. glabra could be regarded as a perspective starting material for designing novel pharmaceuticals. Full article
(This article belongs to the Special Issue Plant Flavonoids and Their Derivatives)
Show Figures

Graphical abstract

14 pages, 3502 KiB  
Article
Molecular Characterization and Identification of Calnexin 1 As a Radiation Biomarker from Tradescantia BNL4430
by Hye-Jeong Ha, Saminathan Subburaj, Young-Sun Kim, Jin-Baek Kim, Si-Yong Kang and Geung-Joo Lee
Plants 2020, 9(3), 387; https://doi.org/10.3390/plants9030387 - 20 Mar 2020
Cited by 3 | Viewed by 2822
Abstract
Calnexin (CNX) is an integral membrane protein that functions as a chaperone in the endoplasmic reticulum for the correct folding of proteins under stress conditions, rendering organisms tolerant under adverse conditions. Studies have investigated the cytogenetic effects of gamma irradiation (Ɣ-IR) on plants, [...] Read more.
Calnexin (CNX) is an integral membrane protein that functions as a chaperone in the endoplasmic reticulum for the correct folding of proteins under stress conditions, rendering organisms tolerant under adverse conditions. Studies have investigated the cytogenetic effects of gamma irradiation (Ɣ-IR) on plants, but information on the molecular response under Ɣ-IR remains limited. Previously, we constructed a cDNA library of an irradiation-sensitive bioindicator plant, Tradescantia BNL4430 (T-4430) under Ɣ-IR, in which the Calnexin-1 gene was highly upregulated at 50 mGy treatment. TrCNX1 encodes a 61.4 kDa protein with conserved signature motifs similar to already reported CNX1s. TrCNX1 expression was evaluated by semiquantitative reverse transcriptase PCR and quantitative real-time PCR and was ubiquitously expressed in various tissues and highly upregulated in flower petals under 50 mGy Ɣ-IR stress. The protective function of TrCNX1 was investigated by overexpression of TrCNX1 in an Escherichia coli BL21(DE3) heterologous system. Using plate assay, we showed that TrCNX1 increased the viability of E. coli transformants under both UV-B and Ɣ-IR compared with the control, demonstrating that TrCNX1 functions under irradiation stress. TrCNX1 may enhance irradiation stress tolerance in crops and act as a radio marker gene to monitor the effects of radiation. Full article
(This article belongs to the Special Issue Plant Mutation Breeding)
Show Figures

Figure 1

13 pages, 1407 KiB  
Article
A Correlative Study of Sunflower Seed Vigor Components as Related to Genetic Background
by Marine Saux, Benoît Bleys, Thierry André, Christophe Bailly and Hayat El-Maarouf-Bouteau
Plants 2020, 9(3), 386; https://doi.org/10.3390/plants9030386 - 20 Mar 2020
Cited by 9 | Viewed by 2836
Abstract
Seed vigor is an important trait that determines seed performance in the field, which corresponds to seed germination rate and seedling establishment. Previous works brought helpful equations to calculate several parameters allowing vigor characterization. In this work we used base water potential (Ψb), [...] Read more.
Seed vigor is an important trait that determines seed performance in the field, which corresponds to seed germination rate and seedling establishment. Previous works brought helpful equations to calculate several parameters allowing vigor characterization. In this work we used base water potential (Ψb), base temperature (Tb) and seed lot (Ki) constants to characterize the vigor of 44 sunflower seed lots. Contrasting responses to water or temperature stress and storage potential were recorded within this population, the most interesting being the opposite responses between Ψb and Ki. The genotypes that were resistant to water stress presented low ability for storage and vice versa. Furthermore, Ψb and Ki presented narrow ranges while Tb showed important variability within the 44 genotypes. The analysis of the whole dataset showed that these constants are not correlated to each other or to the seed size, suggesting that genetic background is the most important determining factor in seed performance. Consequently, vigor characterization of genotypes is needed in the crop selection process in order to optimize agricultural productivity. Full article
(This article belongs to the Special Issue Genetics of Seed Germination and Growth)
Show Figures

Figure 1

20 pages, 84012 KiB  
Article
Cytoplasm Types Affect DNA Methylation among Different Cytoplasmic Male Sterility Lines and Their Maintainer Line in Soybean (Glycine max L.)
by Chunjing Lin, Bao Peng, Yongkuan Li, Pengnian Wang, Guolong Zhao, Xiaoyang Ding, Rong Li, Limei Zhao and Chunbao Zhang
Plants 2020, 9(3), 385; https://doi.org/10.3390/plants9030385 - 20 Mar 2020
Cited by 2 | Viewed by 2476
Abstract
Cytoplasmic male sterility (CMS) lines and their maintainer line have the same nucleus but different cytoplasm types. We used three soybean (Glycine max L.) CMS lines, JLCMS9A, JLCMSZ9A, and JLCMSPI9A, and their maintainer line, JLCMS9B, to explore whether methylation levels differed in [...] Read more.
Cytoplasmic male sterility (CMS) lines and their maintainer line have the same nucleus but different cytoplasm types. We used three soybean (Glycine max L.) CMS lines, JLCMS9A, JLCMSZ9A, and JLCMSPI9A, and their maintainer line, JLCMS9B, to explore whether methylation levels differed in their nuclei. Whole-genome bisulfite sequencing of these four lines was performed. The results show that the cytosine methylation level in the maintainer line was lower than in the CMS lines. Compared with JLCMS9B, the Gene Ontology (GO) enrichment analysis of DMR (differentially methylated region, DMR)-related genes of JLCMS9A revealed that their different 5-methylcytosine backgrounds were enriched in molecular function, whereas JLCMSZ9A and JLCMSPI9A were enriched in biological process and cellular component. The Kyoto Encyclopedia of Genes and Genome (KEGG) analysis of DMR-related genes and different methylated promoter regions in different cytosine contexts, hypomethylation or hypermethylation, showed that the numbers of DMR-related genes and promoter regions were clearly different. According to the DNA methylation and genetic distances separately, JLCMS9A clustered with JLCMS9B, and JLCMSPI9A with JLCMSZ9A. Thus, the effects of different cytoplasm types on DNA methylation were significantly different. This may be related to their genetic distances revealed by re-sequencing these lines. The detected DMR-related genes and pathways that are probably associated with CMS are also discussed. Full article
(This article belongs to the Special Issue Plants Heterosis)
Show Figures

Figure 1

12 pages, 2387 KiB  
Article
Non-Structural Carbohydrate Storage Strategy Explains the Spatial Distribution of Treeline Species
by Hudong Han, Hongshi He, Zhengfang Wu, Yu Cong, Shengwei Zong, Jianan He, Yuanyuan Fu, Kai Liu, Hang Sun, Yan Li, Changbao Yu and Jindan Xu
Plants 2020, 9(3), 384; https://doi.org/10.3390/plants9030384 - 20 Mar 2020
Cited by 14 | Viewed by 3273
Abstract
Environmental factors that drive carbon storage are often used as an explanation for alpine treeline formation. However, different tree species respond differently to environmental changes, which challenges our understanding of treeline formation and shifts. Therefore, we selected Picea jezoensis and Betula ermanii, [...] Read more.
Environmental factors that drive carbon storage are often used as an explanation for alpine treeline formation. However, different tree species respond differently to environmental changes, which challenges our understanding of treeline formation and shifts. Therefore, we selected Picea jezoensis and Betula ermanii, the two treeline species naturally occurring in Changbai Mountain in China, and measured the concentration of non-structural carbohydrates (NSC), soluble sugars and starch in one-year-old leaves, shoots, stems and fine roots at different elevations. We found that compared with P. jezoensis, the NSC and soluble sugars concentrations of leaves and shoots of B. ermanii were higher than those of P. jezoensis, while the starch concentration of all the tissues were lower. Moreover, the concentration of NSC, soluble sugars and starch in the leaves of B. ermanii decreased with elevation. In addition, the starch concentration of B. ermanii shoots, stems and fine roots remained at a high level regardless of whether the soluble sugars concentration decreased. Whereas the concentrations of soluble sugars and starch in one-year-old leaves, shoots and stems of P. jezoensis responded similarly changes with elevation. These findings demonstrate that compared with P. jezoensis, B. ermanii has a higher soluble sugars/starch ratio, and its shoots, stems and fine roots actively store NSC to adapt to the harsh environment, which is one of the reasons that B. ermanii can be distributed at higher altitudes. Full article
Show Figures

Figure 1

13 pages, 3307 KiB  
Article
The Regulatory Effects of a Formulation of Cinnamomum osmophloeum Kaneh and Taiwanofungus camphoratus on Metabolic Syndrome and the Gut Microbiome
by Ya-Yun Wang, Yu-Hsin Hsieh, K. J. Senthil Kumar, Han-Wen Hsieh, Chin-Chung Lin and Sheng-Yang Wang
Plants 2020, 9(3), 383; https://doi.org/10.3390/plants9030383 - 20 Mar 2020
Cited by 6 | Viewed by 2636
Abstract
The number of people with metabolic syndrome (MetS) is increasing year by year, and MetS is associated with gut microbiota dysbiosis. The demand for health supplements to treat or prevent MetS is also growing. Cinnamomum osmophloeum Kaneh (CO) and Taiwanofungus camphoratus (TC) are [...] Read more.
The number of people with metabolic syndrome (MetS) is increasing year by year, and MetS is associated with gut microbiota dysbiosis. The demand for health supplements to treat or prevent MetS is also growing. Cinnamomum osmophloeum Kaneh (CO) and Taiwanofungus camphoratus (TC) are endemic to Taiwan. Both have been shown to improve the symptoms of MetS, such as dyslipidemia and hyperglycemia. Herein, we investigated the effect of CO, TC and their formulations on diet-induced obese mice. Male C57BL/6J mice were fed with a high-fat diet (HFD) for 10 weeks to induce MetS. After that, the mice were fed with HFD supplemented with CO, TC, and various CO/TC formulations, respectively, for 14 weeks. The changes in physiological parameters and the composition of the gut microbiome were investigated. The results indicated that CO, TC, and their formulations effectively reduced hyperglycemia, and tended to alleviate MetS in obese mice. Moreover, we also observed that CO, TC, and their formulations improved gut microbiota dysbiosis by decreasing the Firmicutes-to-Bacteroidetes ratio and increasing the abundance of Akkermansia spp. Our results revealed that CO and TC might have potential for use as a prebiotic dietary supplement to ameliorate obesity-related metabolic disorders and gut dysbiosis. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

14 pages, 2792 KiB  
Article
Recovery, Assessment, and Molecular Characterization of Minor Olive Genotypes in Tunisia
by Olfa Saddoud Debbabi, Monica Marilena Miazzi, Olfa Elloumi, Mahdi Fendri, Fathi Ben Amar, Michele Savoia, Sara Sion, Hana Souabni, Sameh Rahmani Mnasri, Selma Ben Abdelaali, Fadwa Jendoubi, Giacomo Mangini, Franco Famiani, Francesca Taranto, Cinzia Montemurro and Monji Msallem
Plants 2020, 9(3), 382; https://doi.org/10.3390/plants9030382 - 20 Mar 2020
Cited by 14 | Viewed by 3814
Abstract
Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where [...] Read more.
Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where they are maintained by farmers in small local groves, but they are poorly characterized and evaluated. In order to recover this neglected germplasm, surveys were conducted in different areas, and 31 genotypes were collected, molecularly characterized with 12 nuclear microsatellite (simple sequence repeat (SSR)) markers, and compared with 26 reference cultivars present in the Tunisian National Olive collection. The analysis revealed an overall high genetic diversity of this olive’s germplasm, but also discovered the presence of synonymies and homonymies among the commercialized varieties. The structure analysis showed the presence of different gene pools in the analyzed germplasm. In particular, the marginal germplasm from Ras Jbal and Azmour is characterized by gene pools not present in commercial (Nurseries) varieties, pointing out the very narrow genetic base of the commercialized olive material in Tunisia, and the need to broaden it to avoid the risk of genetic erosion of this species in this country. Full article
(This article belongs to the Special Issue Germplasm Diversity for Sustainability and Crop Improvement)
Show Figures

Figure 1

14 pages, 1800 KiB  
Review
Emerging Advanced Technologies to Mitigate the Impact of Climate Change in Africa
by Priscilla Francisco Ribeiro and Anyela Valentina Camargo Rodriguez
Plants 2020, 9(3), 381; https://doi.org/10.3390/plants9030381 - 19 Mar 2020
Cited by 10 | Viewed by 4890
Abstract
Agriculture remains critical to Africa’s socioeconomic development, employing 65% of the work force and contributing 32% of GDP (Gross Domestic Product). Low productivity, which characterises food production in many Africa countries, remains a major concern. Compounded by the effects of climate change and [...] Read more.
Agriculture remains critical to Africa’s socioeconomic development, employing 65% of the work force and contributing 32% of GDP (Gross Domestic Product). Low productivity, which characterises food production in many Africa countries, remains a major concern. Compounded by the effects of climate change and lack of technical expertise, recent reports suggest that the impacts of climate change on agriculture and food systems in African countries may have further-reaching consequences than previously anticipated. Thus, it has become imperative that African scientists and farmers adopt new technologies which facilitate their research and provide smart agricultural solutions to mitigating current and future climate change-related challenges. Advanced technologies have been developed across the globe to facilitate adaptation to climate change in the agriculture sector. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), synthetic biology, and genomic selection, among others, constitute examples of some of these technologies. In this work, emerging advanced technologies with the potential to effectively mitigate climate change in Africa are reviewed. The authors show how these technologies can be utilised to enhance knowledge discovery for increased production in a climate change-impacted environment. We conclude that the application of these technologies could empower African scientists to explore agricultural strategies more resilient to the effects of climate change. Additionally, we conclude that support for African scientists from the international community in various forms is necessary to help Africans avoid the full undesirable effects of climate change. Full article
(This article belongs to the Special Issue Plant Bioinformatics)
Show Figures

Figure 1

14 pages, 4858 KiB  
Article
Citric Acid Assisted Phytoremediation of Chromium through Sunflower Plants Irrigated with Tannery Wastewater
by Ali Imran Mallhi, Shahzad Ali Shahid Chatha, Abdullah Ijaz Hussain, Muhammad Rizwan, Syed Asad Hussain Bukhar, Afzal Hussain, Zahid Imran Mallhi, Shafaqat Ali, Abeer Hashem, Elsayed Fathi Abd_Allah, Mohammed Nasser Alyemeni and Parvaiz Ahmad
Plants 2020, 9(3), 380; https://doi.org/10.3390/plants9030380 - 19 Mar 2020
Cited by 21 | Viewed by 3698
Abstract
Heavy metals are rapidly polluting the environment as a result of growing industrialization and urbanization. The presence of high concentrations of chromium (Cr), along with other pollutants, is widespread in tannery wastewater. In Pakistan, as a result of a severe shortage of irrigation [...] Read more.
Heavy metals are rapidly polluting the environment as a result of growing industrialization and urbanization. The presence of high concentrations of chromium (Cr), along with other pollutants, is widespread in tannery wastewater. In Pakistan, as a result of a severe shortage of irrigation water, farmers use tannery wastewater to grow various crops with a consequent decline in plants’ yield. This experiment was performed to assess growth revival in sunflower plants irrigated with 0%, 25%, 50%, 75%, and 100% tannery wastewater, by foliar application of 0, 2.5, and 5.0 mM citric acid (CA). The wastewater treatment curtailed biomass accumulation, the growth rate, and chlorophyll contents by exacerbating the oxidative stress in sunflowers. Foliar application of CA considerably alleviated the outcomes of Cr toxicity by curbing the Cr absorption and oxidative damage, leading to improvements in plant growth, biological yield, and chlorophyll contents. It is concluded that foliar application of CA can successfully mitigate the Cr toxicity in sunflower plants irrigated with tannery wastewater. Full article
(This article belongs to the Special Issue Plant Responses and Tolerance to Metal/Metalloid Toxicity)
Show Figures

Figure 1

13 pages, 2692 KiB  
Article
Capacity of Pseudomonas Strains to Degrade Hydrocarbons, Produce Auxins and Maintain Plant Growth under Normal Conditions and in the Presence of Petroleum Contaminants
by Margarita Bakaeva, Elena Kuzina, Lidiya Vysotskaya, Guzel Kudoyarova, Tat’yana Arkhipova, Gulnaz Rafikova, Sergey Chetverikov, Tat’yana Korshunova, Dar’ya Chetverikova and Oleg Loginov
Plants 2020, 9(3), 379; https://doi.org/10.3390/plants9030379 - 19 Mar 2020
Cited by 26 | Viewed by 3084
Abstract
The phytoremediation of soil contaminated with petroleum oil products relies on co-operation between plants and rhizosphere bacteria, including the plant growth-promoting effect of the bacteria. We studied the capacity of strains of Pseudomonas, selected as oil degraders, to produce plant hormones and [...] Read more.
The phytoremediation of soil contaminated with petroleum oil products relies on co-operation between plants and rhizosphere bacteria, including the plant growth-promoting effect of the bacteria. We studied the capacity of strains of Pseudomonas, selected as oil degraders, to produce plant hormones and promote plant growth. Strains with intermediate auxin production were the most effective in stimulating the seedling growth of seven plant species under normal conditions. Bacterial seed treatment resulted in about a 1.6-fold increase in the weight of barley seedlings, with the increment being much lower in other plant species. The strains P. plecoglossicida 2.4-D and P. hunanensis IB C7, characterized by highly efficient oil degradation (about 70%) and stable intermediate in vitro auxin production in the presence of oil, were selected for further study with barley. These strains increased the seed germination percentage approximately two-fold under 5% oil concentration in the soil, while a positive effect on further seedling growth was significant when the oil concentration was raised to 8%. This resulted in a 1.3–1.7-fold increase in the seedling mass after 7 days of growth, depending on the bacterial strain. Thus, strains of oil-degrading bacteria selected for their intermediate and stable production of auxin were found to be effective ameliorators of plant growth inhibition resulting from petroleum stress. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

24 pages, 3215 KiB  
Article
The Influence of Agricultural Practices, the Environment, and Cultivar Differences on Soybean Seed Protein, Oil, Sugars, and Amino Acids
by Nacer Bellaloui, Angela M. McClure, Alemu Mengistu and Hamed K. Abbas
Plants 2020, 9(3), 378; https://doi.org/10.3390/plants9030378 - 19 Mar 2020
Cited by 16 | Viewed by 3150
Abstract
Information on the effects of agricultural practices such as seeding rate (S), row spacing (RS), herbicide apical treatment (T), and nitrogen application (N) on soybean seed nutrition (protein, oil, fatty acids, sugars, and amino acids) is limited. Although seed composition (nutrition) constituents are [...] Read more.
Information on the effects of agricultural practices such as seeding rate (S), row spacing (RS), herbicide apical treatment (T), and nitrogen application (N) on soybean seed nutrition (protein, oil, fatty acids, sugars, and amino acids) is limited. Although seed composition (nutrition) constituents are genetically controlled, agricultural practices and environmental conditions significantly influence the amount and quality of seed nutrition. Therefore, the objective of this research was to understand the responses of these seed composition constituents to these practices, the environment, and cultivar differences. Two-field experiments were conducted, in 2015 and 2016, in Milan, TN, USA. The experiments were irrigated with four replications and included: two soybean cultivars, two seeding rates, three different row spacings, two N rates, and Cobra herbicide apical treatment. The results showed significant effects of S, RS, N, and T on some seed composition constituents, including protein; oleic, linolenic, and stearic acids; sugars; and some amino acids. The current research demonstrated that single or twin row with a seeding rate of 40,000 seeds ha−1 resulted in higher protein, oleic, some sugars, and some amino acids. However, a high seeding rate of 56,000 seeds ha−1 resulted in lower protein, oleic acid, some sugars, and some amino acids due to plant competition for soil nutrients. Herbicide apical application of Cobra1X resulted in higher linolenic acid and some amino acids. Application of nitrogen resulted in higher protein, linolenic, and some amino acids. This research is beneficial to the scientific communities, including breeders and physiologists through advancing knowledge on the interactions between cultivars and environment for seed nutritional quality selection, and to soybean producers through consideration of best agricultural management to maintain high seed nutritional qualities. Full article
Show Figures

Figure 1

11 pages, 1408 KiB  
Review
Biological and Cellular Functions of the Microdomain-Associated FWL/CNR Protein Family in Plants
by Sandra Thibivilliers, Andrew Farmer and Marc Libault
Plants 2020, 9(3), 377; https://doi.org/10.3390/plants9030377 - 19 Mar 2020
Cited by 7 | Viewed by 2858
Abstract
Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of [...] Read more.
Membrane microdomains/nanodomains are sub-compartments of the plasma membrane enriched in sphingolipids and characterized by their unique protein composition. They play important roles in regulating plant development and plant-microbe interactions including mutualistic symbiotic interactions. Several protein families are associated with the microdomain fraction of biological membranes such as flotillins, prohibitins, and remorins. More recently, GmFWL1, a FWL/CNR protein exclusively expressed in the soybean nodule, was functionally characterized as a new microdomain-associated protein. Interestingly, GmFWL1 is homologous to the tomato FW2-2 protein, a major regulator of tomato fruit development. In this review, we summarize the knowledge gained about the biological, cellular, and physiological functions of members of the FWL/CNR family across various plant species. The role of the FWL/CNR proteins is also discussed within the scope of their evolution and transcriptional regulation. Full article
(This article belongs to the Special Issue Plant Plasma Membrane)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop