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Abstract

:

Heterosis, or hybrid vigor, has contributed substantially to genetic improvements in crops and trees and its physiological basis involves multiple processes. Four associations with the phytohormone gibberellin (GA) indicate its involvement in the regulation of heterosis for shoot growth in maize, sorghum, wheat, rice, tomato and poplar. (1) Inbreds somewhat resemble GA-deficient dwarfs and are often highly responsive to exogenous GA3. (2) Levels of endogenous GAs, including the bioeffector GA1, its precursors GA19 and GA20, and/or its metabolite GA8, are higher in some fast-growing hybrids than parental genotypes. (3) Oxidative metabolism of applied [3H]GAs is more rapid in vigorous hybrids than inbreds, and (4) heterotic hybrids have displayed increased expression of GA biosynthetic genes including GA 20-oxidase and GA 3-oxidase. We further investigated Brassica rapa, an oilseed rape, by comparing two inbreds (AO533 and AO539) and their F1 hybrid. Seedling emergence was faster in the hybrid and potence ratios indicated dominance for increased leaf number, area and mass, and stem mass. Overdominance (heterosis) was displayed for root mass, leading to slight heterosis for total plant mass. Stem contents of GA19,20,1 were similar across the Brassica genotypes and increased prior to bolting; elongation was correlated with endogenous GA but heterosis for shoot growth was modest. The collective studies support a physiological role for GAs in the regulation of heterosis for shoot growth in crops and trees, and the Brassica study encourages further investigation of heterosis for root growth.
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1. Introduction


1.1. Gibberellins and Heterosis in Crops and Trees: Four Lines of Evidence


Heterosis, or hybrid vigor, represents hybrid performance that exceeds that of both parents [1]. Heterosis is common in crop plants and in some trees and has been responsible for a substantial proportion of the genetic improvement through plant breeding over the past century [2,3]. However, while heterosis is widely utilized for agriculture, horticulture and silviculture, and despite a century of investigation, its physiological basis is poorly understood [4].



Studies indicate that there are multiple contributing genetic and physiological factors [5,6,7] and phytohormones should be involved since these provide master regulators of plant form and function [8,9]. Of the phytohormones, there is substantial evidence that the promotive regulator gibberellin (GA) is especially involved in heterosis for shoot growth. There have been preliminary reviews of this association [10,11] and we extend the analyses to incorporate recent findings, expand the range of study approaches and increase the number of plant species.




1.2. Inbreds are Highly Responsive to Exogenous GA3


With plant breeding and genetics programs, several single gene dwarf mutants were identified in maize (or corn, Zea mays L.), peas, Arabidopsis, Brassica and other plants [9]. Some dwarfs have mutations in GA biosynthetic genes and can be restored through the exogenous application of gibberellic acid (GA3), indicating that their small size is due to a GA deficiency. With inbreeding, shoot growth is often depressed and with short stature, inbreds somewhat resemble dwarf mutants. A half century ago, Nickerson [12] recognized this similarity and applied GA3 to different maize genotypes. He found that maize inbreds were highly responsive to exogenous GA3 suggesting that, like the dwarf mutants, the inbreds could be limited by low levels of endogenous GAs. At that same time, Chawdhry [13] found variation in responsivity to GA3 across tomato genotypes and proposed a link between GAs and heterosis. The association was emphasized by Sarkissian et al. [14] and supported in an early review by Paleg [8]. Further studies with maize, the model plant for heterosis (Table 1), and other plants (Table 2) have confirmed the common correspondence, with smaller genotypes including inbreds often being highly responsive to exogenous GA3.




1.3. Hybrids Have Higher Levels of Endogenous GAs


The hypothesis that inbreds are GA deficient was subsequently tested with advancing techniques including selective GA bioassays, GA immunoassays, and definitive physicochemical analyses with combined gas chromatography-mass spectrometry (GC-MS). For GC-MS analyses, internal standard [2H]GAs are added to account for variable losses during the extensive purification [15,16]. Studies with different species and in different research labs supported the hypothesis, as heterotic hybrids contain higher levels of endogenous GAs (Table 1 and Table 2). This provides the second line of evidence supporting a regulatory role of GAs in heterosis for shoot growth.



Multiple GAs are native in plants and GA1 is probably the bioeffector GA in most angiosperms for shoot elongation and some other processes (Figure 1a). The biosynthetic pathways have been determined and the “early 13-hydroxylation pathway” is probably the primary pathway in most crops and broad-leaved trees (Figure 1b). Another biosynthetic pathway leads to GA4, a bioactive GA [42] or an alternate GA1 precursor (Figure 1b) [43]. With 2-hydroxylation, GA1 is inactivated to form GA8 and different GAs are often analyzed to provide a record of present (GA1), past (GA8) and future (GA19, GA20, GA4) GA biosynthesis (Figure 1b). Researchers have primarily analyzed these endogenous GAs which may display different patterns across the genotypes (Table 1 and Table 2).




1.4. GA Metabolism is Rapid in Heterotic Hybrids


Analyses of endogenous GAs provide instantaneous measurements, while studies of GA metabolism capture physiological effects over hours or days. [3H]GA20 has been applied to parents and hybrids and the [3H] products analyzed. [2H]GA20 was also applied, permitting GC-MS confirmation of the 3-hydroxylation to [2H]GA1 (Table 1 and Table 2; Figure 1b). In maize and sorghum, metabolism of [3H]GA20 was faster in heterotic hybrids than parental genotypes, as was the 2-hydroxylation of [3H]GA1 to [2H]GA8 or its glucosyl conjugates. These findings indicate faster oxidative metabolism in fast-growing hybrids and provide the third line of evidence for a role of GAs in the regulation of heterosis for shoot growth.




1.5. Expression of GA Biosynthetic Genes is Increased in Some Hybrids


After the GA biosynthetic sequence was determined, the responsible genes were identified and cloned [42,44]. The multi-gene GA 20-oxidase family is responsible for sequential conversions from GA53 through GA44 and GA19 to GA20 (Figure 1b). GA19 is often an abundant endogenous GA and its conversion to GA20 is regarded as rate-limiting and hence, regulatory [44]. This gene has been especially studied and its expression has been associated with heterosis in some plants (Table 1 and Table 2). The final conversion from GA20 to GA1 is enabled by GA 3-oxidase, another multi-gene family (formerly 3β-hydroxylase), and the expression of this gene has also been found to be correlated with heterosis (Table 2). This association between the expression of the GA biosynthetic genes and hybrid vigor provides the fourth line of evidence supporting the role of GAs in the regulation of heterosis for shoot growth in crops and trees.



With multiple studies over a half century, by different researchers and with different plants, there has been substantial support for the association between GAs and heterosis for shoot growth. However, there has also been opposing evidence. In some studies, there have been no correspondences but there are confounding influences. A challenge is the tissue sampling since GAs are differentially distributed within plants, commonly with higher concentration in the shoot apices and subtending elongation zones [45]. Below those zones, the concentrations are lower and if whole stems are sampled there could be greater dilution by the larger stems of hybrids, thus obscuring and even inverting the endogenous GA pattern. This challenge can be increased for trees, which are much larger, and consequently bark scrapings are often sampled (Table 2). However, the locations relative to the growth zones remain a complexity and the timing of sampling further challenges these studies [36,45].



Another complexity relates to the type of growth. The association between GA and stem height is well established across plants, and there are also correspondences with other elongation measures such as leaf lengths, but there may be weaker associations with some other growth measures. A study by Auger et al. [22] applied an interesting approach with GA dwarfing genes in maize, and heterosis persisted. Auger et al. [22] considered this as opposing a regulatory role for GAs but the dwarfing genes would lead to GA reduction [46] rather than elimination, which would be lethal. Consequently, without analyses of the GA contents, that study was less complete.





2. Results


2.1. Gibberellins and Heterosis in Brassica


To further explore the growth components that contribute to heterosis, and to investigate their association with endogenous GAs, Brassica was used as another study system. Heterosis is observed in some Brassica hybrids [47,48] and genetic diversity is incorporated with the allotetraploid genotypes of some rapeseed and canola cultivars [49]. Brassica is a close crop relative to Arabidopsis, allowing for the application of knowledge from that primary model plant system, which also displays heterosis [40,50,51]. Consequently, this study was undertaken with a triplet family consisting of two inbreds, AO533 and AO539, and their F1 hybrid, and we expected: (1) heterosis in the hybrid and (2) correspondence between GA content and stem growth within and across the genotypes.




2.2. Growth and Dominance Patterns


Initial seedling emergence was more rapid in the Brassica hybrid (Table 3). Subsequently, the parent AO539 and the F1 displayed similar seedling emergence percentages, while AO533 displayed slower and less complete emergence. This pattern of dominance or slight overdominance for the increased trait was also observed for most of the subsequent shoot characteristics; the F1 was slightly superior to AO539, while AO533 was consistently less vigorous (Table 3 and Table 4). This was the case for leaf number while leaf sizes were similar. As the product of these two traits, total leaf areas and leaf masses were greater in the F1 and AO539 than AO533 (Table 3 and Table 4, Figure 2).



The sequential harvests displayed the increasing growth of the Brassica plants, with the F1 displaying similar or slightly greater growth than AO539, and both showing greater growth than AO533 (Figure 2). There was apparently slight heterosis for stem mass and the largest difference was for root mass (Figure 2). The F1 root mass was consistently larger and there was a lag in root growth in AO533. This provided the greatest contribution to the total plant mass, which displayed slight heterosis (Figure 2).



The analyses of covariance included the combined results from harvests on days 21, 35 and 42, with day as the covariate. The primary factor of genotype provided significant effects (p < 0.05) for seven of the eight growth measures (Table 4). Subsequent post-hoc pairings with the marginal means confirmed the pattern displayed in the growth plots, with the F1 being similar to or slightly larger than AO539, while AO533 was smaller (Table 4, Figure 2).



Potence ratios (PR) quantified the degree of dominance with values substantially greater than 1 indicating overdominance, or heterosis (Table 4). PR averages from the three harvests are provided (Table 4) and were highest for juvenile height, which extended from the early advantage of the hybrid, and root mass, which contributed to the moderate overdominance for overall plant mass. Root sampling is imprecise due to some adhering substrate particles and the loss of some fine roots. The root rinsing with a water spray appeared complete and we expect similar root recoveries across the harvests and genotypes, providing a valid comparison. The challenge with root sampling should be recognized but the results indicate substantial heterosis for root growth with this triplet of genotypes.




2.3. Endogenous Gibberellins


Generally, similar patterns across the genotypes were observed for GA1 and its precursors, GA20 and GA19 (Figure 3). There were often lower GA contents at the early harvests and increases by day 42, when stem bolting was commencing. This was also during the transition to the reproductive phase (Figure 3) and it is likely that endogenous GA would be involved in that developmental process as well as stem elongation. There were no significant differences across the genotypes for GA content or concentration at day 21 or 35, and at day 42 GA contents per stem were significantly higher in the F1 hybrid than in either parent (Figure 3; ANOVA with combined GAs: F(2,4) = 11.3, p = 0.023). Concentrations were higher in the F1 than in AO539 but not significantly different from AO533 (3.16, 2.60 and 3.83 ng/g for GA19; 2.50, 1.59 and 2.36 for GA20; and 2.65, 1.90, and 3.39 for GA1 in AO533, AO539 and the F1, respectively; ANOVA: F(2,4) = 15.49, p = 0.013). These results support the involvement of endogenous GAs in the regulation of stem elongation but are uncertain relative to the relationship with heterosis for shoot growth.





3. Discussion


3.1. Heterosis and Gibberellins in Brassica


In this study, hybrid vigor, superior performance of the hybrid, was slight. As occurs for other plants [14,53,54], seedling emergence was faster in the hybrid. Subsequently, for the different growth traits, the hybrid performance matched or slightly exceeded the superior inbred parent. The expression of heterosis through the multiple traits supports a polygenic foundation and the hybrid would benefit from superior performance for many traits, both independent and coordinated [55]. We expected heterosis for shoot growth, but an unexpected finding was that heterosis was greatest for root growth. There have been fewer studies of heterosis and root growth but early research with tomato hybrids recognized heterosis for root growth [56] and this pattern has been subsequently demonstrated for sorghum and maize [53,57]. At the cellular level, heterosis for gene expression in roots has also been demonstrated, but the function of some genes is less clear [58].



Root mass is a product of root numbers and their sizes, including lengths. The observed overdominance for total root mass might reflect the additive benefit from dominance for higher root numbers and lengths, and it would be useful to resolve the root components and even cell sizes and numbers. If GAs were involved, this might relate to root lengths, since GAs contribute strongly to the regulation of elongation growth and GA manipulation through recombinant GA 2-oxidase resulted in denser but shorter root systems in hybrid poplar [59]. Heterosis for root growth might contribute to yield stability and could influence adaptation to drought or salinity [60].



Relative to endogenous GAs, GA1 and GA19 contents per stem were apparently higher in the hybrid on day 42, when the bolting stage commenced, and the hybrid displayed slight heterosis for increased stem mass. However, this Brassica study was preliminary and future research should focus on hybrid versus parent combinations that display greater hybrid vigor in the growth patterns [61,62], as has been useful for maize inbreds versus hybrids [15,17,23,63]. A comparison for Brassica could include family combinations with increased hybrid vigor [64] and it would be useful to analyze GA contents and especially GA1 along with its precursors and metabolite, as well as with the expression of the key GA biosynthesis genes [39,42] (Table 1). A genetic approach could also be undertaken such as investigating the influence on heterosis from dwarfing genes in Brassica that block GA biosynthesis or action [22,46,65]. Due to the genetic, molecular and physiological similarity, directions from studies of heterosis in Arabidopsis should also be productive and these have supported the involvement of phytohormonal regulation [50]. And while GA could provide a focus, there are likely to be coordinated interactions with other phytohormones and especially auxins [58,66], along with other signaling substances such as brassinosteroids [25].




3.2. A Final Consideration for GAs and Heterosis: Cause or Correlate


While this study with Brassica provided provisional outcomes regarding heterosis, it is clear that GAs are involved in the regulation of shoot growth in Brassica, as is observed for the other plants studied: maize, sorghum, wheat, rice and poplar (Table 1 and Table 2). There have been numerous studies that provide direct or indirect support for the role of GAs in the regulation of heterosis for shoot growth, including stem and leaf growth, in crops and trees. However, while the findings indicate that slow-growing inbreds are limited due to relative GA deficiency, or conversely that hybrids display increased GA biosynthesis and contents, the subsequent question arises, “how are the GA biosynthetic genes regulated?” Thus, GAs may serve as an intermediate between heterotic factors and especially genetic heterozygosity and the phenotypic outcome of hybrid vigor. Also, rather than individual genes being central, as is the case for single gene dwarf mutants of maize, Brassica and other plants, a number of heterozygous genes would probably contribute, providing a polygenic foundation. The consequent up-regulation of the GA biosynthesis genes would provide a mechanism to amplify the outcome, since this would promote a range of morphological and physiological traits that contribute to the phenotypic outcome of hybrid vigor.





4. Material and Methods


4.1. Plant Material and Growth Conditions


Seeds of two inbred parental lines of Brassica rapa L. (syn. B. campestris L.), AO533 and AO539, and their F1 hybrid, AO533 × AO539 (from the Agriculture Canada canola breeding program, Saskatoon, Canada), were sown in pots containing Metro-mix (Ajax, ON, Canada), a Sphagnum peat moss and vermiculite-containing potting medium. Plant pots were randomly arranged in the University of Lethbridge greenhouse (49°70′ N, 112°86′ W), with a 16 h photoperiod that was provided by a combination of natural sunlight and light from Na vapour lamps (260 µmol m−2s−1; Reflector PL90M [medium] N400; P.L. Light Systems Canada, Inc., Beamsville, ON, Canada), and with temperatures maintained between 21–24 °C. Pots were watered daily to saturation and fertilized monthly with a water-soluble 20-14-14 (N-P-K) fertilizer with supplemental trace elements (Professional Gardener Co., Ltd., Calgary, AB, Canada).




4.2. Growth Measurements


Seedling emergence was noted and height and developmental stages [52] were recorded biweekly. Ten individual plants of each genotype were harvested at each of five harvest dates, at 14, 21, 35, 42 and 70 days after planting and for each plant, leaf number, total leaf area using a portable LI-COR photometric area meter (Lincoln, NB, USA), and organ dry weights (leaf, stem and root) were measured. Prior to weighing, leaf and root tissues were oven dried, while stem tissues were flash frozen in liquid nitrogen and then freeze dried for dry weight determinations and to permit analysis of endogenous GAs.




4.3. Potence Ratios


Inheritance patterns were quantified by comparing the performance of the hybrids with that of the two parents [17,67]. The additive component of variation (H) was calculated as the absolute value of either parent (P2 represents the superior parent for that trait) minus the mean of the two parents, the midparent value (mp). The dominance component of variation (D) was calculated as the hybrid value minus mp and the potence ratios represent the overall degree of dominance as:


Potence ratio (PR) = D/H = (Hybrid − mp)/(P2 − mp)











Recognizing some quantitative variation, PR values around 0 (from about −0.5 to 0.5) indicate additive inheritance with the hybrids intermediate between the parents. PR values from ~ −1.5 to −0.5 or 0.5 to 1.5 indicate dominance of the smaller or larger characteristic, respectively. PR values exceeding ~ 1.5 indicate overdominance or hybrid vigor, while values below ~ −1.5 indicate hybrid break-down.




4.4. Analyses of Endogenous Gibberellins


Gibberellins (GAs) were quantified in one of the two replicates, with each consisting of 5-6 stems from a genotype at a harvest. Analyses were undertaken as described by Zanewich and Rood [68] and others [16,69]. Briefly, tissue was extracted in aqueous methanol with internal standards of [2H2]-GA1, -GA19 and -GA20 (from L. Mander, Australian National University), filtered, and buffered (pH 9). Following in vacuo reduction, the aqueous phase was partitioned twice with water-saturated ether. The pH was then adjusted to 3 and the sample was further partitioned 3 times with ethyl acetate. Extracts were frozen, filtered to remove ice, and dried in vacuo. Residues were resuspended and transferred to glass microfiber discs and trace quantities of [3H]GA1 and [3H]GA4 were added for tracking. Samples were further purified using silica columns [68] and respective GA-containing fractions were separated using reversed-phase C18 high performance liquid chromatography. Grouped fractions containing the three GAs of interest were methylated and trimethylsilylated, and GAs were detected using gas chromatography-mass spectrometry (GC-MS) with selected ion monitoring. Quantities were calculated based in the paired ion abundances from the internal standard [2H2]GAs and endogenous forms [16,43].




4.5. Statistical Analyses


Analyses of variance (ANOVA) with SPSS v.19 (IBM, Armonk, NY, USA) provided the primary assessment for each growth measure with genotype and harvest day as fixed factors. These analyses used the data collected from harvest days 21, 35 and 42, which consistently displayed strong linear or log-linear patterns. Gibberellin content and concentrations were also analyzed by ANOVA, for all harvest days (three-factor: GA, genotype and day) or individual days (two-factor: GA and genotype).
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Figure 1. (a) Structure of gibberellin A1 (GA1), the bioeffector GA involved in the regulation of shoot growth and other processes in many higher plants. Numbers indicate positions of hydroxylations. (b) The early 13-hydroxylation GA biosynthetic pathway, including GAs and enzymes (blue; ox = oxidase) that were assessed in this study with Brassica or in the studies listed in Table 1 and Table 2. GA19 and GA20 are the primary GA1 precursors and GA4 provides an alternate precursor [16]. Following 2-hydroxylation, GA29 and GA8 (red) are biologically inactive. 
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Figure 2. Dry mass of organs and whole plants of two Brassica inbreds and their F1 hybrid grown in greenhouse conditions (Means ± SE, n = 10). 
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Figure 3. Contents of endogenous gibberellin A1 (GA1) and its precursors GA19 and GA20 in stems, and heights (Means ± SE provided for day 49, n = 10) of two Brassica inbreds and their F1 hybrid grown in greenhouse conditions. The inset plot displays the developmental stages at day 42, in accordance with Harper and Berkencamp [52]. 
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Table 1. Studies of gibberellins (GAs) and heterosis for growth in maize, or corn, Zea mays L., sequenced chronologically (GA3 = gibberellic acid).
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	Findings
	Reference
	Exogenous GA3
	Endogenous GAs
	GA metabolism
	Gene expression
	Other





	Higher sensitivity of inbreds to exogenous GA3
	[12]
	X
	
	
	
	



	Higher levels of GA-like substances in shoot apices from a hybrid than parental inbreds
	[17]
	
	X
	
	
	



	Increased responsivity of inbreds, faster [3H]GA20 metabolism in a hybrid
	[18]
	X
	
	X
	
	



	Faster [3H]GA1 metabolism in a heterotic hybrid
	[19]
	
	
	X
	
	



	Higher levels of GA19 and GA1 in hybrids than parental inbreds
	[15]
	
	X
	
	
	



	Increased GA1 and correspondence with amylase and seedling growth in a hybrid family
	[20]
	
	X
	
	
	X



	Correspondences between GA3 responsivity and GA content across inbreds and hybrids
	[21]
	X
	X
	
	
	



	Heterosis persists with a GA dwarfing gene
	[22]
	
	
	
	
	X



	Increased levels of ‘gibberellin-stimulated transcript 1 like protein’ in hybrids
	[23]
	
	
	
	X
	



	Increased expression of GA 20-oxidase in hybrids over parental

inbreds, in multiple tissues
	[24]
	
	
	
	X
	



	Genome-wide associations support GAs as promoting brassinosteroids and heterosis for height
	[25]
	
	
	
	
	X



	Induction of GA 20-oxidase promoted heterosis
	[26]
	
	
	
	X
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Table 2. Studies of gibberellins (GAs) and heterosis in crop plants other than maize and trees, sequenced chronologically (GA3 = gibberellic acid).
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	Plant
	Findings
	Reference
	Exogenous GA3
	Endogenous GAs
	GA metabolism
	Gene expression
	Other





	Tomato
	Greater growth promotion by GA3 of slow-growing inbreds
	[13]
	X
	
	
	
	



	Sorghum
	Greater growth promotion by GA3 of shorter varieties
	[27]
	X
	
	
	
	



	Spruce
	Increased responsivity to GA4/7 in slower growing F1 crosses
	[28]
	X
	
	
	
	



	Poplar
	Higher levels of GA-like substances in bark scrapings from hybrids, GA19 and GA1 identified
	[29]
	
	X
	
	
	



	Plantago
	Slower growing inbreds were more responsive to GA3; a GA inhibitor reduced growth especially in faster growing lines
	[30]
	X
	
	
	
	X



	Plantago
	Decreased apparent GA, by immunoassay, in a slower growing inbred
	[31]
	
	X
	
	
	



	Poplar
	Higher GA-like substances in bark scrapings from hybrids than parents
	[32]
	
	X
	
	
	



	Sorghum
	Higher GA1 in fast-growing hybrids than parents, 2 triplets
	[33]
	
	X
	
	
	



	Sorghum
	Increased [3H]GA20 metabolism in fast- growing hybrids
	[34]
	
	
	X
	
	



	Eggplant
	Shorter genotypes were more responsive to GA3 for inbreds and hybrids
	[35]
	X
	
	
	
	



	Poplar
	No increase in levels in subapical internodes of GA44,20,29,1,8 but harvests were after the growth interval
	[36]
	
	X
	
	
	



	Wheat
	Higher GA4 in hybrids; increased expression of GA 20-oxidase and GA 3-oxidase
	[37]
	
	X
	
	X
	



	Wheat
	Heterosis for height correlated with expression of GA 20-oxidase and GA 3-oxidase variants
	[38]
	
	
	
	X
	



	Rice
	Higher levels of GA53,44,4,1 but lower GA20, and increased expression of GA biosynthesis and action genes in hybrids
	[39]
	
	X
	
	X
	



	Arabidopsis
	A GA biosynthetic inhibitor blocks heterosis
	[40]
	
	
	
	
	X



	Poplar
	Across hybrids, growth positively correlated with GA8 but negatively correlated with GA19 and GA20
	[41]
	
	X
	
	
	



	Brassica
	Shoot elongation correlated with GA19,20,1 but slight heterosis, primarily for increased root growth
	This study
	
	X
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Table 3. Characteristics of two Brassica inbreds (AO533 and AO539) and their F1 hybrid, grown in greenhouse conditions (± SE, n = 10). Statistical comparisons including these results along with measures from plants harvested on days 21 and 35 are provided in Table 4.
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Genotype

	
Seedling Emergence (%)

	
Foliar Characteristics at Day 42




	
Day 4

	
Day 7

	
Leaf Number

	
Leaf Size (cm2)

	
Leaf Area (cm2)






	
AO533

	
25.9

	
58.8

	
10.6 ± 0.4

	
32.5 ± 2.3

	
352.4 ± 37.5




	
AO539

	
41.2

	
89.4

	
12.3 ± 0.3

	
30.3 ± 0.9

	
371.2 ± 16.4




	
AO533 × AO539

	
71.8

	
95.3

	
12.8 ± 0.3

	
30.0 ± 1.7

	
384.6 ± 23.8
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Table 4. Analyses of covariance for growth characteristics of two Brassica inbreds (AO533 = “A3” and AO539 = “A9”) and their F1 hybrid grown in greenhouse conditions. Plants were harvested at 21, 35 and 42 days, and day provided the covariate. There were generally 99 plants producing F(2,96), except for GA content (F2,20) and *, ** = p < 0.05, p < 0.01, respectively. For comparisons, genotypes are sequenced by decreasing values with least significant difference (LSD) pairwise comparisons: ‘~’ not significantly different, or greater (‘≥’ = p < 0.1; ‘>’ = p < 0.05, and ‘>>’ = p < 0.01). The potence ratio (PR, averages from 3 harvests for each value) provides a measure of dominance with values substantially exceeding 1 indicating overdominance, or heterosis (PR > 1.5 in red). The PR value for GAs is inflated due to similarity of the two parents for some GA measures.
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	Characteristic
	Genotype F Value
	Comparisons
	Potence Ratio





	Number of Leaves
	22.10 **
	F1 ~ A9 >> A3
	1.57



	Leaf Size
	2.60
	F1 ~ A9 > A3
	1.35



	Leaf Area
	5.76 **
	F1 ~ A9 > A3; F1 >> A3
	1.81



	Leaf Mass
	8.53 **
	F1 ~ A9 >> A3
	1.58



	Juvenile Height
	5.48 **
	F1 ~ A3 > A9; F1 >> A9
	2.71



	Stem Mass
	4.45 *
	F1 ~ A9 > A3; F1 >> A3
	2.36



	Root Mass
	15.78 **
	F1 > A9 >> A3
	2.64



	Total Plant Mass
	15.76 **
	F1 > A9 >> A3
	2.23



	Gibberellins (GAs; content/stem)
	1.83
	F1 ~ A9 ~ A3
	15.8











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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