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Abstract: Plant diseases affect the growth of their respective species, therefore their early identification
is very important. Many Machine Learning (ML) models have been employed for the detection and
classification of plant diseases but, after the advancements in a subset of ML, that is, Deep Learning
(DL), this area of research appears to have great potential in terms of increased accuracy. Many
developed/modified DL architectures are implemented along with several visualization techniques
to detect and classify the symptoms of plant diseases. Moreover, several performance metrics are
used for the evaluation of these architectures/techniques. This review provides a comprehensive
explanation of DL models used to visualize various plant diseases. In addition, some research gaps
are identified from which to obtain greater transparency for detecting diseases in plants, even before
their symptoms appear clearly.
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1. Introduction

The Deep Learning (DL) approach is a subcategory of Machine Learning (ML), introduced
in 1943 [1] when threshold logic was introduced to build a computer model closely resembling
the biological pathways of humans. This field of research is still evolving; its evolution can be
divided into two time periods-from 1943–2006 and from 2012–until now. During the first phase, several
developments like backpropagation [2,3], chain rule [4], Neocognitron [5], hand written text recognition
(LeNET architecture) [6], and resolving the training problem [7,8] were observed (as shown in Figure 1).
However, in the second phase, state-of-the-art algorithms/architectures were developed for many
applications including self-driving cars [9–11], healthcare sector [12–14], text recognition [6,15–17],
earthquake predictions [18–20], marketing [21], finance [22,23], and image recognition [24–29]. Among
those architectures, AlexNet [30] is considered to be a breakthrough in the field of DL as it won
the ImageNet challenge for object recognition known as ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in the year 2012. Soon after, several architectures were introduced to overcome
the loopholes observed previously. For the evaluation of these algorithms/architectures, various
performance metrics were used. Among these metrics, top-1%/top-5% error [24,26,30,31], precision and
recall [25,32–34], F1 score [32,35], training/validation accuracy and loss [34,36], classification accuracy
(CA) [37–41] are the most popular. For the implementation of DL models, several steps are required,
from the collection of datasets to visualization mappings are explained in Figure 2.
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When DL architectures started to evolve with the passage of time, researchers applied them to
image recognition and classification. These architectures have also been implemented for different
agricultural applications. For example, in [42], classification of leaves was performed by using
author-modified CNN and Random Forest (RF) classifier among 32 species in which the performance
was evaluated through CA at 97.3%. On the other hand, it was not as efficient at detecting occluded
objects [43]. Leaf and fruit counting were also performed by deep CNN in [44,45] and [46] respectively.
For classification of crop type, [47] used author-modified CNN, [36] applied VGG 16, [34] implemented
three unit LSTM, and [33] used CNN and RGB histogram technique. [47] used CA, [36] used CA and
Intersection over Union (IoU), [34] used CA and F1, and [33] used F1-score as a performance metric.
Among them, [33,47] did not provide training/validation accuracy and loss. Moreover, recognition of
different plants has been done by the DL approach in [48–50]. [48,50] employed user-modified CNN
while [49] used AlexNet architecture. All were evaluated on the basis of CA. [49] outperformed the
other two in terms of CA. Similarly, crop/weed discrimination was performed in [51,52], in which the
author proposed CNN be used, and two datasets were utilized for the evaluation of the model. [51]
evaluated precision and recall; however, [52] obtained CA for the validation of the proposed models
respectively. The identification of plants by the DL approach was studied and achieved a success rate
of 91.78% [53]. On top of that, DL approaches are also used for critical tasks like plant disease detection
and classification, which is the main focus of this review. There are some research papers previously
presented to summarize the research based on agriculture (including plant disease recognition) by
DL [43,54], but they lacked some of the recent developments in terms of visualization techniques
implemented along with the DL and modified/cascaded version of famous DL models, which were
used for plant disease identification. Moreover, this review also provides the research gaps in order to
get a clearer/more transparent vision of symptoms observed due to diseases in the plants.

The remaining part of the paper is comprised of Section 2, describing the famous and new/modified
DL architectures along with visualization mapping/techniques used for plant disease detection; Section 3,
elaborating upon the Hyperspectral Imaging with DL models; and finally, Section 4, concluding the
review and providing future recommendations for achieving more advancements in the visualization,
detection, and classification of plants’ diseases.
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Figure 2. Flow diagram of DL implementation: First, the dataset is collected [25] then split into two
parts, normally into 80% of training and 20% of validation set. After that, DL models are trained from
scratch or by using transfer learning technique, and their training/validation plots are obtained to
indicate the significance of the models. Then, performance metrics are used for the classification of
images (type of particular plant disease), and finally, visualization techniques/mappings [55] are used
to detect/localize/classify the images.

2. Plant Disease Detection by Well-Known DL Architectures

Many state-of-the-art DL models/architectures evolved after the introduction of AlexNet [30] (as
shown in Figure 3 and Table 1) for image detection, segmentation, and classification. This section
presents the researches done by using famous DL architectures for the identification and classification
of plants’ diseases. Moreover, there are some related works in which new visualization techniques and
modified/improved versions of DL architectures were introduced to achieve better results. Among
all of them, the PlantVillage dataset has been used widely as it contains 54,306 images of 14 different
crops having 26 plant diseases [25]. Moreover, they used several performance metrics to evaluate the
selected DL models, which are described as below.
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2.1. Implementation of DL Models

2.1.1. Without Visualization Technique

In [56], CNN was used for the classification of diseases in maize plants and histogram techniques
to show the significance of the model. In [57], basic CNN architectures like AlexNet, GoogLeNet and
ResNet were implemented for identifying the tomato leaf diseases. Training/validation accuracy were
plotted to show the performance of the model; ResNet was considered as the best among all the CNN
architectures. In order to detect the diseases in banana leaf, LeNet architecture was implemented and
CA, F1-score were used for the evaluation of the model in Color and Gray Scale modes [32]. Five CNN
architectures were used in [58], namely, AlexNet, AlexNetOWTbn, GoogLeNet, Overfeat, and VGG
architectures in which VGG outclassed all the other models. In [35], eight different plant diseases were
recognized by three classifiers, Support Vector Machines (SVM), Extreme Learning Machine (ELM),
and K-Nearest Neighbor (KNN), used with the state-of-the-art DL models like GoogLeNet, ResNet-50,
ResNet-101, Inception-v3, InceptionResNetv2, and SqueezeNet. A comparison was made between
those models, and ResNet-50 with SVM classifier got the best results in terms of performance metrics
like sensitivity, specificity, and F1-score. According to [59], a new DL model—Inception-v3—was
used for the detection of cassava disease. In [60], plant diseases in cucumber were classified by
the two basic versions of CNN and got the highest accuracy, equal to 0.823. The traditional plant
disease recognition and classification method was replaced by Super-Resolution Convolutional Neural
Network (SRCNN) in [61]. For the classification of tomato plant disease, AlexNet and SqueezeNet v1.1
models were used in which AlexNet was found to be the better DL model in terms of accuracy [62]. A
comparative analysis was presented in [63] to select the best DL architecture for detection of plant
diseases. Moreover in [64], six tomato plant diseases were classified by using AlexNet and VGG-16
DL architectures, and a detailed comparison was provided with the help of classification accuracy. In
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the above approaches, no visualization technique was applied to spot the symptoms of diseases in
the plants.

Table 1. Comparison of state-of-the-art deep learning models.

Deep Learning Models Parameters Key Features and Pros/Cons

LeNet 60k
First CNN model. Few parameters as compared to

other CNNmodels. Limited capability of
computation

AlexNet 60M

Known as the first modern CNN. Best image
recognition performance at its time. Used ReLU to

achieve better performance. Dropout technique was
used to avoid overfitting

OverFeat 145M
First model used for detection, localization, and

classification of objects through a single CNN. Large
number of parameters as compared to AlexNet

ZFNet 42.6M Reduced weights (as compared to AlexNet) by
considering 7 × 7 kernels and improved accuracy

VGG 133M–144M

3 × 3 receptive fields were considered to include
more number of non-linearity functions which made
decision function discriminative. Computationally

expensive model due to large number of parameters

GoogLeNet 7M Fewer number of parameters as compared to
AlexNet model. Better accuracy at its time

ResNet 25.5M Vanishing gradient problem was addressed. Better
accuracy than VGG and GoogLeNet models

DenseNet 7.1M Dense connections between the layers. Reduced
number of parameters with better accuracy

SqueezeNet 1.25M

Similar accuracy as AlexNet with 50 times lesser
parameters. Considered 1 × 1 filters instead of 3 × 3

filters. Input channels were decreased. Large
activation maps of convolution layers

Xception 22.8M
A depth-wise separable convolution approach.

Performed better than VGG, ResNet, and
Inception-v3 models

MobileNet 4.2M
Considered the depth-wise separable convolution

concept. Reduced parameters significantly. Achieved
accuracy near to VGG and GoogLeNet

Modified/Reduced MobileNet 0.5/0.54M
Lesser number of parameters as compared to
MobileNet. Similar accuracy as compared to

MobileNet

VGG-Inception 132M

A cascaded version of VGG and inception module.
The number of parameters were reduced by

substituting 5 × 5 convolution layers with two 3 × 3
layers. Testing accuracy was increased as compared

to many well-known DL models like AlexNet,
GoogLeNet, Inception-v3, ResNet, and VGG-16.

2.1.2. With Visualization Techniques

The following approaches employed DL models/architectures and also visualization techniques
which were introduced for a clearer understanding of plants’ diseases. For example, [55] introduced
the saliency map for visualizing the symptoms of plant disease; [27] identified 13 different types of
plant disease with the help of CaffeNet CNN architecture, and achieved CA equal to 96.30%, which
was better than the previous approach like SVM. Moreover, several filters were used to indicate the
disease spots. Similarly, [25] used AlexNet and GoogLeNet CNN architectures by using the publicly
available PlantVillage dataset. The performance was evaluated by means of precision (P), recall (R),
F1 score, and overall accuracy. The uniqueness of this paper was the implication of three scenarios
(color, grayscale, and segmented) for evaluating the performance metrics and comparison of the two
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famous CNN architectures. It was concluded that GoogLeNet outperformed AlexNet. Moreover,
visualization activation in the first layers clearly showed the spots of diseases. In [65], a modified
LeNet model was used to detect olive plant diseases. The segmentation and edges maps were used to
spot the diseases in the plants. Detection of four cucumber diseases was done in [66] and accuracy was
compared with Random Forest, Support Vector Machines, and AlexNet models. Moreover, the image
segmentation method was used to view the symptoms of diseases in the plants. A new DL model
was introduced in [67] named teacher/student network and proposed a novel visualization method to
identify the spots of plant diseases. DL models with some detectors were implemented in [68], in which
the diseases in plants were marked along with their prediction percentage. Three detectors, named
Faster-RCNN, RFCN and SSD, were used with the famous architectures like AlexNet, GoogLeNet,
VGG, ZFNet, ResNet-50, ResNet-101 and ResNetXt-101 for a comparative study which outlined the
best among all the selected architectures. It was concluded that ResNet-50 with the detector R-FCN
gave the best results. Furthermore, a kind of bounding box was drawn to identify the particular type
of disease in the plants. In [69], a banana leaf disease and pest detection was performed by using
three CNN models (ResNet-50, Inception-V2 and MobileNet-V1) with Faster-RCNN and SSD detectors.
According to [70], different combinations of CNN were used and presented heat maps as input to the
diseased plants’ images and provided the probability related to the occurrence of a particular type of
disease. Moreover, ROC curve evaluates the performance of the model. Furthermore, feature maps
for rice disease were also included in the paper. LeNet model was used in [71] to detect and classify
diseases in the soybean plant. In [72], a comparison between AlexNet and GoogLeNet architectures
for tomato plant diseases was done, in which GoogLeNet performed better than the AlexNet; also, it
proposed occlusion techniques to recognize the regions of diseases. The VGG-FCN and VGG-CNN
models were implemented in [73], for the detection of wheat plant diseases and visualization of
features in each block. In [74], VGG-CNN model was used for the detection of Fusarium wilt in radish
and K-means clustering method was used to show the marks of diseases. A semantic segmentation
approach by CNN was proposed in [75] to detect the disease in cucumber. In [76], an approach based
on the individual symptoms/spots of diseases in the plants was introduced by using a DL model for
detecting plant diseases. A Deep CNN framework was developed for identification, classification, and
quantification of eight soybean stresses in [77]. In [78], rice plant diseases were identified by CNN, and
feature maps were obtained to identify the patches of diseases. A deep residual neural network was
extended in [79] for the development of a mobile application in which a clear identification of diseases
in plants was done by the hot spot. An algorithm based on the hot spot technique was also used in [80],
in which those spots were extracted by modification in the segmented image to attain color constancy.
Furthermore, each obtained hot-spot was described by two descriptors, one was used to evaluate
the color information of the disease and other was used to identify the texture of the hot-spots. The
cucumber plant diseases were identified in [81] by using the dilation convolutional neural network. A
state-of-the-art visualization technique was proposed in [82] by correlation coefficient and DL models
like AlexNet and VGG-16 architectures. In [83], color space and various vegetation indices combined
with CNN model (LeNet) to detect the diseases in grapes. To summarize, Table 2 outlines some of the
visualization mapping/techniques.
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Table 2. Visualization mapping/techniques used in several approaches.

Visualization Techniques/Mappings References

Visualization of features having filter from first to
final layer [27]

Visualize activations in first convolutional layer [25]

Saliency map visualization [55]

Classification and localization of diseases by
bounding boxes [68]

Heat maps were used to identify the spots of the
disease [70]

Feature map for the diseased rice plant [78]

Symptoms visualization method [72]

Feature and spatial core maps [73]

Color space into HSV and K-means clustering [74]

Feature map for spotting the diseases [77]

Image segmentation method [66]

Reconstruction of images on discriminant regions,
segmentation of images by binary threshold theorem,

and heat map construction
[67]

Saliency map visualization [84]

Saliency map, 2D and 3D contour, mesh graph image [82]

Activation visualization [85]

Segmentation map and edge map [65]

For the practical experimentation of detection of plants’ diseases, an actual/real
background/environment should be considered in order to evaluate the performance of the DL
model more accurately. In most of the above approaches, the selected datasets considered
plain backgrounds which are not realistic scenarios for identification and classification of the
diseases [25,27,32,56–58,60,61,65,72,77,78], except for a few of them that have considered the original
backgrounds [35,59,68,70,73,74]. The output of the visualization techniques used in several researches
are shown in Figures 4–11.

In Figure 4, feature maps from the first to the fifth hidden layer are shown as the neuron in a
feature map having identical features at different positions of an image. Starting from the first layer (a),
the features in feature maps represent separate pixels to normal lines, whereas the fifth layer shows
some particular parts of the image (h).

Two types of visualization maps are shown in Figure 5, namely, heat map and saliency map
techniques. The heat maps identify the diseases shown as red boxes in the input image, but it should
be noted that one disease marked in (d) has not been detected. This problem was resolved in the
saliency map technique after the application of the guided back-propagation [55]; all the spots of plant
disease were successfully identified thanks to a method which is superior to the heat map.
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(e) output from second layer, (f) output of third layer, (g) output of fourth layer, (h) output of fifth
layer [27].
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were placed into the form of a matrix in order to denote the outcome of all the areas of the input image.
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Figure 7. Bounding box indicates the type of diseases along with the probability of their occurrence [68].
A bounding box technique was used in Figure 7 in which (a) represents the one type of disease along
with its rate of occurrence, (b) indicates three types of plant disease (miner, temperature, and gray
mold) in a single image, (c,d) shows one class of disease but contains different patterns on the front and
back side of the image, (e,f) displays different patterns of gray mold in the starting and end stages [68].

A new visualization technique was proposed in [67] as shown in Figures 8 and 9. In Figure 8a,
the input image was regenerated for student/teacher architecture [67], and a single channel heat map
was produced after the application of simple aggregation on the channels of the regenerated image
(Figure 8b). Then, a simple binary threshold algorithm was applied to obtain sharp symptoms of
diseases in the plant. Then, [67] indicated the significance of the proposed technique by comparing it
with the other visualization techniques as shown in Figure 9. On the left hand side, LRP-Z, LRP-Epsilon,
and gradient did not identify plant diseases clearly. However, the Deep Taylor approach produced
better results but indicated some portion of the leaf disease. On the right hand side, an imperfect
localization of the plant disease was shown in grad-cam techniques which was resolved in the proposed
technique by the use of a decoder [67].
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Figure 9. Comparison of Teacher/student approach visualization map with the previous approaches [67].

In order to find the significance of CNN architectures to differentiate between various diseases of
plants, the feature maps were obtained as shown in Figure 10. The result proves a good performance
of the proposed CNN model as it clearly identifies the disease in plants [85].

In Figure 11 the segmentation and edged maps were obtained to identify the diseases in plants. It
is noted that the yellow colored area is marked as white surface in the segmentation map to show the
affected part of the leaf.
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2.2. New/Modified DL Architectures for Plant-Disease Detection

According to some of the research papers, new/modified DL architectures have been introduced
to obtain better/transparent detection of plant disease, such as [86] presented improved GoogLeNet
and Cifar-10 models and their performance compared with AlexNet and VGG. It was found that
improved versions of these state-of-the-art models produced a remarkable accuracy of 98.9%. In [87], a
new DL model was introduced to obtain more accurate detection of plant diseases as compared to
SVM, AlexNet, GoogLeNet, ResNet-20, and VGG-16 models. This model achieved 97.62% accuracy
for classifying apple plant diseases. Moreover, the dataset extended in 13 different ways (rotation
of 90◦, 180◦, 270◦ and mirror symmetry (horizontal symmetry), change in contrast, sharpness and
brightness). Moreover, the whole dataset was transformed into Gaussian noise and PCA jittering as
well. Furthermore, the selection of dataset was explained by the help of plots to prove the significance
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of extending the dataset. A new CNN model named LeafNet was introduced in [88] to classify the
tea leaf diseases and achieved higher accuracy than Support Vector Machine (SVM) and Multi-Layer
Perceptron (MLP). In [89], two DL models named modified MobileNet and reduced MobileNet were
introduced, and their accuracy was near to the VGG model; the reduced MobileNet actually got 98.34%
classification accuracy and had a fewer number of parameters as compared to VGG which saves time
in training the model. A state-of-the-art DL model was proposed in [90] named PlantdiseaseNet
which was remarkably suitable for the complex environment of an agricultural field. In [85], five
types of apple plant diseases were classified and detected by the state-of-the-art CNN model named
VGG-inception architecture. It outclassed the performance of many DL architectures like AlexNet,
GoogLeNet, several versions of ResNet, and VGG. It also presented inter object/class detection and
activation visualization; it was also mentioned for its clear vision of diseases in the plants.

A bar chart presented in Figure 12 indicates, from the most to the least frequently used, DL models
for plant disease detection and classification. It can be clearly seen that the AlexNet model has been
used in most of the researches. GoogLeNet, VGG-16, and ResNet-50 are the next most commonly used
DL models. Similarly, there are some improved/cascaded versions (Improved Cifar-10, VGG-Inception,
Cascaded AlexNet with GoogLeNet, reduced/modified MobileNet, modified LeNet, and modified
GoogLeNet), which have been used for plant disease identification.
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Summing up Section 2, all the DL approaches along with the selected plant species and performance
metrics are shown in Table 3.

3. Hyper-Spectral Imaging with DL Models

For early detection of plant diseases, several imaging techniques like multispectral imaging [91],
thermal imaging, fluorescence and hyperspectral imaging are used [92]. Among them, hyperspectral
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imaging (HSI) is the focus of recent research. For example, [93] used hyperspectral imaging (HSI)
to detect tomato plant diseases by identifying the region of interest, and a feature ranking-KNN
(FR-KNN) model produced a satisfactory result for the detection of diseased and healthy plants. In
the recent approach, HSI was used for the detection of an apple disease. Moreover, the redundancy
issue was resolved by an unsupervised feature selection procedure known as Orthogonal Subspace
Projection [94]. In [95], leaf diseases on peanuts were detected by HSI by identifying sensitive bands
and hyperspectral vegetation index. The tomato disease detection was done by SVM classifiers based
on HSI, and their performance was evaluated by F1-score, accuracy, specificity, and sensitivity [96].

Recently, HSI has been used with machine learning (ML) for the detection of plant diseases. For
example, [97] described ML techniques for hyperspectral imaging for many agricultural applications.
Moreover, ML with HSI have been used for three ML models, implemented by using hyperspectral
measurement technique for the detection of leaf rust disease [98]. For wheat disease detection, [99]
used Random Forest (RF) classifier with multispectral imaging technique and achieved accuracy of
89.3%. Plants’ diseases were also detected by SVM based on hyperspectral data and achieved accuracy
of more than 86% [100]. There are some other ML approaches based on HSI [101], but this review is
focused on DL approaches based on HSI, presented below.

The DL has been used to classify the hyperspectral images for many applications. For medical
purposes, this technology is very useful as it is used for the classification of head/neck cancer in [102].
In [103], a DL approach based on HSI was proposed through contextual information as it provides
spectral and spatial features. A new 3D-CNN architecture allowed for a fast, accurate, and efficient
approach to classify the hyperspectral images in [104]. This architecture not only used the spectral
information (as used in previous CNN techniques [105]) but also ensured that the spatial information
was also taken into account. In [106], the feature extraction procedure was used with CNN for
hyperspectral image classification and used dropout and L2 regularization methods in order to prevent
overfitting. Just like CNN models used for hyperspectral imaging classification, RNN models are also
used with HSI as described in [107,108]. In the domain of plant disease detection, some researches
utilized Hyperspectral Imaging (HSI) along with DL models to observe clearer vision for symptoms of
plant diseases. A hybrid method to classify the hyperspectral images was proposed in [109] consisting
of DCNN, LR, and PCA and got better results compared to the previous methods for classification
tasks. In [110], a detailed review of DL with HSI technique was provided. In order to avoid the
overfitting and improve accuracy, a detailed comparison provided between several DL models like
1D/2D-CNN (2D-CNN better result), LSTM/GRU (both faced overfitting), 2D-CNN-LSTM/GRU (still
overfitting) was observed. Therefore, a new hybrid approach from Convolutional and Bidirectional
Gated Recurrent Network named 2D-CNN-BidLSTM/GRU was proposed for the hyperspectral images,
which resolved the problem of overfitting and achieved 0.75 F1-score and 0.73 accuracy for wheat
diseases detection [111]. According to [112], a hyperspectral proximal-sensing procedure based on
the newest DL technique named Generative Adversarial Nets (GAN) was proposed in order to detect
tomato plant disease before its clear symptoms appeared (as shown in Figure 13). In [84], a 3D-CNN
approach was proposed for hyperspectral images to identify the Charcoal rot disease in soybeans
and the CNN model was evaluated by accuracy (95.76%) and F1-score (0.87). The saliency map
visualization was used, and the most delicate wavelength resulted as 733 nm, which approximately
lies in the region of the wavelength of NIR. For the detection of potato virus, [113] described it by
DL on the hyperspectral images and achieved acceptable values of precision (0.78) and recall (0.88).
In [114], a DL model named multiple Inception-Resnet model was developed by using both spatial and
spectral data on hyperspectral UAV images to detect the yellow rust in wheat (as shown in Figure 14).
This model achieved an 85% accuracy, which is quite a lot higher than the RF-classifier (77%).
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Table 3. Comparison of several DL approaches in terms of various performance metrics.

DL Architectures/Algorithms Datasets Selected Plant/s Performance Metrics (and Their
Results) Refs

CNN PlantVillage Maize CA (92.85%) [56]

AlexNet, GoogLeNet, ResNet PlantVillage Tomato CA by ResNet which gave the best
value (97.28%) [57]

LeNet PlantVillage Banana CA (98.61%), F1 (98.64%) [32]

AlexNet, ALexNetOWTBn, GoogLeNet,
Overfeat, VGG PlantVillage and in-field images

Apple, blueberry, banana,
cabbage, cassava, cantaloupe,
celery, cherry, cucumber, corn,

eggplant, gourd, grape, orange,
onion

Success rate of VGG (99.53%) which
is the best among all [58]

AlexNet, VGG16, VGG 19, SqueezeNet,
GoogLeNet, Inceptionv3,

InceptionResNetv2, ResNet50, Resnet101
Real field dataset Apricot, Walnut, Peach, Cherry F1(97.14), Accuracy (97.86 ± 1.56) of

ResNet [35]

Inceptionv3 Experimental field dataset Cassava CA (93%) [59]

CNN Images taken from the research
center Cucumber CA (82.3%) [60]

Super-Resolution Convolutional Neural
Network (SCRNN) PlantVillage Tomato Accuracy (~90%) [61]

CaffeNet Downloaded from the internet Pear, cherry, peach, apple,
grapevine Precision (96.3%) [27]

AlexNet and GoogLeNet PlantVillage

Apple, blueberry, bell pepper,
cherry, corn, peach, grape,
raspberry, potato, squash,

soybean, strawberry, tomato

CA (99.35%) of GoogLeNet [25]

AlexNet, GoogLeNet, VGG- 16,
ResNet-50,101, ResNetXt-101, Faster

RCNN, SSD, R-FCN, ZFNet
Image taken in real fields Tomato

Precision (85.98%) of ResNet-50
with Region based Fully

Convolutional Network(R-FCN)
[68]

CNN Bisque platform of Cy Verse Maize Accuracy (96.7%) [70]
DCNN Images were taken in real field Rice Accuracy (95.48%) [78]

AlexNet, GoogLeNet PlantVillage Tomato Accuracy (0.9918 ± 0.169) of
GoogLeNet [72]

VGG-FCN-VD16 and VGG-FCN-S Wheat Disease Database 2017 Wheat Accuracy (97.95%) of
VGG-FCN-VD16 [73]

VGG-A, CNN Images were taken in real field Radish Accuracy (93.3%) [74]
AlexNet Images were taken in real field Soybean CA (94.13%) [77]

AlexNet and SqueezeNet v1.1 PlantVillage Tomato CA (95.65%) of AlexNet [62]

DCNN, Random forest, Support Vector
Machine and AlexNet

PlantVillage dataset, Forestry
Image dataset and agricultural

field in China
Cucumber CA (93.4%) of DCNN [66]
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Table 3. Cont.

DL Architectures/Algorithms Datasets Selected Plant/s Performance Metrics (and Their
Results) Refs

Teacher/student architecture PlantVillage

Apple, bell pepper, blueberry,
cherry, corn, orange, grape,

potato, raspberry, peach,
soybean, strawberry, tomato,

squash

Training accuracy and loss
(~99%,~0–0.5%), validation

accuracy and loss (~95%, ~10%)
[67]

Improved GoogLeNet, Cifar-10 PlantVillage and various
websites Maize Top-1 accuracy (98.9%) of improved

GoogLeNet [86]

MobileNet, Modified MobileNet,
Reduced MobileNet PlantVillage dataset 24 types of plant CA (98.34%) of reduced MobileNet [89]

VGG-16, ResNet-50,101,152, Inception-V4
and DenseNets-121 PlantVillage

Apple, bell pepper, blueberry,
cherry, corn, orange, grape,

potato, raspberry, peach,
soybean, strawberry, tomato,

squash

Testing accuracy (99.75%) of
DenseNets [63]

User defined CNN, SVM, AlexNet,
GoogLeNet, ResNet-20 and VGG-16 Images were taken in real field Apple CA (97.62%) of proposed CNN [87]

AlexNet and VGG-16 PlantVillage Tomato CA (AlexNet) [64]
LeafNet, SVM, MLP Images were taken in real field Tea leaf CA (90.16%) of LeafNet [88]
2D-CNN-BidGRU Real wheat field wheat F1 (0.75) and accuracy (0.743) [111]

OR-AC-GAN Real environment Tomato Accuracy (96.25%) [112]
3D CNN Real environment Soybean CA (95.73%), F1-score (0.87) [84]
DCNN Real environment Wheat Accuracy (85%) [114]

ResNet-50 Real environment Wheat Balanced Accuracy (87%) [79]
GPDCNN Real environment Cucumber CA (94.65%) [81]

VGG-16, AlexNet PlantVillage, CASC-IFW Apple, banana CA (98.6%) [82]
LeNet Real environment Grapes CA (95.8%) [83]

PlantDiseaseNet Real environment

Apple, bell-pepper, cherry,
grapes, onion, peach, potato,

plum, strawberry, sugar-beets,
tomato, wheat

CA (93.67%) [90]

LeNet PlantVillage Soybean CA (99.32%) [71]
VGG-Inception Real environment Apple Mean average accuracy (78.8%) [85]

Resnet-50, Inception-V2, MobileNet-V1 Real environment Banana Mean average accuracy (99%) of
ResNet-50 [69]

Modified LeNet PlantVillage Olives True positive rate (98.6 ± 1.47%) [65]
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Figure 14. Hyperspectral images by UAV: (a) RGB color plots, (b) Random-Forest classifier, and (c)
proposed multiple Inception-ResNet model [114].

From this section, we can conclude that, although there are some DL models/architectures
developed for hyperspectral image classification in the application of plant disease detection, this is still
a fertile area of research and should lead to improvements for better detection of plants’ diseases [115]
in different situations, like various conditions of illumination, considering real background, etc.

In Figure 13, the resultant images are taken from the proposed method described in [112]. The
green-colored portion indicates the healthy part of the plant; the red portion denotes the infected
portion. Note that (a) and (b) are the healthy plant images as there is no red color indication, whereas
(c) has infected disease which can be seen in its corresponding figure (d).

A comparison of proposed DCNN with RF classifier and RGB colored hyperspectral images are
shown in Figure 14. The red color label indicates the portion infected by rust. It should be observed
that the rust plots were identified in an almost similar manner (see (b) and (c) of first row), but in the
healthy plot, there was a large portion covered by the red label in (b) as compared to (c), which shows
a wrong classification by RF model [114].

4. Conclusions and Future Directions

This review explained DL approaches for the detection of plant diseases. Moreover, many
visualization techniques/mappings were summarized to recognize the symptoms of diseases. Although
much significant progress was observed during the last three to four years, there are still some research
gaps which are described below:

• In most of the researches (as described in the previous sections), the PlantVillage dataset was used
to evaluate the accuracy and performance of the respective DL models/architectures. Although
this dataset has a lot of images of several plant species with their diseases, it has a simple/plain
background. However, for a practical scenario, the real environment should be considered.

• Hyperspectral/multispectral imaging is an emerging technology and has been used in many
areas of research (as described in Section 3). Therefore, it should be used with the efficient DL
architectures to detect the plants’ diseases even before their symptoms are clearly apparent.

• A more efficient way of visualizing the spots of disease in plants should be introduced as it will
save costs by avoiding the unnecessary application of fungicide/pesticide/herbicide.
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• The severity of plant diseases changes with the passage of time, therefore, DL models should be
improved/modified to enable them to detect and classify diseases during their complete cycle
of occurrence.

• DL model/architecture should be efficient for many illumination conditions, so the datasets should
not only indicate the real environment but also contain images taken in different field scenarios.

• A comprehensive study is required to understand the factors affecting the detection of plant
diseases, like the classes and size of datasets, learning rate, illumination, and the like.
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Abbreviations

The abbreviations used in this manuscript are given as under:

ML Machine Learning
DL Deep Learning
CNN Convolutional Neural network
DCNN Deep Convolutional Neural Network
ILSVRC ImageNet Large Scale Visual Recognition Challenge
RF Random Forest
CA Classification Accuracy
LSTM Long Short-Term Memory
IoU Intersection of Union
NiN Network in Network
RCN Region based Convolutional Neural Network
FCN Fully Convolutional Neural Network
YOLO You Only Look Once
SSD Single Shot Detector
PSPNet Pyramid Scene Parsing Network
IRRCNN Inception Recurrent Residual Convolutional Neural Network
IRCNN Inception Recurrent Convolutional Neural Network
DCRN Densely Connected Recurrent Convolutional Network
INAR-SSD Single Shot Detector with Inception module and Rainbow concatenation
R2U-Net Recurrent Residual Convolutional Neural Network based on U-Net model
SVM Support Vector Machines
ELM Extreme Learning Machine
KNN K-Nearest Neighbor
SRCNN Super-Resolution Convolutional Neural Network
R-FCN Region-based Fully Convolutional Networks
ROC Receiver Operating Characteristic
PCA Principal Component Analysis
MLP Multi-Layer Perceptron
LRP Layer-wise Relevance Propagation
HSI Hyperspectral Imaging
FRKNN Feature Ranking K-Nearest Neighbor
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RNN Recurrent Neural Network
ToF Time-of-Flight
LR Logistic Regression
GRU Gated Recurrent Unit
AN Generative Adversarial Nets
GPDCNN Global Pooling Dilated Convolutional Neural Network
2D-CNN-BidGRU 2D-Convolutional-Bidirectional Gated Recurrent Unit Neural Network
OR-AC-GAN Outlier Removal-Auxiliary Classifier-Generative Adversarial Nets
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