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Abstract: The free radical molecule, nitric oxide (NO), is present in the principal organs of 

plants, where it plays an important role in a wide range of physiological functions. Root 

growth and development are highly regulated by both internal and external factors such as 

nutrient availability, hormones, pattern formation, cell polarity and cell cycle control.  

The presence of NO in roots has opened up new areas of research on the role of NO, 

including root architecture, nutrient acquisition, microorganism interactions and the 

response mechanisms to adverse environmental conditions, among others. Additionally, 

the exogenous application of NO throughout the roots has the potential to counteract 

specific damages caused by certain stresses. This review aims to provide an up-to-date 

perspective on NO functions in the roots of higher plants. 
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1. Introduction 

The free radical nitric oxide, which has been demonstrated to be involved in more plant functions 

than previously thought, has transformed our understanding of plant physiology. Depending on its rate 

of production, nitric oxide has the dual role of functioning as a signal molecule at low concentrations 

and as a stress molecule at high concentrations. The latter could be associated with damages to 

macromolecules caused by processes such as protein nitration.  

Many NO roles are attributable to the family of NO-related molecules known as reactive nitrogen 

species (RNS). These molecules include peroxynitrite (ONOO−), resulting from the reaction of NO 

with superoxide radical (O2
•−) [1], and S-nitrosothiols (SNOs), produced by the reaction of NO with 

thiol groups [2]. With respect to the latter group, it is particularly worth highlighting the interaction of 

the tripeptide glutathione (GSH) with NO leading to the formation of S-nitrosoglutathione (GSNO) [3,4]. 

Another important factor to consider in the NO metabolism is the way in which this molecule is 

endogenously generated in plant cells. At present, there are two main enzymatic pathways based on an 

L-arginine-dependent nitric oxide synthase and nitrate reductase using nitrite/nitrate as a precursor [5]. 

However, other alternative sources such as the pool of S-nitrosothiols cannot be ruled out. 

2. Nitric Oxide Function in Root Architecture 

The root architecture system consists of the coordinated growth of primary, lateral and adventitious 

roots in a process that can be regulated by multiple genetic and environmental factors. The development 

of the root system can be crucial in determining the survival of the whole plant, especially under 

adverse environmental conditions [6,7], and consequently in restricting plant productivity in 

agronomical terms [8]. Although root architecture uses several secondary messengers, including 

calcium and reactive oxygen species (ROS), nitric oxide (NO) has increasingly come to be regarded as 

a novel signal molecule in the past decade. 

Biochemical and cellular analyses have demonstrated the presence of NO and NO-derived molecules 

in roots, thus highlighting their importance during root development [9–15]. Using confocal laser 

scanning microscopy (CLSM) and specific NO-sensitive fluorophores, such as 4,5-diamino-fluorescein 

diacetate (DAF-2 DA), analysis of cross sections of pea primary roots revealed a high rate of NO 

accumulation in epidermal and vascular tissues (xylem), while less intense rates of NO have also been 

detected in some cells in the cortex [11]. A temporal correlation between root development and NO 

production from L-arginine-dependent nitric oxide synthase activity has also been observed [11]. 

Similarly, the presence of other derived molecules, such as S-nitrosoglutathione and peroxynitrite, has 

also been reported in the roots of several plant species, including pepper, pea and Arabidopsis [16–19], 

indicating that roots have an active NO metabolism. Figure 1 provides a representative cross section 

showing cellular NO localization in roots of pepper seedlings. 

Through the use of exogenous NO donors, NO has also been shown to participate in the induction 

of root tip elongation [20] and the formation of lateral and adventitious roots [21,22]. The exogenous 

NO appears to affect the expression of cell cycle regulatory genes and to modulate cellulose  

synthesis [22–24] as well as lignin composition [25]. In addition, the application of exogenous NO 

could mediate auxin responses during the adventitious rooting process in cucumber seedlings [21]. 
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Recently, analysis of the function of two auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid 

(IBA), in lateral root formation has highlighted the involvement of peroxisomes. This is explained by 

the fact that the peroxisomal conversion of IBA to IAA leads to the concomitant generation of NO in 

these organelles, thus indicating that peroxisomes are dynamically involved in auxin-induced root 

organogenesis [26]. Figure 2 (panels A to C) shows in vivo NO localization in the root tip of 

Arabidopsis thaliana. 

 

Figure 1. A representative image illustrating the CLSM detection of endogenous NO 

(green color) in a cross section of a pepper root using 10 mM DAF-FM DA as a 

fluorescent probe. The orange-yellow color corresponds to the autofluorescence. Ep, 

epidermis; Rh, root hair; Xy, xylem. Reproduced, with permission, from [16] (Japanese 

Society of Plant Physiologists, JSPP). 

During root development, modulations of the content of NO and some related molecules have been 

observed. Accordingly, a comparative analysis of NO, ONOO− and protein nitration in roots of young 

and senescent pea plants reveals a general increase in these molecules accompanied by a rise in the 

antioxidative enzyme (superoxide dismutase and catalase) activity when plants age [18]. As an 

increase in protein nitration could be regarded as a marker of nitrosative stress [19], it has been 

suggested that the roots undergo nitrosative stress during senescence. Using proteomic techniques, this 

study has identified a total of 16 nitrotyrosine-immunopositive proteins, including endochitinase, 

alcohol dehydrogenase, fructose-bisphosphate aldolase, peroxidase and NADP-isocitrate 

dehydrogenase (NADP-ICDH). The latter enzyme catalyzes the oxidative decarboxylation of  

L-isocitrate to 2-oxoglutarate leading to the production of the reduced coenzyme NADPH [27], which 

is involved in the carbon and nitrogen metabolism, redox regulation and responses to oxidative stress. A 

comparative analysis of NADP-ICDH activity between young and senescent pea roots shows that this 

activity is down-regulated in senescent roots, with a more in-depth molecular analysis revealing that 

nitration at Tyr392 of NADP-ICDH is responsible for this inhibition [18]. 



Plants 2015, 4 243 

 

 

 

Figure 2. In vivo detection of NO (red color) in root peroxisomes of Arabidopsis seedlings 

expressing green fluorescent protein (GFP) through the addition of peroxisomal targeting 

signal 1 (PTS1) (GFP-PTS1, green color) exposed to 100 mM NaCl. (A,D) Fluorescence 

punctuates (green) attributable to GFP-PTS1 indicating the localization of peroxisomes 

(white arrows) in Arabidopsis roots; (B,E) Fluorescence punctuates (red) attributable to 

NO detection in the same root area of panel A and D, respectively. (C,F) Merged image of 

corresponding panels showing colocalized fluorescence punctuates (yellow). Nitric oxide 

was detected with diaminorhodamine-4M acetoxymethyl ester (DAR-4M, excitation 543 nm; 

emission 575 nm) and peroxisomes with green fluorescence protein through the addition of 

peroxisomal targeting signal 1 (GFP-PTS1, (excitation 495 nm; emission 515 nm). White 

arrows indicate the localization of peroxisomes. Reproduced, with permission, from [28] 

(American Society of Plant Biologists, ASPB). 

Hemin is an iron-containing porphyrin present in a variety of proteins and capable of inducing heme 

oxygenase-1, which catalyzes the initial and rate-limiting step of the oxidative degradation of heme 

and generates biliverdin, free iron (Fe2+) and carbon monoxide (CO). Using cucumber (Cucumis 

sativus) seedlings, the exogenous application of hemin has been shown to induce heme oxygenase-1 

activity, with a concomitant NO production, and also formation of adventitious roots [29]. These 

authors also demonstrate that this response is blocked by various NOS-like activity inhibitors. 

As part of a study of the root’s ability to acquire mineral from soil, different sets of experiments 

have verified that NO can, for example, modulate iron acquisition by roots. Thus, NO combined with 

ethylene is not only capable of inducing the expression of Fe acquisition genes [30], but can also act 

downstream of auxin to trigger ferric-chelate reductase (FCR) activity at the plasma membrane in 

order to enhance Fe uptake [31]. 
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3. Involvement of NO in the Interaction of Roots with Beneficial Microorganisms: Nodules and 

Mycorrhiza 

Some major bacterial and fungal groups of microorganisms can establish beneficial interactions 

with plants through their roots, with the two most studied being Rhizobium-legume and arbuscular 

mycorrhizal fungi-legume [32,33]. 

With respect to functional root nodules, which enable nitrogen gas to be converted into ammonia, 

there is a complex signaling cascade between the legume and rhizobia [34], with NO being involved in 

the establishment and functioning of these interactions [35–40]. In the root nodule, two essential 

elements, leghemoglobin (Lb) and nitrogenase, are present in order to ensure efficient nitrogen-fixing. 

Lb is an oxygen carrier whose function is to prevent the presence of O2, which inactivates nitrogenase, 

the enzyme responsible for fixing atmospheric nitrogen to ammonia. This activity is inhibited by NO, 

indicating that NO levels in rhizobia are a determining factor in efficient symbiosis processes [40]. 

Thus, in senescing nodules, an increase in ROS and RNS has been reported to cause nitro-oxidative 

stress, leading to a reduction in the ability of symbiotic leghemoglobins to scavenge oxygen due to 

modifications mediated by these ROS/RNS [41,42]. Recently, the formation of nitrated leghemoglobins 

during the normal metabolism in functional nodules has also been reported, which may act as a sink 

for toxic peroxynitrite and consequently play a protective role in the symbiosis [43]. 

Similarly, root colonization by arbuscular mycorrhizal fungi also requires a whole series of events 

to occur. Recently, it has been confirmed that NO is produced in the roots of Medicago truncatula 

when they come in contact with the exudates of the fungus Gigaspora margarita [44]. In addition, 

preliminary data indicate that NO is involved in the interaction of olive seedling roots with the 

arbuscular mycorrhizal fungus Rhizophagus irregularis [45]. 

4. Involvement of NO in Root System under Environmentally Adverse Conditions 

Plant root systems are directly exposed to a wide range of environmentally adverse conditions that 

affect the nutrition status and/or integrity of the root system and consequently the survival of whole 

plants. NO has been studied in relation to adverse conditions, including drought, flooding, mineral 

deficiency, salinity, heavy metal and pathogens [46–51]. Many of these situations are accompanied by 

stress conditions that usually have important nitro-oxidative stress components [19]. As previously 

mentioned, NO can act as a signal molecule or as part of a mechanism producing a local and/or 

systemic response. Therefore, NO production in roots under specific adverse conditions can differ 

depending on factors such as the age of plants, stress intensity and exposition time. 

Cadmium (Cd2+) is a non-essential toxic heavy metal, which has a negative impact on plant  

growth [52]. Accumulated data now show that Cd2+ induces nitro-oxidative stress, which affects the 

root system and, especially, NO homeostasis [53]. In 28-day-old pea (Pisum sativum) plants exposed 

to 50 µM CdCl2 for 14 d, a significant reduction in root growth was observed, mainly in relation to the 

number and length of lateral roots. These morphological changes are accompanied by a decrease in 

NO content in roots [54]. However, responses can differ depending on plant species, age and time of 

exposition to Cd2+. Thus, in three-day-old yellow lupine (Lupinus luteus L.) seedling roots exposed to  

89 μM CdCl2, programmed cell death preceded by a NO burst in the root tips occurred [55]. In the 

http://www.wikipedia.org/wiki/Nitrogenase
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roots of three-week-old Arabidopsis thaliana seedlings grown on Petri plates and then treated with  

200 μM CdCl2 for 7 h, an induction of NO generation was clearly observed [56]. In another study,  

14-day-old A. thaliana transgenic seedlings expressing cyan fluorescent protein, through the addition 

of peroxisomal targeting signal 1 (PTS1), were used to visualize peroxisomes in vivo exposed to  

150 µM CdCl2. Under these conditions, an intensification of NO production in root tips, specifically in 

peroxisomes, accompanied by a concomitant increase in the superoxide radical and peroxynitrite 

involved in the generation of nitro-oxidative stress, was reported [57]. 

On the other hand, heavy metals, such as zinc (Zn2+), an essential micronutrient naturally present in 

soils, can be accumulated and consequently also induce oxidative stress [58]. In Brassica, 300 µM Zn2+ 

triggers changes in root architecture and the cell wall structure. Moreover, these modifications are 

accompanied by a significant overproduction of NO, ONOO− and an accumulation of nitrated proteins [59]. 

Arsenic (As), a toxic metalloid for plants, can be incorporated as arsenite (As III) throughout the 

aquaporin channels and as arsenate (AsV) by the phosphate transporter system. Arsenic adversely affects 

photosynthesis, respiration, growth regulation and reproduction. In seven-day-old A. thaliana 

seedlings, grown on Petri plates and then treated with 500 μM KH2AsO4, corresponding to As(V) for 

an additional seven days, a significant increase in the NO content in roots has been observed. This was 

also accompanied by an increase in tyrosine nitration as well as a concomitant reduction in the GSH 

and GSNO content [60]. 

Plant roots are usually prone to halotropism, as root growth tends to occur away from highly saline 

environments [61]. Halotropism can affect intracellular ion homeostasis, the primary carbon metabolism, 

plant growth and development through ion toxicity, induced nutritional deficiency, water deficits and 

oxidative stress [62]. In A. thaliana seedlings grown under salinity conditions (100 mM NaCl), a 

significant increase in NO accompanied by an increase in the superoxide radical and peroxynitrite was 

observed in root tips, which leads to a nitro-oxidative stress [63]. As with cadmium stress, root 

peroxisomes also appear to be actively involved in NO generation under salinity stress conditions 

(Figure 2) [28]. With respect to this NO signaling mechanism in salinity stress situations, both osmotic 

stress-activated protein kinase and glyceraldehyde-3-phosphate dehydrogenase appear to form a 

cellular complex and to be directly or indirectly regulated by NO [64]. In this context, Liu et al. [65] 

have shown that 100 mM NaCl stress reduces Arabidopsis root meristem size by increasing NO 

accumulation, which represses the expression of PINFORMED (PIN) genes. In consequence, the auxin 

levels are reduced and also the auxin signaling [65] because these PIN genes encode for 

transmembrane proteins involved in the transport of auxin [66].These data are in good agreement with 

previous observations which indicated the interplay between NO and auxin [67–69].  

5. Nitric Oxide and Its Potential Biotechnological Applications 

With respect to the potential biotechnological applications of NO in higher plants, there is an 

increasing amount of data showing that pre-treatments of plant roots with different types of NO donors 

can stimulate response mechanisms. This not only prevents nitro-oxidative damages in the roots 

themselves but also protects the aerial part of the plants against certain abiotic stress situations,  

thus highlighting the signaling function of NO. 

http://www.plantphysiol.org/content/168/1/343.long#def-1
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For example, in Lupinus luteus, exogenous NO applications counteract the inhibitory effect of 

heavy metals and salinity on root growth [20]. In some cases, such as that of maize seedlings,  

this beneficial effect of NO has been shown to be caused by an increase in Na+/H+ antiporter activity in 

the tonoplast [70]. However, in other cases, increased resistance induced by exogenous NO is due to 

stimulation from the antioxidant system. For example, the application of 50 µM sodium nitroprussiade 

(SNP) as NO donor stimulates ROS-scavenging enzymes and reduces the accumulation of H2O2 in the 

mitochondria of cucumber (Cucumis sativus L.) roots induced by 100 mM NaCl [71]. In another case, 

pre-treatment of Citrus aurantium L. plant roots with 100 µM SNP for 48 h before treatment with  

150 mM NaCl results in a considerable reduction in visible injury and alleviates the physiological 

effects of salinity stress [72]. Similarly, in tomato (Solanum lycopersicum) plants, the addition of  

300 µM SNP to roots has been shown to significantly increase resistance to NaCl toxicity, which is 

reflected in the growth and chlorophyll content of plants exposed to NaCl. Moreover, exogenous SNP 

also decreases NaCl-induced lipid oxidation levels in leaves and induces an increase in the activities of 

the antioxidant system including superoxide dismutase, ascorbate peroxidase, glutathione reductase 

and peroxidases in roots and leaves as well as the content of ascorbate and proline [73]. 

As low levels of Zn availability affect crop yield and food production worldwide. The application of 

NO through the addition of 100 μM GSNO has been shown to modulate Zn acquisition in wheat plants 

grown at supra-optimum, non-toxic Zn concentrations [74]. 

Another example concerns arsenic toxicity, with the application of NO (50 μM SNP) creating 

resistance to As in Oryza sativa. This reduces malondialdehyde, superoxide radical and H2O2 content 

and also increases antioxidant activities of enzymes, such as superoxide dismutase, ascorbate 

peroxidase, guaiacol peroxidase and catalase [75]. Similar results have been described in roots of 

wheat and alfalfa under aluminum-induced oxidative stress [76,77]. 

In summary, available data suggest that the exogenous application of NO throughout the plant roots 

could ameliorate nitro-oxidative stress induced in plants. Future research in this area under field 

conditions would make a positive contribution to developing sustainable crops. 

6. Conclusions and Perspectives 

There is currently no doubt that nitric oxide combined with other molecules is an important 

component in the functioning and physiology of plant roots. Thus, NO is involved in root architecture, 

nutrient acquisition and microorganism interactions and also in the mechanism of response to adverse 

environmental conditions, among others. Moreover, the exogenous application of NO throughout the 

roots has the potential to counteract specific damage caused by certain stresses, which should open up 

the possibility of using NO to develop new biotechnological applications. Although significant 

advances in our understanding of the main role played by NO in plant roots have been made, many 

gaps remain in our knowledge of the specific targets that determine its cellular functions. 
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