Supplementary data

Supplementary Table 1. Concentrations of micronutrients in roots and shoots of 'Raccoon' for the respective combinations of NaCl (5.0 to 160.0 mmol $_{\rm c}$ L $^{-1}$) and K doses (0.07 to 3.0 mmol $_{\rm c}$ L $^{-1}$).

			Shoot								
K doses	NaCl doses (mmol ₆ L-¹)										
(mmol _o L ⁻¹)	5.0	30.0	60.0	120.0	160.0	5.0	30.0	60.0	120.0	160.0	
	B (mg kg·¹)										
0.07	33.15aA	16.25aB	18.92aB	14.64aB	19.97aB	40.63aA	26.59aB	31.41aAB	25.05aB	25.32aB	
0.15	22.44bA	24.87aA	21.58aA	17.40aA	19.12aA	37.51aA	28.07aAB	24.55abB	23.90aB	29.00aAB	
0.30	20.98bA	18.10aAB	20.80aA	9.66aB	17.57aAB	39.51aA	24.05aB	18.52bB	20.80aB	19.65aB	
3.00	21.78bA	19.05aA	16.49aA	16.64aA	16.44aA	31.02aA	31.05aA	20.54abAB	19.59aB	22.53aAB	
	Cu (mg kg·¹)										
0.07	21.73abA	13.62bB	15.99aB	13.97aB	16.03aB	6.35bA	6.13aA	8.23aA	9.23aA	8.86aA	
0.15	22.38aA	18.26aAB	16.15aBC	12.03aC	13.76aC	7.14bA	6.51aA	7.48aA	6.19aA	7.27aA	
0.30	21.02abA	17.19abAB	14.16aBC	7.54bD	11.73aCD	8.31abA	7.10aA	5.27aA	6.60aA	7.88aA	
3.00	17.64bA	15.35abAB	14.66aAB	11.48abB	12.66aB	12.78aA	5.89aB	5.98aB	5.91aB	7.92aB	
		Fe (mg kg ⁻¹)									
0.07	1469.03aA	1395.79aA	1242.51aAB	569.12aC	673.90aBC	463.62aA	362.84aA	394.83bA	473.61aA	292.24aA	
0.15	1556.31aA	1027.27abAB	900.82aB	642.22aB	1002.10aAB	430.43aB	237.00aB	791.15aA	440.40aB	298.49aB	
0.30	1302.78aA	970.12abAB	866.72aAB	585.86aB	887.12aAB	502.15aA	431.21aA	245.21bA	526.60aA	371.19aA	
3.00	1089.68aA	766.74bA	860.48aA	800.54aA	715.06aA	379.68aA	417.99aA	351.15bA	218.31aA	212.92aA	
					Mn (mg l	(g ⁻¹)					
0.07	257.73abC	500.85aA	374.06aB	343.37aC	244.43aC	111.04aC	160.82abA	144.95bAB	135.66aB	127.02aBC	
0.15	362.63aAB	420.99aA	445.18aA	291.96aBC	246.73aC	130.16aB	163.88aA	172.40aA	118.31aBC	105.60aC	
0.30	248.49bBC	483.11aA	344.56aB	216.89aC	314.79aBC	119.68aB	169.47aA	117.28cB	113.25aB	108.89aB	
3.00	347.26abA	414.31aA	359.31aA	220.16aB	210.86aB	132.11aAB	137.17bAB	152.17abA	123.49aBC	104.88aC	
		Zn (mg kg ⁻¹)									
0.07	31.02aAB	26.37aBC	24.55aC	21.87abC	34.13aA	31.43bA	29.49aA	31.75aA	33.85aA	41.97aA	
0.15	32.51aA	22.46aC	23.47aBC	21.15abC	28.67abAB	44.36aA	29.09aB	29.07aB	26.64aB	38.88abAE	
0.30	32.07aA	21.55aBC	23.17aB	15.94bC	21.68cBC	44.11aA	29.33aB	25.80aB	26.68aB	27.86bB	
3.00	23.33bA	21.05aA	24.21aA	23.70aA	24.82bcA	28.48bA	27.79aA	27.50aA	29.11aA	38.62abA	

Means with different letters are significantly different from each other by Fisher's LSD test (p < 0.05). Lowercase: comparisons between K doses, within each Na dose and micronutrient. Uppercase: comparisons between Na doses, within each K dose inside each micronutrient.

Supplementary Table 2. Concentrations of micronutrients in roots and shoots of 'Gazelle' for the respective combinations of NaCl (5.0 to 160.0 mmol_c L⁻¹) and K doses (0.07 to 3.0 mmol_c L⁻¹).

			Shoot								
K doses	NaCl doses (mmole L-¹)										
(mmol _o L ⁻¹)	5.0	30.0	60.0	120.0	160.0	5.0	30.0	60.0	120.0	160.0	
	B (mg kg⁻¹)										
0.07	53.84aA	42.55aB	44.08aAB	38.78aB	40.79aB	50.95aA	50.09aA	51.12aA	47.49aA	44.74aA	
0.15	45.06aA	37.40aA	39.98aA	37.80aA	41.54aA	54.26aA	51.86aA	46.50aA	49.25aA	53.68aA	
0.30	51.60aA	46.30aAB	47.83aAB	41.03aB	40.31aB	55.67aA	56.08aA	57.37aA	55.39aA	50.77aA	
3.00	47.74aA	42.66aA	43.00aA	42.58aA	40.48aA	62.71aA	53.08aAB	49.44aB	49.07aB	48.49aB	
	Cu (mg kg·¹)										
0.07	17.18abA	10.99aABC	13.48aAB	8.83aBC	7.06aC	8.66aA	8.37aA	8.96bA	9.30aA	8.10aA	
0.15	12.81bA	8.64aA	11.24aA	8.78aA	8.51aA	8.73aB	8.99aB	18.50aA	8.01aB	8.61aB	
0.30	12.32bA	10.47aA	9.96aA	8.20aA	8.78aA	6.56aA	7.06aA	7.63bA	7.44aA	7.71aA	
3.00	19.33aA	10.28aB	9.29aB	9.16aB	7.65aB	6.47aA	8.53aA	6.68bA	6.78aA	7.70aA	
		Fe (mg kg ⁻¹)									
0.07	1601.20aA	1134.26aB	1328.93aAB	1014.99abB	1068.39aB	260.68aB	289.08aB	253.99bB	472.72aA	281.82aB	
0.15	1943.66aA	1213.78aB	1100.62aBC	687.97bC	960.81aBC	219.81aB	187.92aB	452.06aA	269.09bB	250.36aB	
0.30	1683.09aA	1141.16aB	930.07aB	820.65abB	837.95aB	226.82aA	213.51aA	290.49abA	208.49bA	187.14aA	
3.00	1676.00aA	1033.80aB	1112.79aB	1171.67aB	1033.06aB	203.42aA	192.45aA	204.16bA	331.50abA	214.37aA	
	Mn (mg kg ⁻¹)										
0.07	372.31aA	347.27aA	383.64aA	275.97aA	312.90aA	102.04bB	122.07aAB	142.96aA	111.37aAB	112.81aAB	
0.15	487.25aA	390.48aAB	334.35aAB	256.95aB	254.83aB	108.89abAB	134.11aA	125.19aAB	93.70aB	94.53aB	
0.30	524.83aA	497.30aA	382.45aAB	278.63aB	279.71aB	126.20abAB	133.53aA	109.03aAB	104.38aAB	95.00aB	
3.00	414.49aAB	416.68aA	290.92aABC	260.34aBC	184.87aC	139.37aA	140.25aA	117.00aAB	92.38aB	81.87aB	
	Zn (mg kg·¹)										
0.07	23.33aA	19.56aA	19.18aA	20.64bA	19.84aA	25.88aA	24.02aA	26.46aA	27.75aA	25.06aA	
0.15	25.40aA	15.80aA	18.55aA	19.62bA	19.90aA	25.37aAB	25.89aAB	31.95aA	24.69aB	25.62aAB	
0.30	25.34aB	18.75aB	20.25aB	36.68aA	18.87aB	25.65aA	24.39aA	26.58aA	23.07aA	23.46aA	
3.00	27.50aA	21.20aA	24.33aA	22.83bA	18.72aA	23.63aA	27.78aA	25.40aA	24.60aA	25.49aA	

Means with different letters are significantly different from each other by Fisher's LSD test (p < 0.05). Lowercase: comparisons between K doses, within each Na dose and micronutrient. Uppercase: comparisons between Na doses, within each K dose inside each micronutrient.