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Abstract: Glyphosate-based herbicide products are the most widely used broad-spectrum herbicides
in the world for postemergent weed control. There are ever-increasing concerns that glyphosate, if
not used judiciously, may cause adverse nontarget impacts in agroecosystems. The purpose of this
brief review is to present and discuss the state of knowledge with respect to its persistence in the
environment, possible effects on crop health, and impacts on crop nutrition.
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1. Introduction

Glyphosate (N-(phosphonomethyl) glycine), after its introduction in the 1970s, became a popular
herbicide among farmers because of its broad-spectrum weed control. The use of glyphosate as a
“burn down” application alone, or in combination with other pre- or postemergent herbicides, became
standard practice in cropping systems throughout the world. Glyphosate is a nonselective, postemergent
herbicide known to control more than 150 weed species, including mono- and dicotyledonous plants
of annual or perennial nature [1]. Glyphosate is the active ingredient in many herbicide products (for
example, Roundup) and is commercially available in its various salt forms, such as isopropylamine,
ammonium, potassium, and trimesium salt. It is used to manage annual broadleaf weeds, grasses, and
sedges in various field and row crops around the globe. Furthermore, its usage has expanded to urban
and natural areas, pastures, forestry, and aquatics.

Generally applied to foliar parts of weeds, glyphosate can enter plants through four potential
routes: the leaves or other green tissues, the roots, the trunk, or shoots emerging from the root
or the trunk [2]. After entering the plants, it is rapidly translocated to regions of active growth
within the plant. The mechanism of action of glyphosate is to block the activity of the enzyme called
5-enol-pyruvyl-shikimate-3-phosphate synthase (EPSPS), which catalyzes the sixth step in the shikimic
acid pathway [3,4]. By blocking the enzyme, it prevents the biosynthesis of aromatic amino acids, viz.
phenylalanine, tyrosine, and tryptophan, produced through the shikimate pathway [5]. Plants treated
with glyphosate normally die within a period of 1–3 weeks, and because of its even distribution in the
plant, no plant parts can survive [6].

Chemically, glyphosate is a phosphonomethyl derivative of the amino acid glycine [7]. It is a
white and odorless crystalline solid having one basic amino group and three ionizable acidic sites
(Table 1) [8]. Glyphosate is a nonvolatile chemical, does not undergo photochemical degradation, and
is stable in air. Glyphosate has been considered a relatively safe compound in the environment because
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of its rapid inactivation in soil by adsorption and degradation [9]. However, owing to its extensive use,
concerns and studies on the behavior of glyphosate in plant and the environment are growing.

Table 1. Selected physical and chemical properties of glyphosate.

Chemical structure
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CAS number 1071-83-6

Chemical name N-(phosphonomethyl) glycine

Empirical formula C3H8NO5P

Molecular weight (g mol−1) 169.08

Water solubility (mg L−1 at 25 ◦C) 10,000 to 15,700 [10]

Octanol–water coeff. (Kow) −4.6 to −1.6 [10]

Vapor pressure (mm Hg at 25 ◦C) 4.3 × 10−10 [10]

Freundlich adsorption coeff. (Kads) (L Kg−1) 0.6 to 303 [11]

Degradation half-life in soil (T1/2) (days) 7–60 [12]

Photolysis half-life (days) Not substantial

EPA maximum contamination level (µg L−1) 700 [10]

Especially due to improper application practices and excessive spray, the widespread presence
of glyphosate has been observed in the aquatic and terrestrial environments [13]. In many studies,
glyphosate has been detected in soil, crop products, animals that feed on crop products, humans,
freshwater, and the organisms that live there [14]. Despite favorable evaluations of weed control
efficacy and environmental risks of glyphosate, an increasing number of more recent observations
suggest a relationship between extensive glyphosate application and adverse nontarget effects in
agroecosystems [15]. The more significant among these concerns are (1) persistence in the environment,
(2) effects on crop health, and (3) interaction with crop nutrition (Figure 1).
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2. Glyphosate Persistence in the Environment

Applied as foliar spray to control weeds, glyphosate may end up in different soil pools and
nontarget sites (Figure 2). Wash-off from the foliage or undirected spray drift [16], death and decay of
glyphosate-treated plant residues, and exudation from the roots [17] may transport glyphosate to the soil.
The release of glyphosate may even occur as exudates from undamaged roots of glyphosate-tolerant
crops [18].
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Glyphosate has an affinity to bind to soil particles and thus mostly accumulates in the top-soil
layers. Processes like surface runoff, drift, and vertical transport in soil may transport it to groundwater,
surface water, and water sediment [19–21]. The mobility and leaching of glyphosate have been
tested in laboratory, lysimeter, and field conditions [11]. In a study on glyphosate leaching and
movement conducted in a field site in Denmark, glyphosate, despite its high binding tendency on
soil, was found to transport deep into the soil and leach out with drainage water [22]. Furthermore,
there are several water monitoring reports that provide information on the occurrence of glyphosate
in groundwater. Glyphosate was detected in 36% of a total of 154 water samples collected from
Midwestern U.S. states, where glyphosate is extensively used on corn [23]. However, the glyphosate
concentration in the detected samples was well below the maximum contaminant level for this
herbicide. Beyond its presence in the groundwater, glyphosate has also been detected in surface
water [24–26]. The predominant occurrence of glyphosate in surface water could be potentially
attributed to surface water runoff [11]. Owing to extensive usage, this chemical may pose chronic and
remote hazards to the ecological environment [27]. The major route of degradation of glyphosate from
soil is microbial-mediated degradation or biodegradation [28].

Glyphosate degradation is a mainly microbial-mediated process [29,30], and the pathway has been
widely studied in laboratories [31]. It degrades at a relatively rapid rate in most soils, with half-life
estimated between 7 and 60 days [12]. Many studies have indicated that the presence of glyphosate in
the soil can enhance microbial activity [32,33], while some studies have also shown the toxic effects of
glyphosate on soil microorganisms [34].
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The extent and rate of glyphosate biodegradation are influenced by processes such as adsorption
and desorption in soil, along with other chemical, physical, and biological factors. Both aerobic and
anaerobic conditions favor the degradation of glyphosate, even though anaerobic degradation is
generally slower than aerobic degradation [35]. Similarly, soil temperature can also play an important
role in determining glyphosate degradation [36]. The rate of mineralization of glyphosate was found
to be correlated with the abundance of Pseudomonas spp. in soil by Gimsing et al. [30]. They also
found that the addition of phosphate in the soil stimulates glyphosate mineralization. Lancaster et
al. [37] compared the amount of 14CO2 production from mineralization of 14C-glyphosate in single
herbicide application versus repeated applications. They found reduced production of 14CO2 from
multiple applications, suggesting that long-term herbicide treatment did not favor acclimation of
glyphosate-mineralizing microorganisms.

Glyphosate appears to be biodegraded cometabolically [38] as microorganisms are not able to
utilize it as a source of carbon [39]. Cometabolic involvement of microbes in the degradation of this
chemical is also denoted by the fact that glyphosate degradation and general microbial activity in
the soil are correlated. Another evidence presented for cometabolic degradation of glyphosate is the
absence of lag phase in soil [28], which implies that the degrading enzymes must already be present in
the soil before glyphosate application. On the contrary, a few studies have shown that microbes can
utilize glyphosate as a substrate for carbon [33,40], phosphate [39], or nitrogen [32].

Degradation or mineralization of glyphosate has been found to have a negative correlation with
the soil adsorption capacity for glyphosate [41], possibly because of low bioavailability. Despite being
highly water-soluble, glyphosate has limited movement within the soil profile because of strong
adsorption to soil particles [42]. Adsorption of glyphosate to soil is determined by the amount of
clay, organic matter, and iron and aluminum oxides present in soil [43,44]. Soil processes, such as
adsorption/desorption, may control the glyphosate degradation rate as strong adsorption by soil
solids, such as iron and aluminum oxides, may prevent microbial access to the compound [45,46].
There have been several studies on the adsorption characteristics of glyphosate, but only a few have
studied the effect of adsorption on glyphosate bioavailability in soil. Sorensen et al. [41] found limited
bioavailability of glyphosate in higher depths of sandy soil profile, where high adsorption and low
desorption of glyphosate corresponded with negligible mineralization. On the other hand, in a study
by Schnurer et al. [47], adsorbed glyphosate was found to be microbially degradable, even though the
microbial activity was reduced in the presence of the herbicide.

Glyphosate degradation by microbial activity has been broadly studied, and bacterial species
involved in the degradation have been isolated and characterized [48]. Bacteria are considered to
be the main drivers behind its degradation in soil, even though the fungi have also been found to
play an important role [49]. Degradation studies of glyphosate as a source of phosphorus (P) in the
pure culture and soil media seem to show differences in the degradation kinetics. Furthermore, the
rate of glyphosate degradation also varies when different microorganisms are used [50]. A slow lag
phase followed by accelerating phase was observed in the degradation of glyphosate by a pure culture,
while no lag phase was seen in the soil [50]. Results from such studies imply that pure culture studies
may yield important information on degrading potential of microbes, but the application of such
information to in situ conditions requires further investigations.

Primarily, there are two pathways of microbial degradation of glyphosate [39]. In one pathway, the
intermediate compound formed is aminomethylphosphonic acid (AMPA), and in the other, sarcosine
and glycine are formed. However, AMPA is considered to be the most common metabolite of glyphosate
degradation as it accounts for more than 90% of the reported metabolites. The enzyme glyphosate
oxidoreductase breaks the C–N bond in glyphosate to produce AMPA and glyoxylate [51]. The bacterial
enzyme glyphosate oxidoreductase employs flavine adenine dinucleotide (FAD) as a cofactor, which is
crucial in the degradation pathways of glyphosate. The FAD is believed to be reduced at the active
site by glyphosate. Glyphosate oxidoreductase enzyme is inserted into the plant genomes for making
glyphosate-tolerant Roundup Ready® crops [52].
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3. Glyphosate’s Effects on Crop Health

Among several concerns pertaining to unintended effects of glyphosate, its negative effects on
nontarget plants are of serious concern among producers. Glyphosate applied to control weeds can
reach the nontarget areas through several routes. The primary route is through undirected spray
applications or “spray drift”, which can directly carry the herbicide chemical to crops. Research has
demonstrated that off-target movement or drift of glyphosate during application can be up to 10%
of the applied rate in crops like soybean and cotton [16,53]. Although herbicide exposure during
application drift would be considered sublethal, response can be potentially severe for susceptible
crops. For instance, drift from glyphosate has been found to cause distorted fruit (often termed as
“cat-facing”) to develop in tomatoes at sublethal rates of exposure [54].

Another potential route for glyphosate accumulation and stabilization in soils is represented by
the release of glyphosate from plant residues of glyphosate-treated weeds. As glyphosate is fairly
stable and not immediately metabolized in many plant species, substantial amounts can be extensively
translocated to regions of active growth and accumulate, particularly in young tissues [55]. After weeds
eventually die, it ends up in the soil following the decay of plant parts. More intensive evaluations
have revealed that glyphosate is translocated within plants, accumulated in roots, and eventually
released into the rhizosphere [56–58]. From the soil, glyphosate may also be reabsorbed by the target or
nontarget plants back through the roots after the initial application. There are a few studies that have
investigated the effects of root-zone exposure of glyphosate on crops, including cotton [59], maize [60],
and rapeseed [61]. These studies indicate there is a likelihood for glyphosate’s root absorption into
crops. However, most of the conclusions were drawn from observations in hydroponic nutrient
solutions, and hence additional research would be valuable for better understanding the uptake of
glyphosate from soils and its ensuing effects on crop functioning.

Glyphosate blocks the synthesis of essential amino acids through binding and subsequent
inactivation of an enzyme (EPSPS) that is critical in the shikimate pathway [28]. An array of phenolic
compounds that play a significant role in plant immunity are derived from the same metabolic pathway.
By disrupting the synthesis of such defense compounds in plants, glyphosate predisposes the crops
to attack by soil-borne pathogens [62]. Hence, it could be argued that continuous crop exposure to
glyphosate may increase plant susceptibility to diseases [15,63]. Excessive glyphosate application
has been linked to disease development in many crops. For instance, glyphosate applications were
found to be the main factor in the development of diseases such as Fusarium head blight in agronomic
crops [64]. There are documented reports of increased colonization of pathogen in wheat and barley
roots correlated with burndown applications of glyphosate before planting [65]. Moreover, the effects
of sublethal doses of glyphosate on perennial plants sometimes take a year after exposure to appear and
continue for two or more years [66]. Glyphosate can also predispose plants to diseases indirectly by
reducing the overall growth and vigor of the plants, modifying soil microflora that affects the availability
of nutrients required for disease resistance, and altering the physiological efficiency of plants.

The root uptake and translocation of glyphosate in nontarget plants have been studied. In one such
experiment to understand the consequences of glyphosate residues on plant species used in ecological
restoration, test plants were grown in nonadsorbing media continuously treated with glyphosate.
Observations suggested that nonadsorbed glyphosate residues can cause potential phytotoxicity to
sensitive plants through root uptake and subsequent translocation to other parts of the plant [67].
However, the study system utilized in this work is comparable to a spray application situation that
has a risk of high herbicide delivery rate, regardless of the label recommendation. The uptake,
translocation, and metabolism of glyphosate in nontarget tea plants were examined in a hydroponic
system by Tong et al. [68]. The highest content of glyphosate was observed in the plant roots, where it
was also metabolized to AMPA. The glyphosate and its metabolite were transported from the roots
through the xylem or phloem to the stems and leaves. The results from this study indicated that
plant-available glyphosate could be continuously absorbed by roots, metabolized, and transported
into edible tea leaves [68]. Glyphosate uptake into nontarget plants is suggested when the herbicide
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and its degradation products (e.g., AMPA) are found in plant tissues and seeds of crops like soybean
and corn [69] and tree foliage [20] following application of glyphosate to manage weeds in farms and
adjacent areas.

Another potential side effect of glyphosate that needs to be discussed is its effect on root formation.
Bott and coworkers [70] demonstrated glyphosate’s ability to inhibit root elongation, lateral root
formation, and root biomass production in soybeans. It was even demonstrated that glyphosate
released from dead weeds could be absorbed through the roots of growing citrus plants [17]. After
entering the plant system, glyphosate is rapidly translocated to young growing tissues of roots, where
it can accumulate and inhibit growth [71]. By blocking the production of tryptophan, glyphosate
prevents the synthesis of a major growth promoter called indole acetic acid (IAA), which can explain
the reduction in root growth of plants [15].

There are also some concerns about the deleterious effects of glyphosate on fruit retention in tree
crops, such as citrus. Fruit drop in citrus is a natural phenomenon, but an increase in fruit drop has
been reported after glyphosate application, especially in late summer and fall for early-season oranges
and grapefruits [72,73] with an impact on fruit yield. The reason for this glyphosate-linked drop is
far from understood as it is not even consistent across different seasons. However, it is known that
glyphosate enhances ethylene production in plant tissues, and ethylene exposure of mature citrus fruit
may result in early abscission and fruit drop. More research is needed to understand the causes of this
fruit drop and the exact role of glyphosate in this process.

4. Glyphosate’s Interaction with Crop Nutrition

Glyphosate’s interaction with soil occurs when a foliar spray hits the soil surface or when
glyphosate is released from decomposing weed tissue [17]. Glyphosate in the soil will be immobilized
by adsorption or binding to the soil colloids and hence persists in the soil. The adsorption characteristics
of glyphosate are different from most other herbicides. Adsorption of glyphosate on the soil is influenced
more by soil minerals rather than organic matter [74]. Glyphosate is a divalent metal cation chelator
and has been purported to reduce the uptake and translocation of nutrients in crops. Recent evaluations
on the chelating ability of glyphosate highlighted it as a key factor in nutrient deficiencies in crops.
These reduced availabilities of nutrients as a result of external (in the soil) or internal (in the plants)
interaction of glyphosate with cationic nutrients are observed in production systems that heavily rely
on glyphosate for weed management. For instance, Eker et al. [75] found that glyphosate residues or
drift may reduce the uptake and translocation of micronutrients, such as Mn and Fe, in nontarget plants
and suggested glyphosate−metal complex formation in plant tissues and/or plant rhizospheres. These
poorly soluble chelated complexes of glyphosate with micronutrients hinder their root uptake and
translocation by the crops. There are many similar studies that link the ability of glyphosate to inhibit
the acquisition of micronutrients, such as Mn, Fe, Zn and B, in plants exposed to glyphosate, either
through spray drift [76,77] or root uptake [78]. Such interactions of glyphosate with plant nutrition
may potentially pose consequences on crop health. For instance, in tree crops like citrus, it is well
known that these micronutrients are involved in disease, particularly Huanglongbing (HLB), resistance
mechanisms [79,80].

The mechanism of binding of glyphosate and phosphate compounds to the soil solids and
adsorption sites have been found to be similar [81]. Thus, the mobility of P in the soil is affected by the
presence of glyphosate. The interaction between glyphosate and P in soil was reported shortly after
the herbicide was launched into the market [20]. Many of the studies conducted later have verified
that P and glyphosate compete for adsorption in the soil, and the competition substantially differs in
various kinds of soils [75,82,83]. Therefore, the competition between glyphosate and P for adsorption
sites in soil seems to be vital and makes a significant impact on mobility and crop availability aspects
of P as a crop nutrient. Unfortunately, there is sparse information in the literature that demonstrates
the noteworthy effect of such competition on P nutrition of crops, and thus further investigation
is required.
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5. Conclusions and Future Direction

Glyphosate has often been termed as a “once-in-a-century herbicide” because of its tremendous
impact on weed management and the crop production industry. Although known to degrade relatively
quickly in the soil following application, glyphosate and its metabolites can possibly persist in soil, water,
and plant tissues in certain conditions. Research suggests that glyphosate may reach groundwater,
surface water, and several other nontarget sites through processes such as leaching and surface runoff.
It is also evident from several studies that glyphosate applied to cropping systems can potentially
reach unintended areas and plant tissues through processes like off-target herbicide movement, spray
drift, and root uptake. While such exposure of crops to glyphosate would be considered sublethal, it
would seem wise to comprehend the consequent impacts on the health and nutrition of crops.

The best way to prevent these adverse crop effects related to glyphosate use is to avoid the
“off-target” movement or “spray drift” of this herbicide to unintended areas from the application site.
Furthermore, soil analysis for residual content of glyphosate is beneficial to detect whether the affected
soils contain herbicide residues above the threshold that leads to root uptake and related crop effects.
Clearly, further research is needed to understand crop risks related to glyphosate residues in soils,
particularly in soil settings with low adsorption capacity and at very high rates of herbicide application.

Owing to the relatively high mobility of glyphosate, the likelihood of a rise in surface and
groundwater content in tandem with herbicide use is high. Hence, potential routes of exposure into
the environment, as well as the consequent implications on animals and humans, need to be explored
more thoroughly. Moreover, there is an increasing concern toward the existence and concentration
of glyphosate residues in a variety of crops produced for human and animal consumption. This
necessitates an advanced dietary risk assessment of glyphosate resulting from its exposure.

In a nutshell, the extensive use of glyphosate and the environmental risks associated with it
warrant awareness among its users about its judicious utilization and necessitate further intense
investigations to mitigate, avoid, or remove the problems resulting from its use.
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