Supplementary material

(-)-Ledol (1); $C_{15}H_{26}O$; waxy white powder. $[\alpha]_D^{20} = -5.1$ (c 1.0 in CHCl₃). EIMS *m/z* (%) = 222 (3, M), 204 (53), 189 (40), 162 (24), 161 (100), 149 (18), 148 (33), 147 (53), 136 (10), 135 (21), 134 (14), 133 (52), 123 (16), 122 (56), 121 (45), 120 (19), 119 (61), 117 (13), 115 (10), 111 (18), 109 (46), 108 (26), 107 (83) 106 (26), 105 (92), 96 (12), 95 (39), 94 (21), 93 (70), 92 (16), 91 (76), 83 (13), 82 (23), 81 (51), 80 (11), 79 (54), 77 (35), 69 (41), 67 (37), 65 (13), 55 (35), 53 (17). ¹H NMR: see Table S1. ¹³C NMR: see Table S2.

(-)-Caryophyllene oxide (2); C₁₅H₂₄O; colourless liquid. EIMS *m/z* (%) = 220 (4, M), 205 (13), 202 (16), 187 (34), 177 (16), 174 (10), 173 (10), 164 (20), 163 (15), 162 (12), 161 (48), 159 (33), 149 (32), 147 (22), 146 (20), 145 (29), 138 (20), 137 (12), 136 (31), 135 (35), 134 (15), 133 (31), 132 (12), 131 (60), 129 (10), 123 (32), 122 (19), 121 (61), 120 (29), 119 (41), 118 (14), 117 (25), 115 (12), 111 (11), 110 (18), 109 (48), 108 (38), 107 (82), 107 (30), 105 (73), 97 (11), 96 (28), 95 (67), 94 (35), 93 (95), 92 (25), 91 (94), 84 (10), 83 (24), 82 (30), 81 (62), 80 (21), 79 (100), 78 (15), 77 (56), 71 (25), 70 (12), 69 (71), 68 (18), 67 (46), 65 (21), 55 (51), 53 (30). ¹H NMR: see Table S1. ¹³C NMR: see Table S2.

Spathulenol (**3**), C₁₅H₂₄O; white powder. EIMS *m*/*z* (%) = 220 (15, M), 205 (61), 202 (26), 187 (26), 177 (17), 162 (39), 160 (12), 159 (43), 149 (19), 147 (33), 146 (24), 145 (21), 135 (16), 134 (15), 133 (22), 131 (23), 120 (17), 119 (57), 117 (17), 109 (14), 107 (36), 106 (25), 105 (40), 95 (23), 94 (13), 93 (48), 92 (13), 91 (50), 83 (10), 82 (19), 81 (23), 79 (35), 77 (19), 71 (21), 69 (35), 67 (28), 55 (27), 53 (15), 43 (100), 41 (63). ¹H NMR: see table 1.

Angustanoic acid E (4); C₂₂H₂₆O₂; white powder. ESI-MS m/z = 323 [M+1]. [α]_D²⁰ = +102.3 (c 0.6 in CHCl₃). ¹H NMR: see Table S1. ¹³C NMR: see Table S2.

5-hydroxy-4',7-dimethoxy flavone (5); C₁₇H₁₄O₅; yellowish crystals. ESI-MS m/z = 299 [M+1]. ¹H NMR: see Table S1. ¹³C NMR: see Table S2.

(-)-Carnosol (7); C₂₀H₂₆O₄; white crystals. ESI-MS m/z = 331 [M + 1]. $[\alpha]_D^{20} = -63.0$ (c 0.75 in MeOH). ¹H NMR: see table S1. ¹³C NMR: see table S2.

Position	1	2	3	4	5	7
1	2.08 (1H, ddd, J = 9.2, 9.2, 6.4 Hz)	1.75 (1H, ddd, J = 10.3, 10.3, 4.2 Hz)	0.47 (1H, dd, J = 9.6, 11.6 Hz)	1.38 (1H, ddd, J = 13.2, 13.2, 4.0 Hz)	-	2.90 (1H, ddd, J = 13.0, 4.8, 1.6 Hz)
				2.28 (1H, m)	-	2.40 (1H, ddd, <i>J</i> = 13.0, 13.0, 4.4 Hz)
2	1.69 (1H, m)	1.45 (1H, m)	0.71 (1H, m)	1.62 (1H, m)	-	1.68 (1H, m)
	1.90 (1H, m)	1.64 (1H, m)		2.03 (1H, m)		
3	1.27 (1H, m)	2.10 (1H, m)	1.01 (1H, m)	1.09 (1H, ddd, J = 13.6, 13.6, 4.4 Hz)	6.57 (1H, s)	1.55 (1H, ddd, J = 13.4, 4.8, 1.6 Hz)
	1.71 (1H, m)	0.95 (1H, m)	1.96 (1H, m)	2.26 (1H, m)		1.28 (1H, ddd, $J = 13.4$, 13.4, 3.6 Hz)
4	1.98 (1H, m)	-	2.05 (1H, m)	-	-	-
		-	2.42 (1H, dd, <i>J</i> = 5.2, 13.6 Hz)	-	-	-
5	1.77 (1H, m)	2.85 (1H, dd, J = 10.6, 4.2 Hz)	-	1.57 (1H, dd, J = 12.0, 1.6 Hz)	-	1.73 (1H, dd, J = 10.8, 5.6 Hz)
6	0.33 (1H, dd, J = 9.8, 9.0 Hz)	1.35 (1H, m)	2.20 (1H, m)	2.19 (1H, dt, J = 6.0, 1.6 Hz)	6.36 (1H, d, J = 2.0 Hz) or	2.20 (1H, m)
		2.25 (1H, m)		2.06 (1H, m)	6.48 (1H, d, J = 2.0 Hz)	1.69 (1H, m)
7	0.71 (1H, ddd, J = 11.5, 9.0, 5.6 Hz)	2.10 (1H, m)	1.64 (1H, m)	2.80 (1H, m)	-	5.37 (1H, dd, J = 4.0, 1.6 Hz)
		2.35 (1H, m)	1.91 (1H, m)	2.92 (1H, dd, J = 16.8, 5.6 Hz)	-	
o	1.85 (2H, m)	-	1.54 (1H, m)	-	6.36 (1H, d, J = 2.0 Hz) or	-
0		-	1.77 (1H, m)	-	6.48 (1H, d, J = 2.0 Hz)	-
9	1.71 (1H, m)	2.60 (1H, dd, J = 10.3, 8.5 Hz)	-	-	-	-
	1.90 (1H, m)	-	-	-	-	-
10	-	1.60 (1H, m)	1.31 (1H, m)	-	-	-
	-	1.69 (1H, m)		-	-	-
11	-	-	-	7.22 (1H, d, J = 8.0 Hz)	-	-
	-	-	-		-	-
12	0.93 (3H, d, J = 6.9 Hz)	1.20 (3H, s)	1.05 (3H, s)	7.24 (1H, d, J = 8.0 Hz)	-	-
13	1.03 (3H, s)	4.86 (1H, d, J = 1.2 Hz)	1.04 (3H, s)	_	-	_

Table S1. ¹H NMR spectroscopic data for compounds 1-5 and 7 (400 MHz, δ ppm, CDCl₃).

		4.97 (1H, d, J = 1.2 Hz)		-	-	-
14	0.98 (3H, s)	1.01 (3H, s)	4.66 (1H, d, J = 1.3 Hz) 4.68 (1H, d, J = 1.3 Hz)	7.14 (1H, bs)	-	6.64 (H, s)
15	1.14 (3H, s)	0.99 (3H, s)	1.28 (3H, s)	-	-	3.08 (1H, sept, <i>J</i> = 6.8 Hz)
16	-	-	-	5.32 (1H, bs) 5.02 (1H, bs)	-	1.22 (3H, d, <i>J</i> = 7.2 Hz) or 1.23 (3H, d, <i>J</i> = 7.2 Hz)
17	-	-	-	2.12 (3H, s)	-	1.22 (3H, d, J = 7.2 Hz) or 1.23 (3H, d, J = 7.2 Hz)
18	-	-	-	1.34 (3H, s)	-	0.90 (3H, s)
19	-	-	-	-	-	0.86 (3H, s)
20	-	-	-	1.12 (3H, s)	-	-
2' and 6'	-	-	-	-	7.01 (2H, d, J = 8.8 Hz) or 7.84 (2H, d, J = 8.8 Hz)	-
3' and 5'	-	-	-	-	7.01 (2H, d, J = 8.8 Hz) or 7.84 (2H, d, J = 8.8 Hz)	-
4'	-	-	-	-	-	-
-OCH3	-	-	-	-	3.88 (3H, s, OCH3)	-
-OCH3	-	-	_	-	3.89 (3H, s, OCH3)	-
-OH (12 or 20)	-	-	-	-	-	5.74 (1H, s)

Position	1	2	4	5	7
1	53.9	50.9	39.4	-	29.3
2	24.8	27.3	20.0	164.2	19.0
3	31.7	39.3	37.5	104.3	41.1
4	38.6	60.0	44.0	182.5	34.7
5	40.9	63.9	52.9	162.7	45.6
6	23.6	29.9	21.0	98.2	29.9
7	25.1	30.0	32.2	165.6	78.0
8	20.4	152.0	135.2	92.8	132.2
9	39.4	48.9	147.5	157.8	121.7
10	74.7	39.9	38.6	105.7	48.5
11	19.3	34.2	125.6	-	141.9
12	15.5	17.1	123.2	-	141.2
13	28.8	112.9	138.4	-	133.0
14	30.7	21.8	126.2	-	112.4
15	16.1	30.3	143.1	-	27.4
16	-	-	111.8	-	22.6
17	-	-	21.9	-	22.7
18	-	-	28.8	-	31.8
19	-	-	183.1	-	19.8
20	-	-	23.2	-	176.1
1′	-	-	-	123.7	-
2'	-	-	-	128.2	-
3'	-	-	-	114.6	-
4'	-	-	-	162.3	-
5'	-	-	-	114.6	-
6'	-	-	-	128.2	-
7-OMe	-	-	-	55.9	-
4'-OMe	-	-	-	55.7	-

Table S2. ^{13}C NMR spectroscopic data for compounds 1, 2, 4, 5 and 7 (100 MHz, δ ppm, CDCl₃).

Figure S1. GC-MS comparison of fractions from a preparative TLC analysis of *L. heteromorpha* EO. The fractions represent compounds that can be separated by normal phase liquid chromatography.

Figure S2. 1H NMR (400 MHz) spectrum of compound (1) in CDCl3

Figure S3. ¹³C NMR (100 MHz) spectrum of compound (1) in CDCl₃

Figure S4. ¹H NMR (400 MHz) spectrum of compound (2) in CDCl₃

Figure S5. ¹³C NMR (100 MHz) spectrum of compound (2) in CDCl₃

Figure S6. ¹H NMR (400 MHz) spectrum of compound (3) in CDCl₃

Figure S7. $^1\!H$ NMR (400 MHz) spectrum of compound (4) in CDCl3

Figure S8. ¹³C NMR (100 MHz) spectrum of compound (4) in CDCl₃

Figure S9. 1H NMR (400 MHz) spectrum of compound (5) in CDCl3

Figure S10. ¹³C NMR (100 MHz) spectrum of compound (5) in CDCl₃

Figure S11. $^1\!\mathrm{H}$ NMR (400 MHz) spectrum of compound (7) in CDCl3

Figure S12. ^{13}C NMR (100 MHz) spectrum of compound (7) in CDCl3