
plants

Article

Plant Disease Classification: A Comparative
Evaluation of Convolutional Neural Networks and
Deep Learning Optimizers

Muhammad Hammad Saleem 1 , Johan Potgieter 2 and Khalid Mahmood Arif 1,*
1 Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology,

Massey University, Auckland 0632, New Zealand; H.Saleem@massey.ac.nz
2 Massey Agritech Partnership Research Centre, School of Food and Advanced Technology,

Massey University, Palmerston North 4442, New Zealand; J.Potgieter@massey.ac.nz
* Correspondence: K.Arif@massey.ac.nz

Received: 9 September 2020; Accepted: 4 October 2020; Published: 6 October 2020
����������
�������

Abstract: Recently, plant disease classification has been done by various state-of-the-art deep learning
(DL) architectures on the publicly available/author generated datasets. This research proposed
the deep learning-based comparative evaluation for the classification of plant disease in two steps.
Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative
analysis among well-known CNN architectures along with modified and cascaded/hybrid versions
of some of the DL models proposed in the recent researches. Secondly, the performance of the
best-obtained model was attempted to improve by training through various deep learning optimizers.
The comparison between various CNNs was based on performance metrics such as validation
accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were
trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective
plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is
concluded that the Xception architecture trained with the Adam optimizer attained the highest
validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better
than the previous approaches and it proves the novelty of the work. Therefore, the method proposed
in this research can be applied to other agricultural applications for transparent detection and
classification purposes.

Keywords: plant disease classification; convolutional neural network; deep learning; validation
accuracy; F1-score

1. Introduction

In order to match the food demand, agricultural problems should be addressed by advanced
techniques. In this regard, the agricultural industries are focusing on artificial intelligence methods.
Several traditional machine learning (ML) algorithms have been used to perform various agricultural
operations. On top of that, deep learning (DL) produced significant developments in the agricultural
field of research. This is due to the automatic feature extraction capability of the deep learning
algorithms. Among several agricultural problems, the successful classification of plant diseases is
vital to improve the quality/quantity of agricultural products and reduce an undesirable application
of chemical sprayers such as fungicide/herbicide. Therefore, it is an emerging research topic to
advance agricultural automation. This agricultural task has a complexity due to the resemblance in the
occurrence of the plant containing diseases. In this regard, several studies have been conducted to
improve the classification of plant disease.

Plants 2020, 9, 1319; doi:10.3390/plants9101319 www.mdpi.com/journal/plants

http://www.mdpi.com/journal/plants
http://www.mdpi.com
https://orcid.org/0000-0002-3625-3021
https://orcid.org/0000-0002-9400-1009
https://orcid.org/0000-0001-9042-4509
http://dx.doi.org/10.3390/plants9101319
http://www.mdpi.com/journal/plants
https://www.mdpi.com/2223-7747/9/10/1319?type=check_update&version=2


Plants 2020, 9, 1319 2 of 16

Many conventional machine learning (ML) models have been applied for plant disease
classification [1,2]. Similarly, advanced imaging techniques including hyperspectral [3–7] and
multispectral imaging [8] have also been used for plant/leaf disease identification. However, after the
evolution of deep learning (DL), many state-of-the-art architectures, including AlexNet [9–14],
Visual Geometry Group (VGG) [10,11,13,15,16], DenseNet [16], Inception-v4 [16] and ResNet [11,13,14,16],
got promising results for the classification of plant disease. In this regard, several studies proved the
significance of deep learning-based methods as compared to the traditional ML techniques. For example,
a well-known DL model named GoogLeNet outperformed the ML algorithms including Support Vector
Machine (SVM) and Random Forest (RF) models for the classification of disease in tomato leaves [9].
Another research showed the effectiveness of Convolutional Neural Networks (CNN) in comparison
with the other state-of-the-art techniques such as Radial Basis Function Neural Network (RBFNN),
Particle Swarm Optimization (PSO), and SVM for the classification of defects in mango leaves [17].
An article proposed a CNN model to identify diseases in apple leaves, which provided higher accuracy
than SVM, Back-Propagation Neural Network model (BPNN), AlexNet, GoogLeNet, ResNet, and VGG
models [18]. In [19], a CNN model was proposed to classify the disease in the leaves of PlantVillage dataset;
its performance was better than the ML techniques such as SVM, Decision Tree (DT), Logistics Regression
(LR), and K-Nearest Neighbor (KNN) models. This model also performed better than the well-known
DL architectures including AlexNet, ResNet, VGG-16, and Inception-v3. Therefore, this article focuses
on the DL-based models for the classification of plant disease.

Different approaches have been adopted to enhance the results of plant disease classification
including modified versions of well-known DL models, various training techniques, data augmentation
techniques, cascaded versions of two successful DL architectures, etc. [6]. For example, the famous
GoogLeNet model was improved to achieve better testing accuracy for the identification of maize leaf
disease in a small period due to its lesser number of parameters [20]. Similarly, inspired by the AlexNet
model, a modified CNN architecture was proposed that had a lesser number of filters in convolutional
layers and number of nodes, which apparently reduced overall parameters as compared to the original
model and successfully identified the disease in tea leaves [21]. By using an extended version of the
PlantVillage dataset, two modified versions of MobileNet models were proposed and their performance
was compared with the original model (MobileNet), AlexNet, and VGG models [22]. Another research
proposed a cascaded version of DL architecture to classify disease in apple leaves and it achieved better
results as compared to AlexNet, GoogLeNet, VGG-16, Inception-v3, and various versions of ResNet
models [23]. Moreover, several visualization techniques were also utilized along with DL models to
highlight the disease spots in several plant species [9,24–26]. Few studies have been conducted to
further advance the research of plant disease classification by using various training techniques. In [12],
the performance of two well-known DL models (AlexNet and GoogLeNet) was compared, which were
trained from transfer learning and scratch techniques. Reference [16] implemented ResNet, VGG,
Inception-v4, and DenseNet models by using a fine-tuning technique. Another research compared the
performance of DL architectures including AlexNet, ResNet, DenseNet, SqueezeNet, Inception-v3,
and VGG by training through transfer learning and scratch techniques [24].

The research in deep learning has been progressing with the passage of time by introducing
various methods to achieve remarkable outcomes. For example, in [27], a random search method
was proposed for tuning the hyperparameters of the neural network to reduce forecasting errors.
Similarly, various recent studies proposed the optimizations algorithms to find the optimal value of
hyperparameters of DL architectures [28]. Moreover, deep learning requires an optimization algorithm
to update the weight parameters and reduce the losses. Therefore, various deep learning optimizers
have been developed by the research community to achieve better results in image classification tasks.
These optimizers produce a significant improvement in the performance of DL models. In the context of
plant disease classification, the previous researches either focused on the modification of state-of-the-art
DL models or the deployment of various training techniques. However, none of the previous studies
has proposed an improvement in the plant disease classification by state-of-the-art DL optimizers



Plants 2020, 9, 1319 3 of 16

through a comparative study. In this regard, this article presents a comprehensive comparative analysis
to perform plant disease classification in two steps. In the first step, the performance of 18 convolutional
neural networks was evaluated: 10 famous/well-known DL architectures that were previously used
for several image recognition tasks, six recently published modified versions that were derived from
the famous DL models, and two cascaded/hybrid versions that were developed from two efficient
DL algorithms; the second step was applied to improve the performance of the best-obtained model
by training with various deep learning optimizers including RMSProp, Adam, Adadelta, Adamax,
and Adagrad. For a comprehensive evaluation, validation accuracy/loss, F1-score, and the number of
epochs (required to converge training and validation plots) were compared. The PlantVillage dataset
was selected for this research, which contains disease in 14 different plant species. The successful/better
classification results obtained in a large variety of dataset classes confirm that the method presented in
this article can also be applied to other datasets related to plant disease. Furthermore, the better results
obtained by this research will be useful for future studies regarding the real-time classification and
detection of plant disease in a single framework. Moreover, the proposed methodology could also be
adopted to other agricultural applications.

The rest of the paper is organized as follows: Section 2 presents the details of the dataset,
hardware/software specifications, DL architectures, DL optimizers, and specifications required to
train the DL models. Section 3 presents the results to indicate the performance of all the well-known,
modified, and cascaded/hybrid versions of DL models along with the improvement in the performance
of best-obtained models by using various deep learning optimizers, and finally, Section 4 describes the
concluding remarks along with some future recommendations.

2. Materials and Methods

The Convolutional Neural Networks (CNNs) are mostly used for image classification tasks.
Therefore, in this research, the performance of many state-of-the-art CNN architectures was evaluated
for the classification of plant diseases. The modified and cascaded versions of DL architectures were
also considered, which were recently published in prominent research articles related to plant disease
classification. Figure 1 shows all the 18 DL architectures considered for this research. These models
were divided into three categories: well-known, modified/improved, and cascaded/hybrid versions.
An overall methodology of this research is presented in Figure 2. Firstly, the Stochastic Gradient
Descent (SGD) with momentum optimizer was selected to train the CNN models due to its fast
convergence ability [24]. Then, 18 CNN architectures were trained on the PlantVillage dataset and
their convergence to the final training/validation values was observed to update the hyperparameters.
Next, the CNN models were compared in terms of training and validation accuracy/loss, and F1-score.
This led us to apply the DL optimization algorithms for further improvement in the performance of
those CNN architectures, which achieved the highest F1-score in their particular category. The novelty
of the work is proved by getting the most suitable combination of the CNN model and DL optimizer,
which provided considerably better result as compared to the previous researches.

2.1. Dataset

All the DL models were trained on a publicly available dataset called PlantVillage [29], which contains
a total of 54,306 images containing 38 different healthy/diseased leaves related to their 14 plant species
(some of the plant diseases are shown in Figure 3). The size of the images was changed to 224 × 224 × 3
and normalization was considered by dividing the values of pixel by 255 for making it suitable for the
initial values of the models. The dataset was divided by 70%, 20%, and 10% into three categories to
avoid overfitting: training, validation, and testing datasets, respectively [22].



Plants 2020, 9, 1319 4 of 16

Figure 1. Three categories of DL architectures: well-known, improved/modified, and cascaded/hybrid versions.
MLCNN: Multi-label Convolutional Neural Network, VGG: Visual Geometry Group.

2.2. Software and Hardware Specifications

The DL architectures were programmed in Python language due to the availability of very useful
libraries and DL frameworks. Keras with TensorFlow backend was utilized to build the architectures.
CuDNN library was installed as it increases the speed of training and works with TensorFlow. All the
experiments were carried out on a Graphical Processing Unit (NVIDIA Quadro K2200) having the
specifications: 4GB memory, 640 CUDA cores, 1045 MHz core clock, and 80 GB/sec memory bandwidth.

2.3. Deep Learning Architectures

After the development of the AlexNet architecture, a revolutionary period of state-of-the-art CNN
architectures was started for many image classification tasks. Therefore, in this article, we considered
very popular and successful CNN models such as AlexNet [30], OverFeat [31], VGG-16 [32], ZFNet [33],
ResNet-50 [34], Inception ResNet-v2 [35], Inception-v4 [35], MobileNet [36], DenseNet-121 [37]
and Xception [38].

Some researchers proposed improved/modified versions of state-of-the-art DL architectures to
achieve better/more results for classifying the diseases of plant species. Among them, we have considered
improved GoogLeNet [20], inspired by the famous GoogLeNet model [39], Cifar-10 [20], LeafNet [23],
a multilayer convolutional neural network (MLCNN) [17] derived from the AlexNet model [30],
and modified and reduced MobileNet [22] inspired by the MobileNet model [36]. Some cascaded/hybrid
versions of DL architectures have also been considered in this article such as a cascaded form of the
well-known AlexNet with GoogLeNet models as described in [18] and a hybrid DL architecture of
AlexNet with VGG models (AgroAVNET) as proposed in [40].



Plants 2020, 9, 1319 5 of 16

Figure 2. The methodology of this research. CNN: Convolutional Neural Network, SGD: Stochastic
Gradient Descent.

Figure 3. Some of the plant diseases from the PlantVillage dataset [29].



Plants 2020, 9, 1319 6 of 16

2.4. Deep Learning Optimizers

The Stochastic Gradient Descent (SGD) was used to train all the DL models during the first step
of the proposed method. After getting the best DL architecture, an improvement in the classification of
plant disease was also attempted. In this regard, we used five state-of-the-art deep learning optimizers
to train those DL models which attained the highest validation accuracy and F1-score in the first step
of the analysis. Few characteristics of these optimizers are provided as under:

• SGD: This is one of the simplest deep learning optimizers. A static learning rate for all the
parameters requires in the duration of whole training and it has a fast convergence ability [41].

• Adagrad: This optimizer uses different learning rates for every parameter in the model. It updates
the learning rate according to the frequency of the update of each parameter [42].

• RMSProp: To reduce the training time observed in Adagrad, the RMSProp optimizing functions
were proposed and its learning rate decays exponentially [43].

• Adadelta: This is an extended version of Adagrad optimizer and accumulates the previous
gradients over a fixed time window which ultimately ensures the continuation of learning even
after many iterations. Adadelta used Hessian approximation to ensure the update direction in the
negative gradient and eliminated the learning rate from update rule [44].

• Adam: The Adaptive moment estimation method (Adam) evaluates adaptive learning rates from
the first and second moments of gradients for various parameters [45]. It has combined advantages
of two extended versions of the SGD method that are Adagrad and RMSProp. In contrast with
the RMSProp, it calculates the average of the second moment of gradient and it also utilizes the
previous gradients to speed up learning [45].

• Adamax: A different version of Adam was also proposed in [45] which is based on the infinity
norm and could be useful for sparse parameter updates like word embeddings.

2.5. Training Specifications

All the DL models were trained from scratch on the PlantVillage dataset. The hyperparameters
were tuned by the random search method [46]. The internal covariate shift problem occurs on the
neural network because of the variation in the distribution of input data due to a change in the number
of parameters in the previous layer. This problem was addressed by Batch Normalization which is
a very useful technique for a high learning rate [47]. For training all the DL models, the ReLU activation
function was used as it is computationally efficient [24,30] and reduces the possibility of the gradient
vanishing. The specifications of all the DL optimizers are summarized in Table 1.

Table 1. Hyperparameters of the deep learning optimizers.

Optimizers Specifications

SGD learning rate = 0.001, weight decay = 0.0005,
momentum = 0.9, nesterov = False

Adagrad learning rate = 0.001, epsilon = 1 × 10−7

RMSProp learning rate = 0.001, rho = 0.9, epsilon = 1 × 10−7

Adadelta learning rate = 1.0, rho=0.95, epsilon = 1 × 10−6

Adam learning rate = 0.001, beta1 = 0.9, beta2 =
0.999, epsilon = 1 × 10−8, amsgrad = False

Adamax learning rate = 0.002, beta1 = 0.9, beta2 = 0.999,
epsilon = 1 × 10−8

3. Results and Discussion

This section first presents the comparative analysis of DL architectures to select the best model
which leads to the results obtained regarding the improvement in the performance of the best-suited



Plants 2020, 9, 1319 7 of 16

models by using various DL optimization algorithms. All the results were evaluated in terms of training,
validation accuracy/loss, and F1-score. The F1-score is considered an important performance metric
especially for the case when there is an uneven distribution in the classes just such as the PlantVillage
dataset (for example, the Potato healthy class contains the least number of images (152), whereas,
the Citrus greening has the highest number of images (5507) [29]). Therefore, the model/optimizer that
attained the highest F1-score was considered the most suitable architecture for the classification of
plant disease. The performances of all DL architectures are represented by line graphs (Figures 4–6),
and it was empirically observed that they required 60 epochs (an epoch is a complete cycle of training
on each image sample in the training dataset) at which training/validation accuracy and loss were
converged. The overall performance of DL architectures is also summarized in Table 2.

Figure 4. Cont.



Plants 2020, 9, 1319 8 of 16

Figure 4. Performance plots of well-known CNN architectures. (a), (b) provide training and validation
accuracy/loss of VGG-16, OverFeat, AlexNet, ResNet-50 and Inception-v4 architectures. (c), (d) provide training
andvalidationaccuracy/lossofZFNet, InceptionResNet-v2,DenseNet-121,MobileNetandXceptionarchitectures.

Figure 5. Performance plots of modified versions of CNN architectures. (a) Provides training and
validation accuracy, (b) provides training and validation loss.



Plants 2020, 9, 1319 9 of 16

Figure 6. Performance plots of cascaded/hybrid versions of CNN architectures. (a) Provides training
and validation accuracy, (b) provides training and validation loss.



Plants 2020, 9, 1319 10 of 16

Table 2. Training and validation accuracy/loss, precision, recall, and F1-score along with the number of parameters, training time, and epochs required to train deep
learning architectures (in the order of the lowest to the highest F1-score).

Deep Learning
Architectures

Parameters
(in Millions)

Epochs
Required to

Train the Model

Training Time
(in Hours)

Training
Accuracy

Validation
Accuracy

Training
Loss

Validation
Loss Precision Recall F1-score

LeafNet 0.324 M 59 5.95 0.8590 0.7961 0.4563 0.6658 0.7946 0.7971 0.7958

VGG-16 138 M 59 38.13 0.8339 0.8189 0.5328 0.5651 0.8182 0.8194 0.8188

OverFeat 141.8 M 58 6.75 0.8995 0.8603 0.3201 0.4330 0.8592 0.8628 0.8610

Improved Cifar-10 2.43 M 58 6.08 0.9256 0.8974 0.2628 0.3205 0.8944 0.8960 0.8952

Inception ResNet v2 54.3 M 58 32.83 0.9551 0.9091 0.1530 0.3047 0.9075 0.9105 0.9089

Reduced MobileNet 0.5 M 55 11.72 0.9570 0.9278 0.1860 0.2442 0.9269 0.9267 0.9268

Modified MobileNet 0.5 M 53 6.38 0.9534 0.9297 0.1632 0.2385 0.9278 0.9265 0.9271

ResNet-50 23.6 M 55 26.33 0.9873 0.9423 0.0468 0.1923 0.9351 0.9358 0.9354

MLCNN 78 M 57 67.33 0.9583 0.9402 0.1335 0.1820 0.9386 0.9411 0.9398

Inception v4 41.2 M 59 52.92 0.9586 0.9489 0.1410 0.1828 0.9410 0.9466 0.9438

Improved GoogLeNet 6.8 M 53 9.67 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533

AlexNet 60 M 54 6.10 0.9689 0.9578 0.1046 0.1298 0.9563 0.9570 0.9566

DenseNet-121 7.1 M 56 28.75 0.9826 0.9580 0.0758 0.1323 0.9581 0.9569 0.9575

MobileNet 3.2 M 47 14.70 0.9764 0.9632 0.0903 0.1090 0.9624 0.9612 0.9618

Hybrid AlexNet with
VGG (AgroAVNET) 238 M 54 49.90 0.9841 0.9649 0.0546 0.1078 0.9626 0.9674 0.9650

ZFNet 58.5 M 47 6.47 0.9752 0.9717 0.0746 0.1139 0.9746 0.9751 0.9748

Cascaded AlexNet and
GoogLeNet 5.6 M 57 6.5 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750

Xception 22.8 M 34 56.28 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765



Plants 2020, 9, 1319 11 of 16

3.1. Step-1: Comparative Analysis of Deep Learning Architectures

3.1.1. Performance of Well-Known CNN Architectures

The performance of well-known CNN architectures is presented in Figure 4, and it indicates
that there is no sign of underfitting (the problem occurs during the training of deep learning models
according to which the model does not train accurately if training loss does not change or it continuously
decreases) and overfitting (the problem at which the model does not perform appropriately for new
data/validation dataset or validation loss decreases to some extent then suddenly increases for the
remaining epochs). Overall, 10 well-known CNN architectures were considered. A few important
observations from Figure 4 and Table 2 were made:

• The Xception model attained the highest validation accuracy, F1-score, and lowest validation loss
among all the well-known CNN models. Therefore, this model can be undoubtedly considered as
the best CNN architecture to classify plant disease on the PlantVillage dataset. It implies that the
concept of a modified version of depth-wise separable convolution [38] in the Xception model is
a useful way to obtain higher classification results. Moreover, this DL model converged to its
final value at the 34th epoch which is the least number of epochs as compare to all the other DL
architectures. On the other hand, it required a significant amount of time to complete one epoch
(around 3400 s). Therefore, future studies should propose another version of DL architecture that
can achieve Xception-level accuracy and require smaller training time for each epoch.

• The second highest F1-score/validation accuracy was attained by ZFNet architecture. Hence,
a smaller filter size and the increased number of activation maps used in ZFNet architectures
(as compared to AlexNet) improved its performance.

• Then, MobileNet, DenseNet, and AlexNet architectures have also achieved a good F1-score
followed by Inception-v4, ResNet-50, and Inception ResNet-v2 architectures. The MobileNet is
a comparatively more preferable model due to its lower number of parameters which reduced
its computation time significantly. The depthwise and pointwise convolutional layers helped
to achieve a better classification result. Therefore, a CNN model could be proposed in future
research based on the MobileNet architecture. Moreover, this model required a lower number
of epochs to achieve its final accuracy and loss as compare to DenseNet and AlexNet models
(as shown in Table 2).

• From Table 2, it is also noticed that the DL models, such as Inception-v4, Inception ResNet-v2,
OverFeat, and VGG-16, required 58-59 number of epochs to converge training/validation plots
(also shown in Figure 4), which significantly increased their training time.

• The VGG-16 and OverFeat were found unsuitable models for plant disease classification as they
achieved lower validation accuracy/F1-score and higher validation loss as compared to the other
well-known DL architectures. The smaller filter size of the VGG model degraded its performance.
However, the larger filter size of the OverFeat model significantly reduced its training time but
they were not enough to provide a noticeable classification performance. Additionally, they had
a higher number of parameters (in millions) which slow down their training time effectively.

3.1.2. Performance of Modified CNN Architectures

In this article, six modified/improved versions of CNN architectures were also considered.
Their performance is presented in Figure 5 from which the following points are discussed:

• The improved GoogLeNet architecture achieved the best performance in terms of validation
accuracy/loss and F1-score among all the modified versions of CNN architectures by utilizing the
concept of the Inception module from the original GoogLeNet model. Moreover, it got the final
value of accuracy and loss in 53 epochs which is the least as compared to other modified/improved
versions of the DL models considered in this article, but it required more training time to complete
one epoch as compared to the models like Modified and Reduced MobileNet.



Plants 2020, 9, 1319 12 of 16

• The MLCNN architecture provided a good F1-score due to the inclusion of a dropout layer after
each max pooling layer and a reduction in the number of filters of the starting convolution layers in
the original AlexNet architecture. However, due to a higher number of parameters, this modified
DL architecture required considerably higher training time per epoch.

• The two versions of MobileNet named Modified and Reduced MobileNet models achieved
an acceptable F1-score closed to each other. These modified versions of DL architecture used
depthwise separable convolutional layers, which helped to attain a good classification result,
and they had six times fewer parameters than the original MobileNet model which reduced their
training time per epoch.

• Moreover, there were some models like Improved Cifar-10 and LeafNet models that had a lower
number of parameters which increased their speed of training per epoch. The Improved Cifar-10
model achieved a noticeable F1-score, but the reduced parameters of the LeafNet model were
not enough to obtain a good F1-score/validation accuracy. Therefore, it is not a suitable model
to classify diseases in the selected dataset. It is also observed that these two models required
a higher number of epochs as compare to other modified versions of DL architectures. Hence,
future research could comprise of proposing a DL model such as Improved Cifar-10 and LeafNet
for reducing the training time, but some convolutional layers should be added to attain acceptable
validation/testing accuracy.

3.1.3. Performance of Cascaded/Hybrid CNN Architectures

Figure 6 presents the performance of cascaded/hybrid version of CNN models as explained below:

• The cascaded AlexNet with GoogLeNet architecture outperformed all the DL models in terms
of validation accuracy; moreover, except for the Xception architecture, this model achieved the
highest F1-score among all the DL architectures considered in this research (as shown in Table 2).
Although it required almost 57 epochs to reach its final accuracy/loss values (as shown in Figure 6),
but it completed one epoch in a smaller period, which clearly shows its effectiveness in terms
of training time. There were a few important modifications in the original AlexNet model,
which helped to extract the features of plants containing disease including smaller convolution
kernel in different layers, the inclusion of max-pooling layer, cascading the Inception module
with the modified AlexNet layers, and convolutional layers after Inception to replace two fully
connected layers [18].

• Moreover, a hybrid version of AlexNet with VGG architectures has also been studied, and it
provided good performance in terms of validation accuracy (as shown in Figure 6) and F1-score,
but it had the highest number of parameters which significantly increased its training time to
complete each epoch. This model performed well due to the utilization of concepts such as
normalization and selection of filter depth from AlexNet and VGG models, respectively [40].

3.2. Step-2: Improvement in Classification Results by Deep Learning Optimizers

In this article, an improvement in the performance of CNN architectures has also been attempted by
training the best models (obtained from the previous step) through different deep learning optimization
functions. In this regard, the best DL model was selected from each of the three categories such as
the Xception, Improved GoogLeNet, and cascaded version of AlexNet with GoogLeNet models.
Table 3 summarizes the results obtained by using various optimization algorithms. Some important
observations can be made as follows:

• Considerable changes were observed in training/validation accuracy, loss, precision, recall,
and F1-score by training the DL models through various deep learning optimizers.

• Adam and Adadelta were the most successful optimizers for all the three selected DL architectures.
• The Xception model trained with the Adam optimizer achieved the highest validation accuracy

and F1-score of 99.81% and 0.9978, respectively, which clearly show the effectiveness of the



Plants 2020, 9, 1319 13 of 16

proposed approach. Moreover, these results are better than previous studies that used the same
dataset but different approaches [12,16,19,24]. Therefore, the methodology proposed in this article
could be used for various other agricultural operations.

• The cascaded AlexNet with GoogLeNet and improved GoogLeNet models achieved their best
classification results by using the Adadelta and Adam optimizers, respectively.

• However, a degradation in the performance has also been observed when optimizing functions
were changed from SGD to Adagrad and RMSProp for Xception and cascaded models, respectively.

• It is also noticed that the Improved GoogLeNet showed its lowest validation accuracy/F1-score
when it was trained by the SGD optimizer.

Table 3. Performance of deep learning optimizers applied to train cascaded AlexNet with GoogLeNet,
Improved GoogLeNet, and Xception models.

Optimizers Training
Accuracy

Validation
Accuracy Training Loss Validation

Loss Precision Recall F1-score

Cascaded AlexNet with GoogLeNet

SGD 0.9931 0.9818 0.0229 0.0592 0.9749 0.9751 0.9750

RMSProp 0.9894 0.9757 0.0482 0.1479 0.9746 0.9613 0.9679

Adagrad 0.9956 0.9824 0.0153 0.0547 0.9815 0.9782 0.9798

Adamax 0.9990 0.9859 0.0029 0.0574 0.9828 0.9795 0.9811

Adam 0.9989 0.9857 0.0039 0.0750 0.9836 0.9836 0.9836

Adadelta 0.9993 0.9873 0.0024 0.0696 0.9846 0.9856 0.9851

Improved GoogLeNet

SGD 0.9829 0.9521 0.0522 0.1038 0.9528 0.9539 0.9533

RMSProp 0.9723 0.9685 0.1780 0.2272 0.9692 0.9666 0.9679

Adagrad 0.9889 0.9718 0.0350 0.0930 0.9651 0.9618 0.9634

Adamax 0.9998 0.9847 8.782 × 10−4 0.0875 0.9792 0.9826 0.9809

Adam 0.9992 0.9904 0.0026 0.0434 0.9859 0.9872 0.9864

Adadelta 0.9991 0.9905 0.0022 0.0567 0.9828 0.9879 0.9861

Xception

SGD 0.9990 0.9798 0.0140 0.0621 0.9764 0.9767 0.9765

RMSProp 0.9998 0.9924 6.922 × 10−4 0.0433 0.9877 0.9920 0.9900

Adagrad 0.9987 0.9621 0.0164 0.1460 0.9682 0.9505 0.9593

Adamax 1.0000 0.9889 0.0012 0.0415 0.9902 0.9874 0.9888

Adam 1.0000 0.9981 6.890 × 10−4 0.0178 0.9981 0.9975 0.9978

Adadelta 1.0000 0.9906 8.407 × 10−4 0.0364 0.9926 0.9887 0.9906

4. Conclusions and Future Recommendations

In this article, a comprehensive comparative analysis has been performed between various
state-of-the-art deep learning architectures divided into three categories namely well-known, modified,
and cascaded versions. Moreover, the performance of the best-obtained models was further
improved by using various deep learning optimization algorithms. It was found that the Xception,
Improved GoogLeNet and cascaded version of AlexNet with GoogLeNet models obtained the highest
validation accuracy and F1-score in their respective category. When these three DL models were
trained by using various deep learning optimizers, the Xception model trained by the Adam optimizer
achieved the highest F1-score of 0.9978 which suggests that this combination of the CNN model and the
optimization algorithm is the most suitable way to classify the plant disease. This research provided
us some interesting future directions for upcoming research given as follows:



Plants 2020, 9, 1319 14 of 16

• Various deep learning optimizers such as Adam, and Adadelta, can also be used to enhance
research on other agricultural applications, such as crop/weed discrimination, classification of
weeds, plant recognition, etc.

• The classification performance of the other datasets related to plant disease could also be improved
by adopting the methodology proposed in this research.

• Furthermore, although the Xception model provided the best results according to the analysis
provided in this article, it required a significant amount of time to complete each epoch. Therefore,
an attempt should be made to achieve an Xception level accuracy with small training time.

Author Contributions: Conceptualization, M.H.S. and K.M.A.; methodology, M.H.S. and K.M.A.; investigation,
M.H.S. and K.M.A.; writing—original draft preparation, M.H.S. and K.M.A.; writing—review and editing, M.H.S.
and K.M.A.; visualization, M.H.S. and K.M.A.; supervision, J.P. and K.M.A.; project administration, J.P. and K.M.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Business, Innovation and Employment (MBIE), New Zealand,
Science for Technological Innovation (SfTI) National Science Challenge.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review.
Sensors 2018, 18, 2674. [CrossRef] [PubMed]

2. Römer, C.; Bürling, K.; Hunsche, M.; Rumpf, T.; Noga, G.; Plümer, L. Robust fitting of fluorescence spectra
for pre-symptomatic wheat leaf rust detection with support vector machines. Comput. Electron. Agric. 2011,
79, 180–188. [CrossRef]

3. Chen, T.; Zhang, J.; Chen, Y.; Wan, S.; Zhang, L. Detection of peanut leaf spots disease using canopy
hyperspectral reflectance. Comput. Electron. Agric. 2019, 156, 677–683. [CrossRef]

4. Coops, N.; Stanford, M.; Old, K.; Dudzinski, M.; Culvenor, D.; Stone, C. Assessment of Dothistroma needle
blight of Pinus radiata using airborne hyperspectral imagery. Phytopathology 2003, 93, 1524–1532. [CrossRef]

5. Leucker, M.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C. Improvement of lesion phenotyping in Cercospora
beticola–sugar beet interaction by hyperspectral imaging. Phytopathology 2015, 106, 177–184. [CrossRef]
[PubMed]

6. Saleem, M.H.; Potgieter, J.; Mahmood Arif, K. Plant Disease Detection and Classification by Deep Learning.
Plants 2019, 8, 468. [CrossRef]

7. Xie, C.; Yang, C.; He, Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato
leaves with different infection severities. Comput. Electron. Agric. 2017, 135, 154–162. [CrossRef]

8. Kobayashi, T.; Kanda, E.; Kitada, K.; Ishiguro, K.; Torigoe, Y. Detection of rice panicle blast with multispectral
radiometer and the potential of using airborne multispectral scanners. Phytopathology 2001, 91, 316–323. [CrossRef]

9. Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms
visualization. Appl. Artif. Intel. 2017, 31, 299–315. [CrossRef]

10. Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric.
2018, 145, 311–318. [CrossRef]

11. Fuentes, A.; Yoon, S.; Kim, S.; Park, D. A robust deep-learning-based detector for real-time tomato plant
diseases and pests recognition. Sensors 2017, 17, 2022. [CrossRef] [PubMed]

12. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection.
Front. Plant Sci. 2016, 7, 1419. [CrossRef] [PubMed]

13. TÜRKOĞLU, M.; Hanbay, D. Plant disease and pest detection using deep learning-based features. Turk. J.
Electr. Eng. Comput. Sci. 2019, 27, 1636–1651. [CrossRef]

14. Zhang, K.; Wu, Q.; Liu, A.; Meng, X. Can Deep Learning Identify Tomato Leaf Disease? Adv. Multimed.
2018, 2018. [CrossRef]

15. Oppenheim, D.; Shani, G.; Erlich, O.; Tsror, L. Using Deep Learning for Image-Based Potato Tuber
Disease Detection. Phytopathology 2019, 109, 1083–1087. [CrossRef] [PubMed]

16. Too, E.C.; Yujian, L.; Njuki, S.; Yingchun, L. A comparative study of fine-tuning deep learning models for
plant disease identification. Comput. Electron. Agric. 2019, 161, 272–279. [CrossRef]

http://dx.doi.org/10.3390/s18082674
http://www.ncbi.nlm.nih.gov/pubmed/30110960
http://dx.doi.org/10.1016/j.compag.2011.09.011
http://dx.doi.org/10.1016/j.compag.2018.12.036
http://dx.doi.org/10.1094/PHYTO.2003.93.12.1524
http://dx.doi.org/10.1094/PHYTO-04-15-0100-R
http://www.ncbi.nlm.nih.gov/pubmed/26506458
http://dx.doi.org/10.3390/plants8110468
http://dx.doi.org/10.1016/j.compag.2016.12.015
http://dx.doi.org/10.1094/PHYTO.2001.91.3.316
http://dx.doi.org/10.1080/08839514.2017.1315516
http://dx.doi.org/10.1016/j.compag.2018.01.009
http://dx.doi.org/10.3390/s17092022
http://www.ncbi.nlm.nih.gov/pubmed/28869539
http://dx.doi.org/10.3389/fpls.2016.01419
http://www.ncbi.nlm.nih.gov/pubmed/27713752
http://dx.doi.org/10.3906/elk-1809-181
http://dx.doi.org/10.1155/2018/6710865
http://dx.doi.org/10.1094/PHYTO-08-18-0288-R
http://www.ncbi.nlm.nih.gov/pubmed/30543489
http://dx.doi.org/10.1016/j.compag.2018.03.032


Plants 2020, 9, 1319 15 of 16

17. Singh, U.P.; Chouhan, S.S.; Jain, S.; Jain, S. Multilayer Convolution Neural Network for the Classification of
Mango Leaves Infected by Anthracnose Disease. IEEE Access 2019, 7, 43721–43729. [CrossRef]

18. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural
networks. Symmetry 2018, 10, 11. [CrossRef]

19. Geetharamani, G.; Pandian, A. Identification of plant leaf diseases using a nine-layer deep convolutional
neural network. Comput. Electr. Eng. 2019, 76, 323–338.

20. Zhang, X.; Qiao, Y.; Meng, F.; Fan, C.; Zhang, M. Identification of maize leaf diseases using improved deep
convolutional neural networks. IEEE Access 2018, 6, 30370–30377. [CrossRef]

21. Chen, J.; Liu, Q.; Gao, L. Visual Tea Leaf Disease Recognition Using a Convolutional Neural Network Model.
Symmetry 2019, 11, 343. [CrossRef]

22. Kamal, K.; Yin, Z.; Wu, M.; Wu, Z. Depthwise separable convolution architectures for plant disease
classification. Comput. Electron. Agric. 2019, 165, 104948.

23. Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning
Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [CrossRef]

24. Brahimi, M.; Arsenovic, M.; Laraba, S.; Sladojevic, S.; Boukhalfa, K.; Moussaoui, A. Deep learning for
plant diseases: Detection and saliency map visualisation. In Human and Machine Learning; Springer: Berlin,
Germany, 2018; pp. 93–117.

25. Brahimi, M.; Mahmoudi, S.; Boukhalfa, K.; Moussaoui, A. Deep interpretable architecture for plant diseases
classification. arXiv 2019, arXiv:1905.13523.

26. DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H.
Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning.
Phytopathology 2017, 107, 1426–1432. [CrossRef]

27. Torres, J.F.; Gutiérrez-Avilés, D.; Troncoso, A.; Martínez-Álvarez, F. Random hyper-parameter search-based
deep neural network for power consumption forecasting. In Proceedings of the International Work-Conference
on Artificial Neural Networks (IWANN 2019), Gran Canaria, Spain, 12–14 June 2019; pp. 259–269.

28. Martínez-Álvarez, F.; Asencio-Cortés, G.; Torres, J.F.; Gutiérrez-Avilés, D.; Melgar-García, L.; Pérez-Chacón, R.;
Rubio-Escudero, C.; Riquelme, J.; Troncoso, A. Coronavirus optimization algorithm: A bioinspired
metaheuristic based on the COVID-19 propagation model. Big Data 2020, 8, 308–322. [CrossRef]

29. Hughes, D.; Salathé, M. An open access repository of images on plant health to enable the development of
mobile disease diagnostics. arXiv 2015, arXiv:1511.08060.

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2012), Lake Tahoe, NV,
USA, 3–6 December 2012; pp. 1097–1105.

31. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229.

32. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

33. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the
European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 818–833.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July
2016; pp. 770–778.

35. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI-17), San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

36. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

37. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Hawaii Convention Center, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

38. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Hawaii Convention Center, Honolulu,
HI, USA, 21–26 July 2017; pp. 1251–1258.

http://dx.doi.org/10.1109/ACCESS.2019.2907383
http://dx.doi.org/10.3390/sym10010011
http://dx.doi.org/10.1109/ACCESS.2018.2844405
http://dx.doi.org/10.3390/sym11030343
http://dx.doi.org/10.1109/ACCESS.2019.2914929
http://dx.doi.org/10.1094/PHYTO-11-16-0417-R
http://dx.doi.org/10.1089/big.2020.0051


Plants 2020, 9, 1319 16 of 16

39. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

40. Chavan, T.R.; Nandedkar, A.V. AgroAVNET for crops and weeds classification: A step forward in automatic
farming. Comput. Electron. Agric. 2018, 154, 361–372. [CrossRef]

41. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
42. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization.

J. Mach. Learn. Res. 2011, 12, 2121–2159.
43. Hinton, G.; Srivastava, N.; Swersky, K. Neural networks for machine learning. Available online: http://www.cs.

toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf (accessed on 5 October 2020).
44. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
45. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
46. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
47. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compag.2018.09.021
http://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~{}hinton/coursera/lecture6/lec6.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Dataset 
	Software and Hardware Specifications 
	Deep Learning Architectures 
	Deep Learning Optimizers 
	Training Specifications 

	Results and Discussion 
	Step-1: Comparative Analysis of Deep Learning Architectures 
	Performance of Well-Known CNN Architectures 
	Performance of Modified CNN Architectures 
	Performance of Cascaded/Hybrid CNN Architectures 

	Step-2: Improvement in Classification Results by Deep Learning Optimizers 

	Conclusions and Future Recommendations 
	References

