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Abstract: It is generally assumed that all plant epidermis cells are covered with cuticles, and
the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional
differences and possibly different wax compositions. However, experiments probing cell-type-specific wax
compositions and biosynthesis have been lacking until recently. This review summarizes new evidence
showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher
amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic
surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been
identified previously in some unrelated species, not all of them bearing trichomes.
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1. Introduction

All above-ground plant parts, in the primary state of development, are lined by a layer of
epidermis cells that serve crucial functions for protecting the various organs and, thus, for plant
survival. The epidermis consists of three different cell types, the pavement cells, guard cells,
and trichomes, in characteristic numbers, shapes and geometric arrangements depending on the
species, organ, and developmental state.

The different epidermis cell types serve very different functions (Figure 1; Table 1): pavement cells
form the major protective surface barrier [1], and mature Arabidopsis leaves contain about 29,000 cells
each with a surface area of ca. 4000 µm2 [2] (Table 1). Guard cells, on the other hand, are important for
regulating gas exchange and for protecting the surface around stomata [3]. They are less abundant
and smaller than pavement cells (Figure 1b), with ca. 10,000 guard cells on average per Arabidopsis
leaf and average sizes of about 280 µm2 [2,4] (Figure 1b, Table 1). Finally, trichomes emerge vertically
out of the surface (Figure 1a), serving a variety of roles including UV protection, heat insulation,
transpiration control, and insect deterrence [5]. Arabidopsis trichomes consist of a stalk with two or
three perpendicular arms (Figure 1a,b), and they are far less abundant (about 75 trichomes per leaf)
but larger (surface areas about 40,000 µm2) than the other epidermal cell types [2] (Table 1).
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Figure 1. Cryo-SEM images of abaxial Arabidopsis leaf surfaces. (a) Comparison of abundance and size 
of pavement and guard cells covering the leaf surface, relative to the trichome cells protruding out of 
the surface. (b) Detailed view of a single trichome, showing its shape and cell size relative to pavement 
and guard cells (reprinted from [6,7] with permission). 

Table 1. Trichome, guard cell, and pavement cell surface areas and cell numbers on adaxial 
Arabidopsis leaves (adapted from [2]). 

Projected Surface 
Area of Blade  
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Number of Surface Area of 
Trichomes 
(Blade−1) 

Guard Cell 
Pairs (Blade−1) 

Pavement 
Cells (Blade−1) 

Pavement Cells 
(μm2 cell−1) 

Trichome Cells
(μm2 cell−1) 

138 72 10366 29602 4646 40000 

It is generally assumed that all three epidermal cell types are covered with an uninterrupted 
cuticle, a hydrophobic surface consisting of a cutin matrix [8] and solvent-soluble waxes embedded 
in, and deposited onto, it. Cutin is a polyester of saturated and unsaturated C16 and C18  
ω-hydroxyacids, polyhydroxyacids, or epoxyacids and glycerol [9,10]. Cuticular wax usually 
comprises a variety of aliphatic compound classes such as fatty acids, primary n-alcohols, secondary 
alcohols, alkyl esters, aldehydes, and alkanes, but also polyketides and terpenoids (Figure 2). Within 
the compound classes, usually compounds with varying carbon numbers in the hydrocarbon chains 
are found, thus defining series of aliphatic homologs. Both the abundances of individual constituents 
within the wax mixture and the relative amounts of wax and cutin vary greatly between plant species, 
organs, and developmental stages. For instance, in leaf blades of Triticum aestivum seedlings, primary 
n-alcohols are the predominant compound class, whereas on flag leaf sheaths β-diketones are 
predominant [11]. Arabidopsis leaf wax contains alkanes with a broad chain length ranging from C25 
to C34, while Arabidopsis stem wax consists mainly of C29 alkane. 

 
Figure 2. Chemical structures of major cuticular wax compound classes. 
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Figure 1. Cryo-SEM images of abaxial Arabidopsis leaf surfaces. (a) Comparison of abundance and size
of pavement and guard cells covering the leaf surface, relative to the trichome cells protruding out of
the surface; (b) Detailed view of a single trichome, showing its shape and cell size relative to pavement
and guard cells (reprinted from [6,7] with permission).

Table 1. Trichome, guard cell, and pavement cell surface areas and cell numbers on adaxial Arabidopsis
leaves (adapted from [2]).

Projected Surface
Area of Blade (mm2)

Number of Surface Area of

Trichomes
(Blade−1)

Guard Cell Pairs
(Blade−1)

Pavement Cells
(Blade−1)

Pavement Cells
(µm2 cell−1)

Trichome Cells
(µm2 cell−1)

138 72 10366 29602 4646 40000

It is generally assumed that all three epidermal cell types are covered with an uninterrupted
cuticle, a hydrophobic surface consisting of a cutin matrix [8] and solvent-soluble waxes embedded in,
and deposited onto, it. Cutin is a polyester of saturated and unsaturated C16 and C18 ω-hydroxyacids,
polyhydroxyacids, or epoxyacids and glycerol [9,10]. Cuticular wax usually comprises a variety
of aliphatic compound classes such as fatty acids, primary n-alcohols, secondary alcohols, alkyl
esters, aldehydes, and alkanes, but also polyketides and terpenoids (Figure 2). Within the compound
classes, usually compounds with varying carbon numbers in the hydrocarbon chains are found,
thus defining series of aliphatic homologs. Both the abundances of individual constituents within
the wax mixture and the relative amounts of wax and cutin vary greatly between plant species,
organs, and developmental stages. For instance, in leaf blades of Triticum aestivum seedlings, primary
n-alcohols are the predominant compound class, whereas on flag leaf sheaths β-diketones are
predominant [11]. Arabidopsis leaf wax contains alkanes with a broad chain length ranging from
C25 to C34, while Arabidopsis stem wax consists mainly of C29 alkane.

The mechanisms underlying wax biosynthesis have been largely elucidated using model
organisms such as Arabidopsis and tomato. First, C16 and C18 fatty acid thioesters are synthesized
de novo in the plastids of epidermal cells. These precursors are then hydrolyzed to free acids,
exported to the endoplasmic reticulum (ER), and activated to acyl-CoAs by long chain acyl-CoA
synthases (LACSs) [12]. At the ER, acyl-CoAs are elongated in several elongation cycles from C16

and C18 to very-long-chain fatty acids (VLCFA), which usually have aliphatic chains with 24–34
carbons [13] (Figure 3).
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The mechanisms underlying wax biosynthesis have been largely elucidated using model 
organisms such as Arabidopsis and tomato. First, C16 and C18 fatty acid thioesters are synthesized de 
novo in the plastids of epidermal cells. These precursors are then hydrolyzed to free acids, exported 
to the endoplasmic reticulum (ER), and activated to acyl-CoAs by long chain acyl-CoA synthases 
(LACSs) [12]. At the ER, acyl-CoAs are elongated in several elongation cycles from C16 and C18 to 
very-long-chain fatty acids (VLCFA), which usually have aliphatic chains with 24–34 carbons [13]  
(Figure 3).  

 
Figure 3. Wax biosynthesis pathways in Arabidopsis. First, acyl-CoAs are elongated by fatty acid 
elongase (FAE) complexes (black), then their head groups are modified along either the alkane-
forming pathway (blue) or the alcohol-forming pathway (red), and the wax compounds are exported 
to the cuticle (dashed gray arrows). 

Each elongation cycle is carried out by a fatty acid elongase (FAE), an enzyme complex 
catalyzing four sequential reactions effecting the overall extension of the hydrocarbon chain by two 
carbons (Figures 3 and 4). In each cycle, first a β-ketoacyl-CoA synthase (KCS) fuses the incoming 
chain with a C2 unit from malonate, and then a β-ketoacyl-CoA reductase (KCR), a β-hydroxyacyl-
CoA dehydratase (HCD), and an enoyl-CoA reductase (ECR) reduce the functional group of the 
intermediate into a methylene (CH2) unit [14–20] (Figure 4). The initial condensing reaction, catalyzed 
by KCS enzymes, is the rate-limiting step and determines the chain length range of substrates and 
products of the FAE complex [19], while the other three FAE enzymes, the KCR, HCD, and ECR, are 
used ubiquitously by all FAE complexes [19,21]. It is likely that different FAEs co-exist within one 
cell, together generating a broad chain length range of acyls with predominantly even carbon 
numbers. Based on Arabidopsis ksc mutant analyses, the KCS enzyme KCS6/CER6 was found to be 
central for cuticular wax biosynthesis, as it elongates C24 to C28 acyl-CoAs. More recently, it was 
shown that the KCS6/CER6 FAE complex may be associated with CER2-LIKE proteins, then enabling 
elongation of acyl-CoAs up to C34 (Figure 3), yet the mechanism of action of CER2-LIKE proteins 
remains unknown [22–25]. 

After elongation, acyl-CoAs are modified on two branch pathways: on the alkane-forming 
pathway, the CER3 and CER1 enzymes consecutively reduce and decarbonylate acyls, into aldehydes 
with predominantly even carbon numbers, and alkanes one carbon shorter, and thus odd C-numbers, 
respectively [26–28] (Figure 3). The alkanes may be converted into secondary alcohols and ketones 
by the mid-chain alkane hydroxylase1 (MAH1) [29]. On the alcohol-forming pathway, fatty acyl-CoA 

Figure 3. Wax biosynthesis pathways in Arabidopsis. First, acyl-CoAs are elongated by fatty acid
elongase (FAE) complexes (black), then their head groups are modified along either the alkane-forming
pathway (blue) or the alcohol-forming pathway (red), and the wax compounds are exported to the
cuticle (dashed gray arrows).

Each elongation cycle is carried out by a fatty acid elongase (FAE), an enzyme complex
catalyzing four sequential reactions effecting the overall extension of the hydrocarbon chain by two
carbons (Figures 3 and 4). In each cycle, first a β-ketoacyl-CoA synthase (KCS) fuses the incoming
chain with a C2 unit from malonate, and then aβ-ketoacyl-CoA reductase (KCR), aβ-hydroxyacyl-CoA
dehydratase (HCD), and an enoyl-CoA reductase (ECR) reduce the functional group of the intermediate
into a methylene (CH2) unit [14–20] (Figure 4). The initial condensing reaction, catalyzed by KCS
enzymes, is the rate-limiting step and determines the chain length range of substrates and products
of the FAE complex [19], while the other three FAE enzymes, the KCR, HCD, and ECR, are used
ubiquitously by all FAE complexes [19,21]. It is likely that different FAEs co-exist within one cell,
together generating a broad chain length range of acyls with predominantly even carbon numbers.
Based on Arabidopsis ksc mutant analyses, the KCS enzyme KCS6/CER6 was found to be central for
cuticular wax biosynthesis, as it elongates C24 to C28 acyl-CoAs. More recently, it was shown that
the KCS6/CER6 FAE complex may be associated with CER2-LIKE proteins, then enabling elongation
of acyl-CoAs up to C34 (Figure 3), yet the mechanism of action of CER2-LIKE proteins remains
unknown [22–25].
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reductases (FARs) form even-numbered n-alcohols [30], which can be converted into alkyl esters by 
the wax synthase/diacylglycerol acyltransferase1 (WSD1) enzyme [31] (Figure 3). 

 
Figure 4. Elongation of acyl-CoAs by the fatty acid elongase (FAE) complex. 
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cells, and very recently also direct evidence on trichome waxes has emerged. The current review will 
summarize all this evidence, focusing first on the composition of Arabidopsis trichome waxes (Section 
2) and the trichome-specific wax biosynthesis mechanisms in Arabidopsis (Section 3), and then 
providing context on similar wax compositions in other plant species (Section 4), as well as their 
possible implications on wax structure, properties, and functions (Section 5). 

2. Composition of Cuticular Wax Covering Arabidopsis Trichomes  

Several lines of evidence have addressed the question whether cuticular wax on Arabidopsis 
trichomes differs from that on pavement cells, first using indirect approaches and, in recent years, 
also direct chemical analyses. 

Initially, indirect evidence came from SEM investigations of Arabidopsis stem surfaces. It had 
repeatedly been reported that the surface of stem pavement cells is covered with epicuticular wax 
crystals [33–37], while the surface of stem trichomes was devoid of crystals [6,7,38]. It is well 
established that epicuticular wax crystals form due to the accumulation of one or a few compounds 
in the wax mixture, and the absence or presence of crystals, hence, reflects different amounts of the 
crystal-forming compounds within the overall wax mixture [39,40]. Consequently, the different 
micro-reliefs of Arabidopsis stem pavement and trichome surfaces suggested that these two cell types 
have different wax compositions. However, this qualitative comparison did not reveal how exactly 
both wax mixtures differ and, therefore, additional information was required. Unfortunately, such 
evidence could not be drawn from analogous SEM studies of other Arabidopsis organ surfaces, 
because they either lack trichomes or else their pavement and trichome cells do not differ in surface 
morphology. Other, more quantitative approaches were necessary to gauge the differences between 
the trichome and pavement wax mixtures. 

Figure 4. Elongation of acyl-CoAs by the fatty acid elongase (FAE) complex.

After elongation, acyl-CoAs are modified on two branch pathways: on the alkane-forming
pathway, the CER3 and CER1 enzymes consecutively reduce and decarbonylate acyls, into aldehydes
with predominantly even carbon numbers, and alkanes one carbon shorter, and thus odd C-numbers,
respectively [26–28] (Figure 3). The alkanes may be converted into secondary alcohols and ketones by
the mid-chain alkane hydroxylase1 (MAH1) [29]. On the alcohol-forming pathway, fatty acyl-CoA
reductases (FARs) form even-numbered n-alcohols [30], which can be converted into alkyl esters by
the wax synthase/diacylglycerol acyltransferase1 (WSD1) enzyme [31] (Figure 3).

It is well established that cuticular waxes are the crucial component of the cuticle, serving its
primary physiological function as a barrier that limits transpirational water loss [32]. Therefore, it is
generally assumed that all three epidermal cell types must be lined by continuous cuticles comprising
similar wax mixtures to protect the entire plant tissue. However, it is not clear whether the pavement
cells, guard cells and trichomes have autonomous wax biosynthesis machineries, and whether they
produce different wax mixtures to serve slightly different functions in the different geometric contexts
of the three cell types. Indirect evidence had gradually accumulated, suggesting that at least trichomes
may have cuticular wax compositions and biosynthesis distinct from those of pavement cells, and very
recently also direct evidence on trichome waxes has emerged. The current review will summarize
all this evidence, focusing first on the composition of Arabidopsis trichome waxes (Section 2) and the
trichome-specific wax biosynthesis mechanisms in Arabidopsis (Section 3), and then providing context
on similar wax compositions in other plant species (Section 4), as well as their possible implications on
wax structure, properties, and functions (Section 5).

2. Composition of Cuticular Wax Covering Arabidopsis Trichomes

Several lines of evidence have addressed the question whether cuticular wax on Arabidopsis
trichomes differs from that on pavement cells, first using indirect approaches and, in recent years,
also direct chemical analyses.

Initially, indirect evidence came from SEM investigations of Arabidopsis stem surfaces. It had
repeatedly been reported that the surface of stem pavement cells is covered with epicuticular wax
crystals [33–37], while the surface of stem trichomes was devoid of crystals [6,7,38]. It is well established
that epicuticular wax crystals form due to the accumulation of one or a few compounds in the wax
mixture, and the absence or presence of crystals, hence, reflects different amounts of the crystal-forming
compounds within the overall wax mixture [39,40]. Consequently, the different micro-reliefs of
Arabidopsis stem pavement and trichome surfaces suggested that these two cell types have different
wax compositions. However, this qualitative comparison did not reveal how exactly both wax mixtures
differ and, therefore, additional information was required. Unfortunately, such evidence could not
be drawn from analogous SEM studies of other Arabidopsis organ surfaces, because they either lack
trichomes or else their pavement and trichome cells do not differ in surface morphology. Other, more
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quantitative approaches were necessary to gauge the differences between the trichome and pavement
wax mixtures.

First quantitative distinctions between pavement and trichome surface compositions were
enabled by Arabidopsis mutant studies [6]. In these experiments, compositions of cuticular waxes
were compared between the trichome-free gl1 mutant, the wild type, and the trichome-rich mutant
cpc tcl1 etc1 etc3. The leaf wax of the trichome-rich mutant contained higher amounts of C32–C37 wax
compounds compared to the wild type and trichome-free mutant (Figure 5a). The shifts in chain length
distributions occurred within all major compound classes, irrespective of their functional groups,
whereas the absolute amounts of the compound classes were not significantly different between lines
with different trichome numbers. Moreover, the stem waxes of the trichome mutant lines showed
similar effects to those observed for leaves, albeit with increases mainly in C32 and C33 compounds [6].
Overall, these results revealed a correlation between the abundances of trichomes and extremely
long-chain aliphatic compounds. Pavement and trichome waxes were, thus, found to differ in their
chain length profiles.
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Figure 5. Wax composition of Arabidopsis leaves and isolated trichomes. (a) Coverage of single wax
compounds within each compound class on leaves of the trichome-free mutant gl1, the wild type, and
the trichome-rich mutant cpc tcl1 etc1 etc3; (b) Relative distributions of single compounds within each
compound class on leaves of the trichome-free mutant gl1, on trichomes isolated from wild type leaves,
and on trichomes isolated from trichome-rich mutant leaves. Average values are given with standard
deviations (n = 5). The x-axis labels indicate the total carbon chain numbers of compounds. Asterisks
indicate discovery of significant differences between coverages based on Student’s t-test (* = p < 0.05)
(adapted from [6]).

The inferences from mutant comparisons were confirmed by further investigations into wax
compositional changes on developing Arabidopsis wild type leaves [2]. It had previously been shown
that, in most dicot species, trichome development starts very early during leaf ontogeny, before major
pavement cell expansion. Therefore, immature (still expanding) leaves have higher trichome:pavement
surface ratios than mature leaves, and trichomes constitute a larger portion of the surface area in
younger leaves. Comparisons of cuticular wax compositions between young and mature leaves
can thus be interpreted as proxies for differences in cuticular wax composition of trichomes and
pavement cells. Most interestingly, young wild type leaves had relatively high abundances of C35+

compounds, which then decreased over the course of leaf development. This shift in chain length
profiles was accompanied by a steady decrease of apparent wax coverages, calculated as wax amounts
relative to the macroscopic leaf surface and, thus, likely reflecting the steady decrease in microscopic
aspect ratios due to declining trichome:pavement ratios. Taken together, the time-dependent wax
compositional changes suggested that the levels of C35+ compounds were positively correlated with
trichome densities, confirming that trichome and pavement waxes had different chain length profiles.

To further corroborate the conclusions from the previous mutant and time course studies,
both approaches were combined to monitor the wax development of the trichome-less Arabidopsis
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mutant gl1 [2]. In contrast to wild type, gl1 leaf wax coverages did not change during development,
and in this mutant C35+ compounds were detected at relatively low, constant levels throughout leaf
expansion. These results were in stark contrast to the previously observed apparent drop in both wax
coverage and C35+ compounds during wild type leaf expansion, thus confirming that both effects
depended on the presence of trichomes. The mutant time-course data further underline the conclusion
that trichome surfaces are distinguished from those of pavement cells through the higher abundance
of compounds with extremely long aliphatic chains.

Finally, the cell-type-specific surface compositions were assessed directly by chemical analyses of
waxes from isolated trichomes [6]. The selectively sampled wax from Arabidopsis leaf trichomes had
higher amounts of C32+ compounds than pavement cell wax (as judged by the composition of the gl1
leaf wax) (Figure 5b), thus confirming the results from the previous mutant comparisons and time
course studies. Interestingly, the direct analysis of wax from isolated (leaf) trichomes also revealed
that it contained mainly alkanes and primary n-alcohols, only two of the many compound classes
found in pavement wax. The trichome wax further comprised small amounts of alkenes, a compound
class not reported for Arabidopsis waxes before. It seems likely that the alkenes had not been noticed in
earlier studies, due to detection problems caused by relatively small trichome contributions to total
wax extracts from mature leaves.

In summary, all the recent indirect and direct evidence led to matching conclusions, showing
that the cuticular wax lining Arabidopsis trichomes differs significantly from that on pavement cells.
Trichome wax is distinguished by a relatively simple composition with only few compound classes,
by the presence of alkenes, and by shifts to longer chain lengths in all compound classes.

With such differences between Arabidopsis cell types now firmly established, we must
consider whether the compositional gradients between trichomes and adjacent pavement might
lead to lateral diffusion along the surface of these cells. To address possible lateral exchange of
constituents, the mobility of compounds within wax mixtures must be assessed. Schreiber [41]
determined self-diffusion coefficients of VLC compounds within wax, reaching values of approximately
10−20 m2 s−1 for example for C24–C28 compounds. Based on these self-diffusion coefficients, we predict
that wax molecules will not migrate fast enough within the mixture to cause significant exchange
of material between trichome and pavement waxes. Moreover, if diffusion were to occur, it would
only lessen differences over time rather than enhancing them. Consequently, the observed differences
in wax compositions of both cell types at certain times after cuticle formation must be regarded as
minimum effects and, assuming limited, local migration, even more drastic differences may have been
initially established during trichome development.

3. Wax Biosynthesis in Arabidopsis Trichome Cells

Based on the findings that the composition of trichome surface wax differs from that on pavement
cells, it must be assumed that both cell types have autonomous wax biosynthesis machinery, and that
at least some of the genes/enzymes involved differ between them. Most investigations into wax
biosynthesis so far used whole tissues, including all types of epidermal cells, and thus mixtures
were strongly dominated by pavement cells rather than trichomes. Therefore, findings from these
whole-tissue experiments can be taken as proxies for wax biosynthesis in pavement cells, but not
necessarily for trichomes. Some recent reports now add new information on wax metabolism in
trichomes, revealing both commonalities and differences between both cell types.

Firstly, promoter activity studies using GUS staining or GFP fluorescence identified
cell-type-specific expression patterns of wax biosynthesis genes. The Arabidopsis mid-chain alkane
hydroxylase enzyme MAH1, responsible for formation of the secondary alcohol and ketone products
of the alkane-forming pathway, is expressed in stem pavement cells, but not in stem trichomes
or guard cells [29]. Conversely, the Arabidopsis fatty acyl-CoA reductase CER4 synthesizing wax
primary n-alcohols is expressed preferentially in leaf trichomes rather than pavement cells [30].
GUS analyses showed also time-dependent changes in expression levels of several wax biosynthesis
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genes. For instance, the elongase-associated protein CER2 was found expressed in trichomes and guard
cells of developing leaves, but not in mature leaves [42]. Similarly, the alkane-forming decarbonylase
CER1 showed strong expression in trichomes of young leaves, and its expression level decreased with
leaf maturation [43].

Secondly, analyses of transcriptome datasets from Arabidopsis leaf trichome and pavement cells
confirmed that both cell types have autonomous wax biosynthetic machinery. On the one hand,
several wax biosynthetic genes are expressed equally in pavement cells and trichomes, including some
encoding ketoacyl-CoA synthetase (KCS) components of the fatty acid elongase (FAE) complexes
(KCS3, KCS4, KCS6/CER6, KCS9, KCS11-14, KCS19, and KCS20), other FAE enzymes such as the
ketoacyl-CoA reductase (KCR1), the β-hydroxyacyl-CoA dehydratase (HCD/PAS2) and the enoyl-CoA
reductase (ECR/CER10), as well as proteins associated with the FAE (CER2 and CER2-LIKE2),
and head-group-modifying enzymes, such as the alkane-forming reductase (CER3) and decarbonylase
(CER1), and the alcohol-forming reductase (FAR3/CER4) [6,38]. Together, these genes are known
to encode a full complement of wax biosynthetic enzymes, and both pavement and trichome cells,
thus, likely harbor the entire machinery required to form major wax constituents, such as aldehydes,
alkanes, and primary n-alcohols.

On the other hand, further homologs of the genes listed above were found expressed differentially
between pavement cells and trichomes. Particularly, KCS2/DAISY and KCS16 were expressed, albeit
weakly, only in developing trichomes, while KCS1, KCS5/CER60, KCS8, and KCS10 had especially high
expression signals in developing trichomes. Similarly, homologs of other enzymes associated with
the FAE (KCR2 and CER2-like1/CER26) and with head group modification (CER1-like1) were highly
expressed only in developing trichomes. Finally, the sole homologs of genes encoding two other head
group modification enzymes, the mid-chain hydroxylase (MAH1) and the wax ester synthase (WSD1),
were also expressed preferentially in trichomes.

The KCS enzymes are known to confer chain length specificity to the FAE and, thus, to dictate
overall chain length profiles of wax mixtures. Therefore, the finding that several Arabidopsis KCS genes
are expressed preferentially in trichome cells was noteworthy, since Arabidopsis trichomes had also been
reported to contain relatively high amounts of especially long-chain wax constituents (C35 and C37).
Previously, nothing was known about the enzymatic machinery involved in elongating fatty acyl
precursors beyond C34, and several of the KCS homologs in Arabidopsis had not been characterized.
From these candidates, KCS16 was recently selected based on its trichome-specific expression. Detailed
biochemical and molecular genetic investigations revealed that ksc16 loss-of-function mutants were
depleted of C35+ products in trichome and pavement cell waxes, whereas expression of KCS16
in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty
acids [7]. Together, these findings showed that KCS16 is the sole enzyme catalyzing the elongation of
C34 to C38 acyl-CoAs in Arabidopsis leaf trichomes and that it is, thus, crucial for the trichome-specific
formation of especially long-chain wax compounds. Overall, the characterization of KCS16 illustrates
how the cell-type-specific composition of trichome wax results from differential expression of
a dedicated enzyme which is homologous to ubiquitous wax biosynthesis enzymes, but has a distinct
product profile.

It is worth noting that the expression patterns of certain wax biosynthesis genes did not match
wax compositional differences between trichomes and pavement cells. For instance, microarray and
GUS analyses showed that the CER4 gene, encoding the fatty acyl-CoA reductase responsible for the
formation of wax primary n-alcohols, was expressed mostly in leaf trichomes rather than pavement
cells [6,30]. However, diverse chemical analyses (of Arabidopsis trichomes and intact leaves, including
ontogenetic time course experiments, see above) unambiguously showed that primary n-alcohols
are present in cuticular waxes of both cell types. This seeming contradiction might be explained
on the one hand by relatively high detection limits of the involved microarray experiments, and by
highly-sensitive GUS staining of trichomes on the other. Even a low level of expression in pavement
cells over relatively long spans of pavement development might result in sufficient enzyme activity to
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account for the alcohol products found on the pavement cells. Indeed, non-negligible CER4 expression
in Arabidopsis leaves was reported from qRT-PCR experiments [2], thus, highlighting the need to test
expression data beyond microarray analyses.

In summary, all the recent studies involving transcriptome and promoter analyses confirmed
that trichomes have a complete set of wax biosynthesis genes enabling autonomous wax biosynthesis.
However, beyond the ubiquitous complement of wax biosynthesis genes shared between all epidermis
cells, trichomes may contain (at least some) unique enzymes extending their wax metabolic pathways.
Not only the expression of the genes encoding these trichome-specific enzymes differs between
trichomes and pavement cells, but also the expression of other, ubiquitous wax biosynthesis enzymes.

4. Extra-Long Compounds in the Wax Mixtures of Diverse Plant Species

All the evidence discussed so far shows that Arabidopsis thaliana trichomes have distinct wax
composition from neighboring pavement cells, due to also distinct biosynthetic mechanisms. To further
understand the evolution and possible eco-physiological functions of trichome waxes, it would be
interesting to know whether such cell-type-specific wax compositions and biosynthesis also occur
in other species. However, only little is known about the composition of cuticular waxes covering
trichomes of other plant species.

There is scattered, indirect evidence that cuticular waxes covering trichomes of species other than
Arabidopsis differ from those on respective pavement cells. For example, the leaves of Puccinellia
tenuiflora and Oryza sativa are known to have epicuticular wax crystals on their pavement cell surfaces,
but not on adjacent trichomes [44], indicating wax compositional differences between both epidermis
cell types analogous to Arabidopsis. Many studies addressed the total chemical compositions of
glandular trichomes, but did not investigate the trichome waxes specifically [45–47]. In one exceptional
investigation, the trichomes isolated from peach fruit were analyzed and found to have cuticular wax
consisting mainly of alkanes (92%), with chain lengths ranging from C22 to C34 [48]. In contrast, wax on
accompanying pavement cells comprised several compound classes, with only 72% alkanes, and chain
length profiles (C23–C29) lacking the extremely long homologs. The differences between trichome and
pavement wax compositions on peach fruit, thus, strongly resemble those reported for Arabidopsis
leaf trichomes.

Unfortunately, the trichome waxes of no other species have been investigated to date, and it
remains unclear whether cell-type-specific wax compositions similar to those of Arabidopsis and peach
exist elsewhere. Further studies into the wax compositions of both non-glandular and glandular
trichomes of diverse taxa would be of great interest to better understand the specific function of
cuticles lining these special epidermis cells.

Conversely, wax compounds with extra-long hydrocarbon chains similar to those on Arabidopsis
trichomes had previously been described in the bulk wax mixtures (extracted from whole organs
without discriminating between epidermal cell types) of diverse other plant species (Table 2). It is
interesting to now compare the occurrence of such C35+ aliphatics in diverse taxa growing in various
habitats, as a backdrop for future investigations into their formation and function, possibly also in the
context of trichome-specific accumulation.

Extra-long hydrocarbon chains were typically encountered in relatively small amounts
accompanying much larger quantities of the C26–C34 ubiquitous compounds in bell-shaped homolog
distributions. Since trace amounts of C35+ wax compounds were detected in fairly diverse analyses,
similar, small quantities of them may be surmised in other species as well, but some wax analyses
may have failed to detect longer homologs due to instrument settings with limited sensitivity.
The occurrence of very low amounts of compounds at the high end of the homolog distribution
suggested that they are formed merely as by-products of the normal wax biosynthesis machinery
rather than through dedicated processes specific to their chain lengths. Characterization of enzymes
involved in wax precursor elongation in respective species may reveal whether, in these cases, single
FAEs indeed form both the ubiquitous chain lengths and the C35+ homologs [2,6,23,39,49–71].
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Table 2. Survey of plant species reported to contain cuticular wax compounds with extra-long hydrocarbon chains (C35+). Chain length ranges, most abundant
chain lengths (C max.), and relative abundances of C35+ compounds within respective compound classes (+: 0–1%; ++: 1–5%; +++: 5–10%; ++++: >10%) are shown.
Comprehensiveness of respective chemical analyses is indicated by information which compound classes were included in the analyses. As additional information,
organs from which extra-long compounds were extracted are given, the occurrence of trichomes on respective tissues is assessed where possible, and climatic zones
are listed for each species.

Plant Species Family Tissue Analyzed Compound
Classes Compound Class C max. Carbon Chain

Length Range
Abundance
of C36/C35

Abundance of
C38/C37

Climatic
Zone Trichomes Reference

Euphorbia characias

Euphorbiaceae Leaves Complete wax profile

Alkanes 31 C19–C37 + +

Temperate N/A [48]

Aldehydes 31 C24–C36 + N/A

Euphorbia cyparissias Alkanes 31 C19–C37 ++ +
Aldehydes 31 C24–C36 + N/A

Euphorbia lathyris Alkanes 31 ++ +
Aldehydes 31 C24–C36 + N/A

Euphorbia niccaensis Alkanes 31 C19–C37 + +
Euphorbia peplus Alkanes 31 C19–C37 + N/A

Austrocedrus chilensis Cupressaceae Leaves Alkanes only Alkanes 33 C21–C37 ++++ + Temperate to
Subtropical N/A [57]

Eschscholzia california
Papaveraceae

Leaves
Complete wax profile Alkanes

29 C21–C37 + N/A
Temperate N/A [58]Papaver orientale Leaves 29 C21–C35 + N/A

Papaver somniferum Capsules 29 C21–C37 + N/A

Miscanthus sinensis

Poaceae

Leaves

Alkanes only Alkanes

31

C25–C35

+++ N/A

Temperate

Yes [49]

[59]

Senescent leaves 31 +++ N/A
Stems 31 ++++ N/A No [49]

Inflorescence 31 ++ N/A N/A
Pleioblastus chino Leaves 31 ++++ N/A Yes [50]

Sasa nipponica Leaves 31 +++ N/A
N/ASenescent leaves 31 +++ N/A

Zoysia japonica Leaves 31 ++ N/A
N/ASenescent leaves 31 ++++ N/A
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Table 2. Cont.

Plant Species Family Tissue Analyzed Compound
Classes Compound Class C max. Carbon Chain

Length Range
Abundance
of C36/C35

Abundance of
C38/C37

Climatic
Zone Trichomes Reference

Austrodanthonia pilosa

Poaceae

Leaf blades

Alkanes, prim.
alcohols

Alkanes

31

C25–C35

++ N/A Temperate

N/A

[60]

Austrodanthonia racemosa 33 + N/A
Axonopus fissifolius Shoot 33 ++++ N/A Subtropical
Bothriochloa macra Leaves 27 ++ N/A Temperate
Bromus catharticus Shoot 29 ++ N/A

Chloris gayana Leaves 31 ++ N/A

Subtropical
N/A

Shoot
33 ++++ N/A

Cynodon dactylon 33 +++ N/A Yes [51]
Digitaria didactyla 33 ++++ N/A N/A

Elymus scaber Leaves 31 ++ N/A Temperate N/A
Festuca arundinacea

Shoot
31 + N/A

N/AImperata cylindrica 31 +++ N/A Subtropical
Lotus corniculatus "Prostate"

Shoot
29 + N/A

Temperate
No [52]

Lotus pedunculatus cv. Maku 29 + N/A Yes [52]
Microlaena stipoides Leaves 31 ++ N/A

N/APaspalum dilatatum

Shoot

33 ++++ N/A
SubtropicalPaspalum notatum 35 ++++ N/A

Pennisetum clandestinum 35 ++++ N/A N/A
Phalaris aquatica 29 +++ N/A Temperate

N/ASetaria anceps 27 ++ N/A Subtropical
Sporobolus indicus cv. Major 33 ++++ N/A

N/AThemeda australis Leaves 31/33 +++ N/A
TemperateTrifolium repens Fabaceae

Shoot
31 + N/A Yes [53]

Vulpia myuros Poaceae 31 + N/A N/A

Brassica spp. Brassicales
Leaves Alkanes only Alkanes N/A C17–C35 N/A N/A Temperate Yes [54]

[37]Pisum sativum Fabaceae N/A

Rosa canina Rosaceae Leaves Complete wax profile Sec. alcohols N/A C29–C35 + N/A Temperate N/A [61]

Wollemia nobilis Araucariaceae Leaves Alkanes only Alkanes N/A C33–C35 N/A N/A Temperate N/A [62]

Bambusa bambusa
Poaceae Leaves alkanes only Alkanes

31/33
C23–C35

+++ N/A
Tropical N/A [63]Bambusa dendrocalamopsis 29 + N/A

Bambusa dendrocalamus 29 ++

Alternanthera dentata
Amaranthaceae

Leaves Alkanes only Alkanes

29 C22–C35 ++ N/A

Subtropical

N/A

[65]

Alternanthera versicolor 31 C18–C35 + N/A
Araucaria cunninghamii Araucariaceae 31 C22–C35 ++ N/A
Bothriochloa ischaemum Poaceae 31 C14–C35 ++ N/A N/A

Caryota mitis Arecaceae 31 C20–C35 + N/A

N/A

Cinnamomum burmannii Lauraceae 31 C22–C35 + N/A
Codiaeum variegatum Euphorbiaceae 33 C22–C35 ++ N/A

Euphorbia trigona 33 C24–C37 ++ N/A
Holmskioldia sanguinea Lamiaceae 35 C22–C37 ++++ N/A

Hylocereus undatus Cactaceae 33 C18–C37 +++ N/A
Imperata cylindrica Poaceae 31 C14–C35 +++ N/A

Kigelia africana Bignoniaceae 31 C24–C35 +++ N/A
Opuntia dillenii Cactaceae 29 C23–C36 ++++ N/A N/A

Osmanthus fragrans Oleaceae 31 C24–C35 ++ N/A N/A
Pistia stratiotes Araceae 31 C24–C37 + N/A Yes [55]

Swietenia mahagoni Meliaceae 31 C24–C35 + N/A N/A
Zoysia japonica Poaceae 33 C14–C35 +++ N/A N/A
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Table 2. Cont.

Plant Species Family Tissue Analyzed Compound
Classes Compound Class C max. Carbon Chain

Length Range
Abundance
of C36/C35

Abundance of
C38/C37

Climatic
Zone Trichomes Reference

Aspidosperma spp. Apocynaceae

Leaves

Alkanes, alkanols

Alkanes

33 C29–C35 +++ N/A Tropical

N/A [66]
Cryptomeria japonica Cypressaceae fatty acids 33 C33–C35 ++++ N/A Temperate
Juniperus osteosperma 33 C29–C35 +++ N/A Temperate

Manilkara spp. Sapotaceae 33 C31–C35 +++ N/A Tropical

Arabidopsis thaliana Brassicaceae Leaves 1 Complete wax profile Alkanes 29 C25–C35 + N/A Temperate Yes [21]

Miscanthus sinensis Poaceae Leaves Alkanes, fatty acids Alkanes 31 C25–C37 + + Temperate Yes [52] [67]

Lupinus angustifolius Fabaceae
Leaves Complete wax profile Alkanes

N/A
C23–C37 N/A N/A Temperate N/A

[68]Triticum aestivum Poaceae 31 N/A

Olea europaea Oleaceae
Leaves 1

Alkanes only Alkanes
29 C27–C35 + N/A

Mediterranian
N/A

[69]
Olive oil 25 C21–C35 + N/A N/A

Arabidopsis thaliana Brassicaceae
Young/mature Complete wax profile Alkanes 31 C27–C37 + + Temperate N/A [2,7]leaves Alkenes 35 C35–C37 + +

Arabidopsis thaliana Brassicaceae
Leaves 1

Complete wax profile

Alkanes 31 C27–C37 + +

Temperate N/A [6]
Alkenes 35 C35–C37 + +

Leaf trichomes 1 Alkanes 31/33 C27–C37 + +
Alkenes 35 C33–C37 + +

Ludwigia octovalvis Onagraceae Young leaves Alkanes, fatty acids Alkanes
23

C15–C35
+ N/A Tropical Yes [56] [70]Mature leaves 23 + N/A

N/A: no information available; 1 other organs were included in the analyses, but were found to lack C35+ compounds.
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However, some plant species tend to accumulate relatively high amounts of extra-long
hydrocarbon chains, raising the question whether in these cases C35+ products are made by dedicated
elongase complexes. Among these species, two main distinct chain length distribution patterns
can be observed: (1) In some species, the overall homolog profiles peaked at relatively long chains,
such as C33 or even C35 and, thus, the further accumulation of substantial quantities of C35+ wax
compounds fell within bell-shaped distributions that are as narrow as those of other species but,
overall, shifted towards longer chain lengths. Such distributions were observed, for example,
in the wax mixtures of Austrocedrus chilensis [58], Pleioblastus chino [60], Paspalum notatum [61],
or Cryptomerica japonica [67]. (2) In other species, substantial amounts of C35+ compounds occurred
within chain length profiles peaking at C29, and thus revolving around rather normal chain lengths
but with a characteristically broad spread. Such distributions were observed in the wax mixtures
of Phalaris aquatica [60], Opuntia dillenii [66], or Bambusa dendrocalamus [64]. Both these chain length
profile types involving the accumulation of relatively high C35+ compound amounts are of note for
further studies into wax biosynthesis. It will be interesting to characterize the KCS enzymes involved,
as well as other proteins associated with the FAE complexes containing them, to understand how the
chain length shifts and/or the broadening of the homolog distribution are effected. Of note, for some
of the species in which C35 and C37 compounds were identified, genomic sequence data are available
(Brassica spp., Pisum sativum, Triticum aestivum, Lupinus angustifolius, and Zea mays), which will allow
further investigation of biosynthesis and function of extra-long compounds beyond Arabidopsis.

Beyond the machineries generating especially long acyl precursors, it will be interesting to also
study the chain length specificities of the enzymes that catalyze reactions by which the acyl precursors
are modified into final wax products such as alkanes and alcohols. Interesting candidate species for
this purpose may be selected based on prior wax composition reports, and comprehensive cuticular
wax analyses including all major compound classes are required for this. However, of those studies
reporting C35+ wax compounds, relatively few have provided complete wax profiles. Most interestingly,
they suggest that extra-long wax constituents may be limited to certain compound classes, in most
cases to alkanes (Table 2). The chain length range of other compound classes, such as aldehydes or
primary n-alcohols, tended to be shorter (usually between C24 and C34). Only rarely were longer chain
lengths also described for other compound classes, such as the C29–C35 secondary alcohols in Rosa
canina leaf wax [61].

Unfortunately, many other studies focused on analyzing alkanes, without reporting chain length
profiles of other wax compound classes accompanying them. It is, hence, impossible to assess whether
indeed the wax biosynthesis pathways leading to wax compound classes other than alkanes may
discriminate against the exceptionally long-chain intermediates. Therefore, comprehensive analyses of
diverse plant species detailing the quantities of C35+ constituents of all wax fractions are needed in
the future.

In some plant species, the C35+ wax alkanes occurred together with alkenes that also had
exceptionally long chains. For example, Arabidopsis leaf wax contained not only C23–C37 alkanes,
but also exceptionally long alkenes, which however were restricted to a relatively narrow range from
C33 to C37 (Figure 5) [2,6]. Similar alkenes were also reported for other species, including C23 to C35

alkenes in Hordeum vulgare spikes [72], a broad distribution around C29 in Rosa damascena flowers [73],
and chain lengths up to C35 or C37 in cucumber fruits and stems [74], barley leaves [72], tomato
fruit [75], maize pollen [76], or olive oil [77].

Although C35+ wax constituents have been reported for diverse plant species, the literature on
these compounds remains patchy. The C35+ compounds have been identified in several species of
Poaceae, Cactaceae, or Cupressaceae, and of diverse other families as well (Table 2). Thus, based on the
relatively few comprehensive analyses that positively identified such compounds, their distribution
across diverse taxa can hardly be assessed. It appears likely that they have been over-looked in many
plant species, due to difficulties with detection by GC-MS, and that they are occurring more widely
than previously thought. It is interesting to note that, even within the limited number of species where
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they have been detected to date, many are native to subtropical climates. Clearly, this preliminary
observation will have to be corroborated by wax analyses of many more plant species from diverse
habitats. Such broader surveys may be used to search for correlations between the relative amounts
of C35+ compounds and select parameters in the growth conditions of respective species, to test for
possible adaptive advantages conferred by the C35+ wax compounds in certain climates.

It is also interesting to note that extra-long wax compounds were mostly identified in leaf waxes
so far. However, the large majority of wax studies to date focused on leaves, and the wax mixtures
on other organs, thus, cannot be compared adequately. Therefore, it is not clear whether the C35+

compounds indeed accumulate preferentially on certain organs, and particularly on leaves. On the one
hand, Arabidopsis may serve as a point in case, as extra-long compounds were detected in its leaf (mainly
trichome) waxes but not in the wax mixtures covering most other organs. On the other hand, in other
species such as Papaver somniferum [59], Miscanthus sinensis [60], Lotus corniculatus, and Trifolium
repens [61], extra-long wax compounds were also identified on stem, fruit, and inflorescence surfaces
(Table 2).

Finally, the recent findings that Arabidopsis trichome waxes contain relatively high amounts of
C33–C37 alkanes raise the question whether the C35+ compounds in other species may also reside
mainly, if not entirely, on trichome surfaces. To answer this question, previous reports on the occurrence
of extra-long wax constituents may be integrated with further studies mentioning the presence of
trichomes on relevant organs of respective species. Interestingly, many of the plant species known
to have C35 or C37 alkanes lack trichomes, suggesting that extra-long wax constituents may be
characteristic constituents of pavement cells as well. Unfortunately, for some species with C35+ wax
compounds, there is no information on the presence or absence of trichomes available. In the future,
comprehensive micro-morphological characterizations of all plant surfaces are needed in parallel with
chemical analyses of their cuticular wax mixtures. Ideally, wax mixtures on the trichomes of diverse
species should be analyzed directly using the methods recently established for direct investigation
of Arabidopsis trichome surfaces, to search for differences in wax composition between pavement
and trichome cells, and to test whether C35+ compounds tend to accumulate in trichome waxes of
diverse species.

5. Possible Functions of Extra-Long-Chain Compounds in Trichome Wax

The findings that trichomes (at least in Arabidopsis) have distinct wax biosynthesis machineries and,
therefore, compositions raise interesting questions regarding trichome surface properties and functions.
However, there is currently only very little evidence to answer such questions on the possible adaptive
benefits of trichome waxes in general, and of extra-long wax compounds in particular. Hence, it may
at this point only be speculated how the presence of C35+ constituents may affect the physical structure
and, therefore, the physiological properties of respective wax mixtures.

Based on the generally accepted models for the physical structures of wax mixtures, it seems
very plausible that the presence of extra-long wax constituents will have significant effects on the
melting behaviour and the crystallinity, two parameters defining wax properties. Firstly, the C35+ wax
compounds have melting points higher than those of the ubiquitous, shorter homologs, and admixtures
of the extra-long chains will therefore affect the melting characteristics of the wax. The melting ranges
of plant wax mixtures are known to vary drastically, depending on composition, with melting start
temperatures from 40 ◦C to 75 ◦C [40,78,79] and, thus, possibly in the range of ambient temperatures
in certain habitats. The presence of longer homologs will increase the percentage of wax molecules
remaining in the solid state at these temperatures and may, thus, serve to keep the cuticle structure
intact in especially hot micro-environments.

Secondly, the presence of especially long wax compounds will affect the packing of molecules
within the complex solid-state wax mixtures. However, it is currently not clear whether the
accumulation of C35+ compounds would enhance or impede the water barrier properties of the
wax mixtures. Whether such admixtures would have positive or negative effects might depend on
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their concentration as well as the overall chain length distribution [80]. On the one hand, small
amounts of C35+ compounds may be expected to merely broaden the chain length distribution and
lead to increased mismatches in the side-by-side packing of shorter and longer homologs within the
wax structure. The resulting local disorder would effectively reduce the overall crystallinity of the
wax mixture, facilitating access for water molecules and thus negatively affecting the water barrier
properties of the wax mixture. On the other hand, a sufficient admixture of C35+ compounds could
also lead to (partial) phase separation, generating domains within the wax where higher homologs are
concentrated and, consequently, both the overall crystallinity and the barrier properties of the mixture
may be increased.

Finally, other properties might be also, or even more, relevant for the waxes covering trichomes.
Due to their extreme architecture and position, the trichomes are exposed to stresses that are either
more severe or altogether different from those of pavement cells. Of particular importance in this
context, trichomes must be exposed to mechanical stress, and their surface structures must, therefore,
be relatively flexible to remain functional throughout various movements and upon contact [5]. It is
not clear in how far the special chemical composition of the trichome waxes found so far may affect
their mechanical properties, and in how far they may be suited to withstand this particular stress.

6. Conclusions

It has recently been found that the cuticular wax covering Arabidopsis trichomes differs from
those on adjacent pavement cells, mainly by containing C35+ alkanes and alkenes derived from
respective C36 and C38 acyl-CoA derivatives. These extra-long precursors are formed by elongation
catalyzed by FAE complexes involving KCS16, a condensing enzyme preferentially expressed in
trichomes. Thus, it is now established that Arabidopsis trichomes have distinct surface composition
due to autonomous wax biosynthesis machinery involving many of the same genes as pavement cells,
but also additional elements that are trichome-specific. It seems very likely that trichomes on other
species as well have wax compositions and biosynthesis apparatuses distinct from the neighboring
pavement cells. However, direct evidence is required for detailed comparisons between cell types and
species, to assess possible commonalities and differences and, thus, to understand how certain wax
compounds may contribute to special wax functions on trichome surfaces.

It will also be interesting to investigate in how far the waxes covering trichomes and pavement
cells differ from those on the third type of epidermis cells, the guard cells. While it has not been possible
to analyze the wax compositions of pavement and guard cells directly so far, there is some indirect
evidence that guard cells may have a distinct wax composition. For example, differences in UV-induced
fluorescence were observed between guard and other epidermal cells, possibly caused by wax-bound
phenolic compounds or a thicker cuticular wax layer on guard cells. Accordingly, wax removal led to
decreased fluorescence intensities from guard cells of Olea europaea, Vicia faba, and Triticum aestivum
leaves [81]. In a separate study, the Arabidopsis HIGH CARBON DIOXIDE (HIC) gene encoding a KCS
was found expressed exclusively in guard cells [82], and hic mutants, as well as the cer1 and cer6 wax
biosynthesis mutants had significant increases in stomatal frequencies [82]. While these findings clearly
show that cuticular wax composition influences stomata development, it remains to be determined
whether, conversely, guard cell waxes may also be distinct from those on pavement cells. Unfortunately,
the differences in stomatal frequencies in respective mutants were not sufficient to interpret them in
terms of possibly concurring differences in wax composition. Instead, other mutants with dramatic
alterations in stomata density will have to be used for comparative analyses of respective wax mixtures,
to enable inferences on guard cell surface composition. Several Arabidopsis mutants with increased
stomata density were described previously, including tmm [83–85], sdd1 [86,87], and yda [88,89].
Similarly, Arabidopsis lines overexpressing EPIDERMAL PATTERNING FACTOR (EPF) genes also
have increased density of stomata on the abaxial side of the leaves, while epf mutants are lacking
stomata almost completely and have an increased number of pavement cells instead [89,90]. Chemical
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analyses of the cuticular waxes on these Arabidopsis lines with vastly differing stomata numbers may
well hold the answer to the question on guard cell wax autonomy and function.
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