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Abstract: Genomic selection (GS) is a marker-based selection method used to improve the genetic
gain of quantitative traits in plant breeding. A large number of breeding datasets are available in
the soybean database, and the application of these public datasets in GS will improve breeding
efficiency and reduce time and cost. However, the most important problem to be solved is how to
improve the ability of across-population prediction. The objectives of this study were to perform
genomic prediction (GP) and estimate the prediction ability (PA) for seed oil and protein contents in
soybean using available public datasets to predict breeding populations in current, ongoing breeding
programs. In this study, six public datasets of USDA GRIN soybean germplasm accessions with
available phenotypic data of seed oil and protein contents from different experimental populations
and their genotypic data of single-nucleotide polymorphisms (SNPs) were used to perform GP and
to predict a bi-parent-derived breeding population in our experiment. The average PA was 0.55 and
0.50 for seed oil and protein contents within the bi-parents population according to the within-
population prediction; and 0.45 for oil and 0.39 for protein content when the six USDA populations
were combined and employed as training sets to predict the bi-parent-derived population. The results
showed that four USDA-cultivated populations can be used as a training set individually or combined
to predict oil and protein contents in GS when using 800 or more USDA germplasm accessions as a
training set. The smaller the genetic distance between training population and testing population,
the higher the PA. The PA increased as the population size increased. In across-population prediction,
no significant difference was observed in PA for oil and protein content among different models. The
PA increased as the SNP number increased until a marker set consisted of 10,000 SNPs. This study
provides reasonable suggestions and methods for breeders to utilize public datasets for GS. It will aid
breeders in developing GS-assisted breeding strategies to develop elite soybean cultivars with high
oil and protein contents.

Keywords: soybean; protein content; oil content; GP; prediction ability; G-BLUP

1. Introduction

Soybean (Glycine max (L.) Merr.) is an economically important crop globally, with its
yields contributing to nearly 60% of the world’s oilseed production as of 2023 (SoyStats2024,
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http://soystats.com/international-world-oilseed-production/) (accessed on 6 January
2024). The soybean serves as a vital source for various purposes, including human con-
sumption, poultry and livestock feed, industrial application, and more. The soybean
seeds are particularly notable for their high oil and protein content, comprising approx-
imately 20% oil and 40% protein. This nutritional composition positions soybean as a
crucial source of vegetable-derived protein, accounting for 60% of the globally vegetable-
derived protein consumption, and vegetable oil, contributing to 29% of overall vegetable
oil consumption [1].

Soybean seeds are renowned for their high protein and oil content, which are quan-
titative trait-controlled by multiple genes, influenced by both genetic and environmental
factors [2,3]. Soybean breeding, traditionally, involves the creation of new genetic variation
through controlled hybridization of two or more parents by phenotype selection to select
offspring with desirable agronomic traits. The phenotypic selection is usually affected
by environmental conditions and has large variation and changes according to different
locations and years. Therefore, phenotyping needs to be performed by multiple locations
and years. It makes phenotyping time-consuming and costly. However, molecular-assisted
selection (MAS) offers a promising approach for soybean breeders to accelerate the devel-
opment of new and improved plant cultivars with desirable traits. By leveraging molecular
markers associated with target traits, MAS enables the more efficient selection of plants
with desired genetic profiles, thereby accelerating the breeding process and reducing the
reliance on labor-intensive and environmentally influenced phenotypic evaluations.

With advancing high-throughput genotyping methods and the rapid advance of
sequencing technologies, a vast array of molecular markers is now available to aid soybean
breeding. Quantitative trait locus (QTL) analyses have been used for mapping various traits
using different types of molecular markers [4–6]. Among these markers, single-nucleotide
polymorphism (SNP) has emerged as a cost-effective option, providing a large number
of markers for conducting genome-wide association studies (GWASs) in plants [7–9]. In
soybean breeding, significant efforts have been directed towards understanding the genetic
basis of oil and protein content through QTL analyses for decades. For instance, QTL
mapping and GWAS have identified SNP markers associated with oil and protein contents.
Li et al. identified 31 SNPs located on 12 of the 20 chromosomes in soybean which were
significantly associated with seed oil and protein contents [10]. These findings underscore
the potential of SNP markers in facilitating the genetic improvement of soybean oil and
protein contents through MAS and genomic selection (GS) approaches.

While MAS has been widely used in crop breeding [11–13], its applicability in crop
breeding programs is often limited, especially for complex traits controlled by multiple
genes with minor effects [14,15]. However, genomic selection (GS) through genomic predic-
tion (GP) offers a promising solution for selecting such complex traits. Meuwissen et al. [16]
proposed a GS method based on a genome-wide strategy, which utilizes genome-wide
molecular markers and phenotype data (training population, TP) to effectively estimate
the effects of all loci. This approach allows for the computation of the genomic estimated
breeding value (GEBV), enabling the accurate prediction for the breeding population (BP)
using only marker data. The selection of individuals in the BP can then be based solely
on their GEBVs, without requiring phenotypic data. This reliance on genotypic informa-
tion accelerates breeding cycles, reduces time and cost, and enhances the rate of genetic
gain [17,18]. Alexandra et al. [19] evaluated the accuracy of GS for seed protein content and
yield in a soybean breeding population, highlighting its potential in the soybean breeding
program. Similarity, Zhang et al. [20] accessed the prediction ability (PA) of GS and MAS for
seed weight in a population of 309 soybean germplasms, using 31,045 SNPs. A fundamental
requirement for GP is that at least one molecular marker is in linkage disequilibrium (LD)
with the QTL associated with the target trait. GP models leverage genetic relationships
among individuals and information from LD between markers and QTL to make accurate
predictions [21].

http://soystats.com/international-world-oilseed-production/
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Indeed, GP holds great promise as an efficient method for improving quantitative
traits, yet its accuracy is affected by various factors, such as marker density; population
size; genetic architecture of the trait; LD between markers and QTLs; and relatedness
between the TP and BP, model selection, and more [22–24]. With larger TP sizes, the
accuracy of the molecular marker effect estimation by the model improves, leading to
an enhanced PA. In general, increasing the number of molecular markers can effectively
improve the PA as well [25–27]. A range of statistical models have been utilized in GP,
including ridge regression best linear unbiased prediction (RR-BLUP) [28,29], genomic
best linear unbiased prediction (G-BLUP) [30,31], Bayesian models [32,33], and machine
learning models [34,35]. These statistical models play a crucial role in determining the PA
in GP breeding programs [36–38]. Furthermore, the composition of the TP in relation to
the BP is a critical factor for achieving high PA in GS breeding programs. The degree of
genetic relationship between the TP and BP has been identified as a key factor influencing
the effectiveness of GP [39–42]. Thus, careful consideration of TP composition and genetic
relatedness is essential for maximizing the PA in breeding programs.

The implementation of GP breeding program demands extensive data, which are
time-consuming and labor-intensive to collect. However, many plant breeding programs
have accumulated large historical datasets of phenotypic information over the years. These
datasets provide a valuable resource that can be integrated into GP methods, thereby
enhancing genetic gain and reducing breeding cycle time [43,44]. There is an increasing
interest in leveraging these rich historical breeding data with genotypic information so that
breeders can enhance the accuracy and efficiency of GP methods. For instance, historical
breeding test data have been effectively utilized in breeding programs such as the Interna-
tional Wheat Breeding Program [45] and the Rye (Secale cereale L.) Breeding Program [46]
to improve GP performance. Integrating historical phenotypic data into GP approaches
enables breeders to capitalize on valuable information accumulated over years of breeding
efforts. This integration facilitates the development of more robust and efficient breeding
strategies, ultimately accelerating the process of developing improved crop varieties.

The application of genomic prediction (GP) has demonstrated success in predicting
essential agronomic traits and seed quality in soybean, encompassing traits like yield, plant
maturity, protein, and oil content [19,20]. However, there remains a paucity of studies in
soybean that harness historical breeding data for GP. Several questions persist regarding the
viability of across-population prediction in soybean breeding endeavors, including whether
the PA of across population prediction can be enhanced through the strategic selection of TP,
choice of modeling approaches, and SNP marker densities. Hence, the primary objectives of
this study were to leverage public datasets of USDA GRIN soybean germplasm accessions,
featuring available phenotypic data on seed oil and protein contents, alongside genotypic
SNP marker data. Our goal was to conduct GPs across various experimental populations,
aiming to predict a bi-parent-derived breeding population in our experiment. We aimed to
assess how different factors, such as the composition of the training set with varied genetic
backgrounds and population structure, genetic relatedness to the testing set, different GP
models, and SNP numbers, influence the GP performance for soybean oil and protein
contents. By systematically investigating these factors, our study sought to provide insights
into optimizing GP strategies for soybean breeding programs, ultimately enhancing the
efficiency and effectiveness of genomic selection in improving soybean traits.

2. Results
2.1. Phenotypic Analysis

The phenotypic parameters of oil and protein contents in the six USDA populations
and the breeding population derived from JD12 and NF58 exhibited a wide range (Table 1),
indicating substantial variability conducive to genetic analysis. ANOVA revealed showed
high broad-sense heritability for oil content (r = 0.94) and protein content (r = 0.93) in the
breeding population (Table 2). Significant differences (p < 0.001) were observed in both
oil and protein content among different environments, along with an extremely signifi-
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cant genotype–environment interaction variance (p < 0.001) in the breeding population.
Furthermore, genotype variance within the breeding population reached highly signifi-
cant levels (p < 0.001), indicating significant notable differences among genotypes within
the population. Through a genetic correlation analysis of six USDA populations and the
breeding population, the results indicate that the phenotype correlation between oil and
protein content reached significant levels in seven populations, with values of −0.71 (A
population), −0.75 (B population), −0.65 (C population), −0.50 (D population), −0.38 (E
population), −0.26 (F population), and −0.87 (breeding population).

Table 1. Descriptive statistical analysis of the protein and oil content of six USDA populations and
the breeding population derived from JD12 and NF58.

Trait Population Min Max Average SD CV Skewness Kurtosis

Oil

MAX MS 0102: A 8.20 24.00 17.43 2.34 0.13 0.15 −0.09
MAX MS 9901: B 8.20 21.70 17.42 2.07 0.12 −0.94 1.64
MAX MS 9697: C 9.00 20.70 16.25 1.66 0.10 −0.41 0.51
MAX IL 9495: D 11.2 25.40 18.45 2.19 0.12 −0.06 −0.05
SOJA IL 9899: E 7.60 16.50 11.27 1.41 0.12 0.92 1.58
SOJA MS 9899: F 7.50 14.70 10.86 1.04 0.10 −0.06 −0.1

Breeding population 18.00 22.41 19.98 0.99 0.05 0.06 −0.76

Protein

MAX MS 0102: A 34.50 52.90 43.42 3.00 0.07 0.14 −0.21
MAX MS 9901: B 37.40 56.30 45.52 2.75 0.06 0.39 0.75
MAX MS 9697: C 35.10 57.40 46.08 2.31 0.05 0.20 1.54
MAX IL 9495: D 37.70 55.40 45.84 2.65 0.06 −0.08 0.08
SOJA IL 9899: E 35.50 55.30 45.71 3.37 0.07 0.24 0.41
SOJA MS 9899: F 38.10 56.90 48.17 2.71 0.06 −0.13 0.08

Breeding population 36.70 43.98 40.59 1.78 0.04 0 −0.71

Table 2. Analysis of variance of oil and protein content and heritability estimates in the breeding
populations derived from JD12 and NF58.

Population Trait Env. (E) Genotype (G) G×E Error H2b

Breeding
population (BP)

oil 168.28 *** 37.05 *** 2.29 *** 0.38 0.94
protein 203.44 *** 24.81 *** 2.11 *** 1.7 0.93

p < 0.001, indicated by ***.

2.2. PCA and Phylogenetic Analysis

As described in the Materials and Methods section, the 4141 accessions were catego-
rized into six groups (A, B, C, D, E, and F) based on the experimental locations at which
they were phenotyped and their soybean Glycine species. To understand the influence of
genetic similarity and population structure between the training set and testing set on the
PA, we employed PCA and phylogenetic analysis among the six USDA populations and the
bi-parental breeding population. Both PCA and phylogenetic analysis using 39,681 SNPs
divided the 4141 USDA soybean germplasm accessions into two clusters, labeled I and II
(sub-populations) (Figure 1a,b). The four cultivated soybean populations (“Max” depicted
in red in Figure 1a, and A, B, C, and D in Figure 1b) merged together as Cluster I. The
two wild soybean populations, labeled “Soja” in blue in Figure 1a and denoted as “E” (E
population) and “F” (F population) in Figure 1b, merged together as Cluster II. These re-
sults indicated the presence of two distinct sub-populations within 4141 USDA germplasm
accessions, with cultivated types (A, B, C, and D) exhibiting a different genetic background
from wild soybeans (E and F). The bi-parent-derived population consisted of 175 lines and
two parents (labeled “BP” in green in Figure 1a and “breeding population” in Figure 1b),
was grouped into Cluster I alongside cultivated soybean accessions, particularly close to B
and A, indicating that the breeding population shared a close genetic base with B and A,
followed by C and D, but is notably distant from wild soybean (E and F).
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Figure 1. Principal Component Analysis (PCA) and phylogenetic tree of 4318 lines from 4141 USDA
soybean germplasm accessions and 177 lines derived from a bi-parental breeding population. (a) PCA
plot of the 4318 lines generated using R tools. Each dot represents an accession. Max (in red)
indicates the cultivated soybean panels: populations A, B, C, and D. BP (green color) indicates the
breeding bi-parent population. Soja (blue color) indicates wild soybean panels: population E and F.
(b) Phylogenetic tree created using R tools for the seven populations: breeding population derived
from a bi-parental population and the six sub-populations of USDA germplasm accessions, including
four cultivated soybean populations (A, B, C, and D) and two wild soybean populations (E and F).

2.3. Genomic Prediction through Within-Population Prediction and Across-Population Prediction
for Each Population in USDA Germplasm

The PA of soybean seed oil and protein contents were estimated through within-
population prediction within each of the six USDA populations. The PA was 0.86, 0.79,
0.70, 0.70, 0.70, and 0.51 for population A, B, C, D, E, and F, respectively, with averaged
0.71 for oil content; and 0.73, 0.66, 0.67, 0.67, 0.59, and 0.33 for population A, B, C, D, E, and
F, respectively, and average 0.61 for protein content using G-BLUP model (Figure A1 and
Table 3). These results demonstrate that the PA was high for both oil and protein contents,
indicating that the efficiency of selecting the two traits in soybean breeding through GS by
within-population prediction.

Table 3. Prediction ability (PA) (r-value) of soybean seed oil and protein contents was estimated
through across-and cross-population prediction among the populations in six USDA populations and
the bi-parental breeding population using G-BLUP model. Training sets are each of the six USDA
populations: A, B, C, D, E, and F.

r-Value
(Oil/Pro) Testing Set

Training Set A B C D E F
BP

(Breeding
Population)

A 0.86/0.73 0.59/0.46 0.43/0.37 0.64/0.36 −0.27/0.04 0.05/0.08 0.37/0.39
B 0.68/0.51 0.79/0.66 0.49/0.43 0.67/0.25 0.04/0.03 −0.01/0.13 0.36/0.33
C 0.72/0.52 0.21/0.33 0.70/0.67 0.51/0.32 −0.15/0.03 −0.21/0.13 0.29/0.15
D 0.77/0.39 0.49/0.19 0.36/0.16 0.69/0.63 0.03/0.03 0.05/0.14 0.27/0.12
E 0.02/−0.30 0.04/0.06 −0.21/0.07 −0.28/0.05 0.70/0.59 0.16/0.37 −0.08/−0.03
F −0.18/−0.21 0.10/0.13 −0.17/0.08 −0.11/0.04 0.05/0.15 0.51/0.33 −0.12/−0.15

The PA of soybean seed oil and protein contents was estimated through across-
population prediction among the six USDA populations (Table 3). As demonstrated earlier,
the six populations can be grouped into two clusters (I and II). Hence, we can categorize
four types of PA by across-population prediction: (1) among the four cultivated populations
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(A, B, C, and D) within Cluster I; (2) among the two wild soybean populations (E and F)
within Cluster II; (3) from Cluster I to Cluster II; and (4) from Cluster II to Cluster I.

The PA (r−value) ranging from 0.21 to 0.77 averaged 0.55 for oil content; and from
0.16 to 0.52, it averaged 0.36 for protein content when performed across-population pre-
diction among the four cultivated populations (A, B, C, and D) (Table 3). These results
illustrate a wide range of variations in PA for both oil and protein contents, suggesting that
the GS can effectively be utilized in soybean breeding programs to select for oil and protein
contents through across-population prediction within cultivated soybean accessions. The
PA was 0.16 and 0.37 from E to F, and 0.05 and 0.15 from F to E for oil and protein contents,
respectively, by across-population prediction among the wild soybean populations (E and
F) (Table 3). However, the PA exhibited very low r-values, close to zero, with a negative
value in most cases, when performing across-population prediction from one cultivated
population (either A, B, C, or D) to the wild species (either E or F), or vice versa (Table 3).
These results indicate that the GS will not be efficient when conducting across-population
prediction between cultivated soybean panels and wild soybean panels.

2.4. Genomic Prediction through Across-Population Prediction from Populations of USDA
Germplasm Accessions to the Breeding Population

To estimate the effect of genetic similarity between the training set and testing set
on the PA, the genetic distance among each of the six training sets (A, B, C, D, E, and F)
and the breeding population was calculated (Table A2). When using each of the six USDA
populations as a training set to perform GP for the bi-parental breeding population using
the G-BLUP model, we observed variable PAs for either oil content or protein content.
Smaller genetic distances were associated with a higher PA (r-value), whereas larger
genetic distance corresponded to a lower PA (Table A2 and Figure 2a), suggesting that PA
was related to the genetic distance between the training set and the testing set (breeding
population) for both oil and protein contents in soybean. A linear model was constructed
between PA (r-value) and genetic distance oil and protein content, respectively (Figure 2b),
indicating that the genetic distance may be utilized to predict the selection efficiency.
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Figure 2. Relationship between genetic distance and prediction ability (PA) (r-value) of soybean
seed oil and protein content was estimated. (a) Across-population prediction was employed through
six USDA populations to predict the breeding population. Pink color indicates oil content, and blue
content indicates protein content. A, B, C, D, E, and F represent each of the six USDA populations,
respectively. (b) Linear regression between genetic distance and PA of oil (pink line) and protein
(green line) content through across-population prediction using the populations in USDA germplasm
accessions to predict oil and protein contents in the breeding population using G-BLUP model. Pink
dots indicate oil content, and green dots indicate protein content.

The PA was estimated for oil and protein contents based on the six USDA germplasm
populations individually or combined as a training set to predict the bi-parent breeding
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population in this study. The average PA was 0.34 for oil content and 0.22 for protein
content, respectively, while it ranged from −0.13 to 0.47 for oil content and from −0.18 to
0.45 for protein content in this study (Table 4). These results indicate that the different
training sets can affect the PA, suggesting that the selection of the right training set is crucial
during GP for genome breeding.

Table 4. Prediction ability (PA) (r-value) was estimated for soybean seed oil and protein contents,
where different populations individually or combined from the USDA population were used as
training sets to predict the breeding population using the G-BLUP model.

USDA Germplasm Population R-Value
(Oil/Pro)

Training Set BP as Testing Set
(Breeding Population)

A 0.37/0.39
AB 0.45/0.45

ABC 0.41/0.41
ABCD 0.47/0.45

ABCDE 0.46/0.41
ABCDEF 0.46/0.39

B 0.36/0.33
BC 0.38/0.32

BCD 0.42/0.19
BCDE 0.42/0.26

BCDEF 0.41/0.26

C 0.29/0.15
CD 0.39/0.15

CDE 0.41/0.18
CDEF 0.38/0.17

D 0.27/0.12
DE 0.31/0.09

DEF 0.30/0.11

E −0.08/−0.03
EF −0.13/−0.18
F −0.12/−0.15

PA exhibited slight differences when the six public populations were integrated to
form different training sets (Figure 3a). When only the closely related population A (genetic
distance = 228.66; population size = 1007) was used, the PA was 0.37 for oil content
and 0.39 for protein content. After integrating the second closely related population, B
(genetic distance = 222.45, population size = 607), the PA was 0.36 for oil content and
0.33 for protein content. The highest PA of 0.47 for oil and 0.45 for protein content was
achieved when the training set contained four cultivated populations; although it was not
statistically significant, it rose by 0.02 and 0.06, respectively (Table 4). This suggests that
either population A, B, C, and D individually or combined can be used to predict oil and
protein contents in the breeding population. However, when the wild soybean population
E or F was used as a training set to predict the breeding population in across-population
prediction, the PA exhibited a negative r-value (Table 4), indicating that population E or
F or their combination, EF, should not be used as a training set to predict oil and protein
contents for other breeding populations.
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selecting different training sets using G-BLUP model. (a) A-BP, AB-BP, ABC-BP, ABCD-BP, ABCDEF-
BP, and ABCDEF-BP, respectively, represent different populations individually or combined from
USDA population as training set to predict breeding population. (b) PA was estimated through
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PA was estimated for soybean seed oil and protein content by selecting different sizes
of training sets from 400 to 4000 USDA accessions to predict the bi-parental breeding
population (Figure 3b). When 400 accessions were used as a training set, the PA for oil and
protein was 0.33 and 0.28, respectively. However, when 800 or more (800 to 4000) accessions
were used as the training set, the PA showed a similar value for oil (~0.47) and protein
(~0.44) (Figure 3b). This represents an increase of 0.14 and 0.16, respectively, compared to
using 400 accessions as the training set, indicating that 800 or more accessions may be used
as the training set to predict oil and protein contents in GS.

Regarding the training set, the four USDA cultivated populations (A, B, C, and D) can
be used as a training set individually or combined to predict oil and protein contents in GS
when using 800 or more USDA germplasm accessions as the training set.

2.5. Genomic Prediction between Across-Population with Different Model and Different
SNP Number

The PA showed similar r-values when using G-BLUP, BRR, BL BB, and RR-BLUP
models for either oil or protein content in across-population prediction. During across-
population predictions, the training set contained the combined four cultivated populations
(A, B, C, and D) to predict a bi-parent-derived breeding population (Figure 4a). The results
indicate that the choice of model has little effect on PA for oil and protein contents in GS.

PA was estimated for soybean seed oil and protein contents through the four cultivated
populations (A, B, C, and D) to predict a bi-parent-derived population with nine SNP sets
from 100 SNPs to all 39,681 SNPs randomly selected using G-BLUP in this study (Figure 4b).
The results showed that the different PA values (r-values) were observed, and the PA
increased when a training set had more SNP numbers. When a set of 100 randomly selected
SNPs was used, the PA was 0.13 and 0.08 for oil and protein content, respectively. However,
when a SNP set consisted of 10,000 SNPs or more (from 10,000 to 39,861 SNPs) was used
to perform prediction, the PA showed a similar value for oil (~0.46) and protein (~0.43)
(Figure 4b). Additionally, we also observed that the PA (r-value) showed a similar value
for oil and protein content, respectively, when using 10,000 or more (20,000 and 30,000)
SNPs for cross (within-population) prediction among the four cultivated populations of
USDA germplasm using the G-BLUP model (Table A3), indicating that 10,000 or more
SNPs may be included to predict oil and protein contents in GS by either within- or
across-population prediction.
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Figure 4. Prediction ability (PA) (r-value) of oil and protein content was estimated using the training
set contained four cultivated populations (population A, B, C, and D) to predict bi-parent population
by selecting different model and marker number. (a) PA was estimated using G-BLUP, RR-BLUP, BB,
BL, and BRR models. (b) PA was estimated with nine SNP sets from 100 SNPs to all 39,681 SNPs
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of randomly selected SNP sets was performed 100 times. Pink color indicates oil content, and green
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2.6. Comparing Genomic Prediction Ability between within Breeding Population and
Across-Population Prediction from Populations of USDA Accessions to the Breeding Population

The average PA (r-value) was 0.55 for oil content and 0.50 for protein content esti-
mated by 10-fold cross-prediction within the bi-parent-derived population (Figure 5a).
The observed breeding value was positively correlated with the estimated breeding value
(Figure 5b,c). Within-population prediction exhibited higher PA than across-population
prediction for oil and protein content when used G-BLUP model in this study (Table 3,
Figure 5b,c). When the six populations from USDA germplasm were employed as a training
set to predict the bi-parent-derived population, the PA was 0.45 for oil and 0.39 for protein
content (Figure 5b,c). Although both PA values, either for oil or for protein content, showed
a decreased of around 0.1 by across-population prediction, the PA was equal to or greater
than 0.39, indicating that we can use public datasets to predict breeding populations such
as the bi-parent-derived breeding population in this study in soybean breeding programs
to select breeding lines and plants with high oil and protein contents through GS.
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by within-population prediction and across-population prediction. (a) RIL indicates that the PA
was estimated by 10-fold cross-prediction within the bi-parent-derived population, and public-RIL
indicates that the PA was estimated by the six populations in USDA germplasm predicting the
bi-parent-derived population using G-BLUP model. Error bars represent predicted value distribution
of 10-fold cross-validation. Pink color indicates oil content, and green color indicates protein content.
(b,c) PA was estimated by 10-fold cross-prediction within the bi-parent-derived population using
G-BLUP. Pink color indicates the scatter plot of oil content (b); green color indicates the scatter plot
of protein content (c); abscissa represents for observed breeding value; ordinate is for estimated
breeding value; and the black line is for the trend line.

3. Discussion

With the advancement of sequencing technology, acquiring genotype data has become
increasingly affordable. A vast amount of soybean sequencing data and phenotyping
data in databases are available for GS, which can be applied in plant breeding practices to
create greater economic value. However, there still exists a gap between within-population
prediction ability and across-population prediction ability. Therefore, the key question
is how to utilize these existing public data to predict breeding populations and improve
ability of GS.

3.1. Genetic Similarity and Population Structure between Training Set and Testing Set and
Training Set Size Has a Large Influence on the PA

PCA and population structure between the training set and testing set had effects on
the PA estimation for oil and protein contents in this study. The public populations A, B,
C, D, E, and F were divided into two sub-populations (Group I) (Figure 1), where A, B, C,
and D merged together as one cluster, and E and F were merged into another (Group II).
Our bi-parent-derived breeding population was merged to Group I based on population
structure and phylogenetic analysis. Our results showed that the smaller the distance
between the training set and testing set, the higher the PA in either within- or across-
population prediction (Figure 2a; Table A2). The linear model between PA (r-value) and
genetic distance showed this trend for oil and protein content through across-population
prediction among the six USDA populations (Figure 2b). Similar results were reported
by Beche et al. [47], showing that the closer the relationship between families, the higher
the PA, when compared to non-related bi-parental populations. Riedelsheimer et al. [40]
conducted a study using five bi-parental doubled-haploid maize populations developed
from crosses involving four parents. They reported that the average accuracies close zero
or even negative values when predicting individuals in bi-parental families based on data
from unrelated bi-parental families. However, one of the most important steps in applying
genetic relationship data to genetic breeding may be to analyze both training set and testing
set for their population structure and genetic backgrounds, and thus to improve PA and
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accelerate breeding progress. The effect of genetic relationship on PA is mainly due to
differences in allele frequencies that affect the accuracy of marker effect estimates, which
are difficult to assess with statistical models [42,48,49]. Therefore, considering the influence
of genetic similarity between the training set and the testing set on the PA is important for
improving the PA. Breeders should select a training set from the material with a similar
genetic background to the testing set.

In this study, we observed that the PA increased, but it was not significant for oil
(0.36–0.47) and protein (0.39–0.45), as multiple populations were added into the training set
(Figure 3b). Ten training sets were used to estimate PA, from 400 to 4000 USDA germplasm
accessions, selected from the 4141 accessions with closest genetic distance to the breeding
population to perform GP. As the size of TP increased, the PA of oil and protein content
demonstrated a tendency toward increasing first when Np = 400–800, and then remained
constant (Np = 800–4000) (Figure 3b). Many reports have shown that the accuracy of
genome-wide prediction increases with the increase in population size. Previous GS studies
have focused on the effect of the training set size on PA in within-population prediction
and rarely considered the effect of training set size on PA in across-population prediction.
Past and present results can provide some guidance for conducting GS-assisted breeding
programs. Zhang et al. [50] investigated the effects of TP size on the PA of GS when a
consistent number of 62 accessions were randomly assigned as a testing set, and the PA for
GS decreased along with the reduction in the TP size. Similar results were reported that the
size of the training set affected PA values [51]. Liu et al. [52] reported that the PA leveled
off when the size of the TP was 14 times as the size of the BP. In contrast, the TP gradually
leveled off when the size of the TP was three times the size of the BP. The reason for this
difference may be due to target traits and the genetic relationship between the training set
and testing set.

As mentioned above, both genetic relationship and population size affect PA. In the
current study, the kinship between the six USDA populations and breeding population
was calculated. The genetic distance was sorted from smallest to largest: B (607), A (1007),
C (965), D (811), E (508), and F (243) (Table A2). Each of the six USDA populations was
used as a training set to predict the PA for breeding population, respectively. The PA was
ordered from highest to lowest: A, B, C, D, E, and F (Figure 2a). This result may be due to
the fact that both the kinship and training set size affect the PA values. The highest PA was
observed when the populations A, B, C, and D combined as a training set to predict oil and
protein contents in the breeding population. Compared to the six USAD populations (A, B,
C, D, E, and F populations) combined as a training set (Figure 3a; Table 4), the PA of oil
and protein contents increased by 0.02 and 0.06, respectively, than by one population as TP,
but the increase was not significant. However, it decreased slightly compared to using four
populations (A, B, C, and D) combined. As the distantly related population joined, the PA
decreased. The results of the prediction showed that, in addition to considering the effect
of the kinship on the PA, we also had to consider the effect of the size of the training set on
the PA. In this study, public data were utilized as a training set to improve the ability of
predicting bi-parental populations by considering the size of the training set and kinship
between the training set and the testing set. This further demonstrates that it is possible to
apply public data to GS breeding. Breeders should consider collecting and large amounts
of breeding data and applying them to future GS studies and GS-assisted breeding.

3.2. Effect of Model Selection on Prediction Ability

In across-population prediction, all tested models had similar PA values without
significant difference (Figure 4a). Smallwood et al. [53] demonstrated that Bayes B and/or
G-BLUP were preferred for soybean fatty acid, protein, and oil contents in soybean.
Riedelsheimer et al. [40] did not find significant differences between RR-BLUP, BL, and
other models in predicting multiple traits. In previous studies, such as that by Kaler
et al. [39], different PA values had been observed when different models were used. More-
over, BL model showed better results than BLUP model [54]. The reason for the different
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results may be that the PA is highly dependent on the precise estimation of marker effects by
the statistical models. The estimation of marker effects is influenced by the allele frequency
of each locus across the entire genome and varied among populations [55]. Moreover,
Alexandra [19] points out that the PA was further improved by including epistasis in the
GBLUP model in soybean seed protein content. Plant breeding programs often have access
to a large amount of historical data that are highly unbalanced, particularly across years.
Therefore, for multi-year and multi-location trials, developing suitable models that account
for genotype-by-environment interactions can effectively enhance the PA of GS [56,57].

3.3. Effect of Markers Number Selection on Prediction Ability

When the training set contained the combined four cultivated populations (A, B, C,
and D) to predict a bi-parent-derived population with different SNP number subsets, the
PA increased with the increasing marker number until an SNP set consisted of 10,000 SNPs
reached a maximum in PA (Figure 4b and Table A3). When using a different number of
SNPs (100, 1000, 10,000, 20,000, and 30,000) for across-population prediction among the
four cultivated populations of USDA germplasm, 10,000 or more SNPs showed a similar
PA value for oil and protein (Table A3). Zhang et al. [20] reported a PA of 0.85 when a
set consisted of 2000 or more SNPs was used, remaining 0.80 until the set included 500 or
more SNPs for predicting seed weight in soybean. Liu et al. [52] showed that the PA
began to level off when the number of markers increased to 1000 and 7000 in bi-parental
population and natural populations, respectively. In summary, when the PA reached
a plateau, additional markers became largely redundant and did not further improve
predictive ability. However, the number of markers required for the PA to reach a plateau
varies from population to population [58,59]. This phenomenon can be attributed to the
complexity of genetic structure and the varying levels of diversity among populations.
The reason may be that nearby markers with significant genetic structure and high LD
levels between them are necessary to ensure that at least one marker could capture a
trait-associated locus within the LD [16,20]. Therefore, to ascertain the optimal number
of markers for GS-assisted breeding, a program based on the above results could serve
as a reference to reduce breeding costs. Additionally, besides considering the number of
markers, many studies have incorporated significant loci into GS to enhance PA. Sarinelli
et al. [60] demonstrated that adding markers associated with large-effect genes or QTL as
fixed effects in the model increased the overall model PA for most training population sizes
evaluated using historical unbalanced phenotypic data. Hence, Breeders should consider
adding major genes as fixed effects to improve model PA. With the development of breeding
and the increasing size of populations, marker effects can be estimated more precisely [61].
Breeders should collect more historical breeding data from multi-year, multi-environment
trials and apply them to GS breeding to significantly enhance genetic gain and accelerate
breeding outcomes.

3.4. The Within-Population Prediction Got Higher Ability Than Across-Population Prediction

High accuracies were achieved in within-population prediction for both oil and protein
contents in this study. The average PA was 0.55 for oil content and 0.50 for protein content
within the bi-parent-derived breeding population (Figure 5a). The average PA ranged from
0.51 to 0.86 (oil content) and from 0.33 to 0.73 (protein content) through within-population
prediction within the six USDA populations (Table 4). Smallwood [53] reported a PA
of 0.56 for oil content and 0.67 for protein content in a soybean population comprising
860 F5-derived RILs derived from the parental lines Essex and Williams 82. However,
within-population prediction may have limited application in a breeding program, as it
predicts individuals from same population with narrow genetic base. Across-population
prediction, on the other hand, can predict GEBV for any population, making it more
useful for plant breeders to use routinely generated data in a breeding program to make
predictions for independent populations. Therefore, we evaluated the ability of GP through
across-population predictions. When using the six USDA populations combined as the
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training set to predict the bi-parent-derived population, the PA was 0.45 (oil content) and
0.39 (protein content) (Figure 5a). The averaged PA was 0.17 (oil content) and 0.18 (protein
content) when performing across-population prediction among the six USDA population
(Table 3), indicating that the across-population prediction had lower accuracies than within-
population prediction for both oil and protein contents. Alexandra et al. [19] compared
GS ability between within- or across-population prediction protein content in soybean
and reported that the within-population prediction was more efficient. Stewart-Brown
et al. [62] reported that the average PA was 0.60 and 0.52 in the within-population prediction
and 0.55 and 0.30 in across-population prediction for protein and oil content, respectively.
Thavamanikumar et al. [63] also showed that PA based on ten-fold cross-validation in each
population was generally higher than PA than using marker effects from one population
to predict the traits in another population. Liu et al. [52] reported that moderate-to-high
accuracies were obtained when predictions were made within populations; in contrast,
across-population genomic prediction accuracies were very low.

Considering environmental impacts when conducting GS is crucial for improving
prediction accuracy. While the heritability of oil and protein content in the breeding
population was high in this study, the phenotypic data were obtained from various years
and locations within the public dataset, without accounting for environmental factors.
Sarinelli [59] demonstrated that including an additional one-year evaluation for most
lines in a common environment notably improved the PA for heading date by up to
8%. Therefore, it is essential to consider environmental impacts when conducting GS.
Plant breeding programs often have highly unbalanced historical data, particularly across
different years. Dawson et al. [45] aimed to explore methods of integrating GP with
genotype-by-environment (G × E) interaction models to effectively target untested lines
across different locations. Hence, breeders utilizing public data for GS should consider
environmental influences to enhance prediction ability.

4. Materials and Methods
4.1. Plant Materials

Two sources of soybean materials were used in this study: USDA GRIN soybean
germplasm accessions and a bi-parent-derived breeding population. A total of 4141 soybean
accessions have available seed oil and protein contents at USDA GRIN, and the data can
be download from the following websites: https://npgsweb.ars-grin.gov/gringlobal/
descriptordetail?id=51016 and https://npgsweb.ars-grin.gov/gringlobal/descriptordetail?
id=51019 (accessed on 5 April 2023). The 4141 accessions were divided into six panels
based on the experimental locations where they were phenotyped and the soybean Glycine
species. The six soybean panels consist of four cultivated soybean panels (MAX IL 0102,
MAX MS 9901, MAX MS 9697, and MAX IL 9495) and two wild soybean panels (SOJA
IL 9899 and SOJA MS 9899), defined as the A, B, C, D, E, and F populations, respectively
(Table A1).

In our laboratory, we utilized a bi-parent-derived population comprising 175 F2:6 lines,
with the two parent lines serving as the testing set (referred to as the breeding population,
BP) for performing GP in this study. The two parental soybean cultivars, JD12 and NF58,
exhibit contrasting quality traits. JD12 is characterized by its high protein content, with
oil content around 17% and protein content around 46%. On the other hand, NF58 is
known for its high oil content, with oil content approximately 24% and protein content
approximately 36%. The cross between the two cultivars was initiated in 2003, and the
bi-parent-derived breeding population was subsequently developed through single seed
descent (SSD), resulting in the generation of 175 F2:6 lines.

4.2. Phenotyping

The oil and protein contents in the 4141 soybean accessions belonging to the six
populations (A, B, C, D, E, and F) were obtained (downloaded) from the USDA GRIN
database. For soybean accessions with yellow seed coats, oil and protein contents were

https://npgsweb.ars-grin.gov/gringlobal/descriptordetail?id=51016
https://npgsweb.ars-grin.gov/gringlobal/descriptordetail?id=51016
https://npgsweb.ars-grin.gov/gringlobal/descriptordetail?id=51019
https://npgsweb.ars-grin.gov/gringlobal/descriptordetail?id=51019
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analyzed using the near-infrared reflectance method. For pigmented or mottled soybean
accessions, the quantification of oil and protein contents was conducted using the Kjeldahl
method and Butt extraction method, respectively.

The 175 F2:6 breeding lines, along with their two parents, underwent filed experiments
from 2011 to 2012 at Shijiazhuang, Cangzhou, and Handan in China. The phenotypic data
for the bi-parent-derived population were collected using a randomized complete block
design (RCBD) with two replications. The plants were grown in rows that were 2 m
long and spaced 0.5 m apart. Each parental and RIL line was grown in three replications.
Harvesting was performed when 95% of the pods in each accession reached maturity.
Standard agronomic practices were followed to grow the soybean plants. After harvesting,
phenotypic data for oil and protein content were collected by randomly selecting three
plants from the middle row for each genotype at the maturity stage. It was calculated by
taking the average for three plants selected from each replicate. Approximately 20 grams
(g) of seeds was randomly selected from each line for the evaluation of protein and oil
contents using a MATRIX-I (BRUKER, Berlin, Germany) NIR spectrometer. Best Linear
Unbiased Estimations (BLUEs) of phenotype values across different environments were
obtained using mixed linear models from the R package lme4. The BLUEs for the combined
environment were estimated using the following model:

Yijk = µ + Ei + Rj (Ei) + Gk + εijk

where Yijk represents the oil or protein content per plant, µ represents overall mean effect,
Ei is effect of the ith environment, and Rj is the effect of the jth replicate. GK is the effect
of the kth genotype; and εijk represents the effect of the error associated with the ith
environment, jth replicate, and kth genotype

Descriptive analysis and Analysis of Variance (ANOVA) of trait phenotypes were
conducted using SPSS 22.0 (IBM Corporation, Armonk, NY, USA). Broad-sense heritability
estimates were calculated using the following formula: h2 = σ2G/(σ2G + σ2Ge/e + σ2ε/re),
where σ2G, σ2Ge, and σ2ε represent genetic variance, genotype by environment interaction
variance, and residual error variance, respectively; and e and r represent the number of
environments and replicates, respectively. Phenotypic correlation analysis was calculated
using the “pearson” method of “cor” function of the R language.

4.3. Genotyping

The SNP data of the 4141 accessions in the six populations (A, B, C, D, E, and F) are
available with the Illumina Infinium SoySNP50K Bead Chip from the Soybean Genetics
and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA, and can be downloaded at
https://www.soybase.org/snps/ (accessed on 5 April 2023) [64].

For the 175 F2:6 breeding lines and parents, we performed SNP genotyping using the
same SoySNP50K Bead Chip [64]. DNA was extracted from the leaf tissue of each breeding
line, including two parents, and genotyped with the SoySNP50K Bead Chip described by
Song et al. [64]. A total of 51,335 SNPs were obtained across the 175 breeding lines and
two parents.

After combining both SNP sets from the 4141 accessions and the 175 breeding lines,
along with two parents, and filtering out with minor allele frequency (MAF) < 5% and
missing data > 10%, 39,681 SNPs were retained for further analysis in this study. Following
the filtering process, missing SNP data across soybean genotypes were imputed using
Beagle 5.4 [65] before performing GP analysis.

4.4. Genomic Prediction

The PA was calculated as the Pearson correlation coefficient (r-value) between the
observed oil/protein content value or BLUEs (best linear unbiased estimate) and GEBVs.
Various models, including G-BLUP, Bayes B (BB), Bayesian LASSO (BL), Bayesian ridge
regression (BRR), and rrBLUP, were employed to predict GEBVs. A ten-fold cross-validation
approach [48,66,67] was implemented for GP analysis in all within-population predictions.

https://www.soybase.org/snps/
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This procedure involves randomly dividing the dataset into ten subsets, where 90% of
the samples were used as the training set, and the remaining 10% as the validation set
(testing set). PA was defined as the Pearson’s correlation coefficient calculated for each
fold or testing set and then averaged over 10 folds to obtain the final PA value [68]. All
statistical models were executed in R language version 4.3.0 (R Core Team 2023, https:
//www.R-project.org/ (accessed on 5 April 2023). The G-BLUP, BB, BL, and BRR models
were fitted using the Bayesian generalized linear regression (BGLR) package [69]. RR-BLUP
was fitted using the “mixed.solve” functions in the “rr-BLUP” package. All Bayesian
approaches were run as single chains of 10,000 iterations, discarding the first 2000 iterations
as burn-in, using the BGLR package.

4.5. Training Population Selection

This study employed several strategies for across-population prediction, including
utilizing different training sets (TSs), varying training set sizes, and assessing the genetic
relationship between the training set and testing set (in this case, the bi-parent-derived
breeding population).

To calculate kinship among the six USDA populations and the bi-parent breeding
population, several analyses were conducted: (1) Principal Component Analysis (PCA)
was performed to capture the underlying structure of the genetic variation among the
populations. This analysis helps to visualize the phylogenetic relationships between each
sample. (2) Genetic distance analysis was conducted to quantify the similarity or dis-
similarity (distance) between samples or sub-populations. This information is crucial for
understanding the genetic relationships between populations. (3) Cluster analysis was
employed to further explore the relationships between populations (training population
and testing population). This analysis helps to identify groups of samples or populations
with similar genetic profiles.

For the genetic analysis, SNP data were processed using Plink, where each SNP
allele was coded 0, 1, or 2, representing the major allele, heterozygous allele, and minor
allele, respectively, based on the number of copies of the minor allele. Genetic distance
was calculated using the “Euclidean” method of the “dist” function of the R language.
Cluster analysis was performed based on genetic distance by the “average” method of
“hclust” function of the R language. All of these analyses, including PCA, cluster analysis,
and genetic distance calculations, were implemented in R version 4.3.0. These methods
collectively provide insights into the genetic relationships between populations and help
inform the across-population prediction process.

Each population (A, B, C, D, E, and F) within the 4141 USDA germplasm accessions,
as well as the bi-parent-derived breeding population, consisted of the 175 F2:6 line, along
the two parents, and underwent GP using G-BLUP via ten-fold cross-validation. To
investigate the relationship between PA and genetic distance, GP was conducted for both
within-population prediction and across-population prediction in the six populations of
the USDA germplasm. Furthermore, the six populations were aggregated as a training
set to execute across-population prediction for the bi-parent-derived breeding population
(175 F2:6 lines and two parents). A correlation analysis was performed to examine the
relationship between the genetic distance and PA among the six public populations and the
bi-parent-derived breeding population using the G-BLUP model. This analysis aimed to
elucidate how genetic distance influences prediction accuracy across different populations.

PA was also assessed based on the size of the training set. In this study, ten training
sets were utilized, ranging from 400 to 4000 USDA germplasm accessions, increasing by
increments of 400 accessions each time. These accessions were selected from the total pool
of 4141 accessions based on their genetic distance to the breeding population. Genomic
prediction (GP) using G-BLUP was then conducted for each training set to evaluate the
impact of the training-set size on prediction accuracy.

https://www.R-project.org/
https://www.R-project.org/
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4.6. Marker Selection

GP was conducted using nine SNP sets, including 100, 300, 500, 1000, 3000, 5000,
10,000, 20,000, and 30,000 SNPs randomly selected from a pool of 39,681 SNPs. In each GP
analysis, the training set contained four cultivated populations (A, B, C, and D populations)
combined to predict GEVB in the bi-parent-derived breeding population. Additionally,
across-population prediction was performed among the six sub-populations of USDA
germplasm accessions using five SNP sets (100, 1000, 10,000, 20,000, and 30,000 SNPs)
randomly selected from the 39,681 SNPs. Each GP analysis was repeated 100 times to
ensure the reliability of the results. Mean and standard errors (SEs) corresponding to
each SNP set were computed to evaluate the predictive performance across different sets.
This rigorous approach aimed to provide robust insights into the effectiveness of different
SNP-set sizes for GP.

5. Conclusions

In this study, we harnessed USDA soybean germplasm population datasets to predict
the bi-parent-derived breeding population (BP) for soybean oil and protein content. Our
findings underscored the importance of the genetic distance in determining the prediction
ability (PA), with closer genetic proximity between the training sets and the BP resulting in a
higher PA. Additionally, enlarging the training population size positively influenced the PA,
with optimal results observed with a threshold of ≥800 germplasms or using four cultivated
soybean populations from USDA, either individually or combined. Furthermore, our study
revealed a consistent enhancement in PA with the increasing marker density, peaking
when the number of markers reached 10,000. Interestingly, no significant difference in PA
was observed among different models tested, indicating robustness across methodologies.
The average PA for oil and protein content within the BP were 0.55 and 0.50, respectively.
When utilizing six USDA populations as the training set to predict the BP, the PA for oil
and protein content were slightly lower at 0.45 and 0.39, respectively. Overall, the study
demonstrates the feasibility of utilizing public datasets for genomic selection (GS) breeding.
We provide valuable insights and methods for breeders to effectively utilize public datasets,
thereby facilitating the development of GS-assisted breeding strategies. By accelerating
the breeding process and enhancing genetic gains in breeding programs, these findings
contribute to the advancement of soybean breeding efforts.
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Appendix A

Table A1. Information of the six populations in USDA GRIN soybean germplasm and the bi-parent-
derived breeding population (NF58 × JD12): number of SNPs, number of accessions, years of
experiment, and location of experiment.

Population No. of
SNPs

No. of
Accessions

Years of
Experiment Location of Experiment

MAX MS 0102: A

52,041

1007 2001 and 2002 Mississippi of United States
MAX MS 9901: B 607 1999 and 2001 Mississippi of United States
MAX MS 9697: C 965 1996 and 1997 Mississippi of United States
MAX IL 9495: D 811 1994 and 1995 Illinois of United States
SOJA IL 9899: E 243 1998 and 1999 Illinois of United States
SOJA MS 9899: F 508 1998 and 1999 Mississippi of United States

Breeding population 51,335 177 2011 and 2012 Shijiazhuang, Cangzhou, and Handan of China

Table A2. Prediction ability (PA) (r-value) of soybean seed oil and protein contents were estimated
through across-population prediction from the six USDA populations to the bi-breeding population
using G-BLUP model, where the training set comprised the six USDA populations: A, B, C, D, E,
and F. Genetic distances between each of the six training sets (A, B, C, D, E, and F) and the breeding
population were calculated.

USDA Germplasm
Population Breeding Population

Training Set Genetic Distance r-Value (Oil/Protein)

A 228.66 0.37/0.39
B 222.45 0.36/0.33
C 229.49 0.29/0.15
D 233.00 0.27/0.15
E 263.47 −0.05/−0.03
F 272.48 −0.12/−0.15

Table A3. Prediction ability (PA) (r-value) was estimated for soybean seed oil and protein contents
through across-population prediction among the A, B, C, and D populations in USDA germplasm
with different SNP numbers, using G-BLUP model.

r-Value (Oil/Pro) SNP Number

Training Set Testing Set 100 1000 10,000 20,000 30,000

A
B 0.32/0.28 0.49/0.40 0.58/0.44 0.59/0.46 0.59/0.46
C 0.29/0.24 0.38/0.24 0.42/0.35 0.43/0.34 0.44/0.36
D 0.56/0.29 0.61/0.33 0.63/0.36 0.64/0.36 0.64/0.36

B
A 0.47/0.3 0.62/0.41 0.68/0.49 0.68/0.51 0.67/0.51
C 0.21/0.22 0.35/0.31 0.45/0.41 0.48/0.43 0.49/0.43
D 0.4/0.12 0.58/0.2 0.67/0.26 0.68/0.26 0.68/0.25

C
A 0.5/0.36 0.66/0.47 0.71/0.51 0.72/0.52 0.72/0.52
B 0.15/0.13 0.19/0.23 0.21/0.28 0.22/0.34 0.21/0.33
D 0.38/0.17 0.47/0.25 0.49/0.29 0.52/0.30 0.51/0.31

D
A 0.67/0.34 0.74/0.37 0.76/0.38 0.77/0.39 0.77/0.39
B 0.31/0.08 0.43/0.10 0.48/0.14 0.49/0.15 0.49/0.14
C 0.26/0.12 0.34/0.13 0.37/0.15 0.37/0.16 0.36/0.16



Plants 2024, 13, 1260 18 of 20

Plants 2024, 13, 1260 18 of 21 
 

 

Table A2. Prediction ability (PA) (r-value) of soybean seed oil and protein contents were estimated 
through across-population prediction from the six USDA populations to the bi-breeding population 
using G-BLUP model, where the training set comprised the six USDA populations: A, B, C, D, E, 
and F. Genetic distances between each of the six training sets (A, B, C, D, E, and F) and the breeding 
population were calculated. 

USDA Germplasm Population Breeding Population 
Training Set Genetic Distance r-Value (Oil/Protein) 

A 228.66 0.37/0.39 
B 222.45 0.36/0.33 
C 229.49 0.29/0.15 
D 233.00 0.27/0.15 
E 263.47 −0.05/−0.03 
F 272.48 −0.12/−0.15 

Table A3. Prediction ability (PA) (r-value) was estimated for soybean seed oil and protein contents 
through across-population prediction among the A, B, C, and D populations in USDA germplasm 
with different SNP numbers, using G-BLUP model. 

r-Value (Oil/Pro) SNP Number 
Training Set Testing Set 100 1000 10,000 20,000 30,000 

A 
B 0.32/0.28 0.49/0.40 0.58/0.44 0.59/0.46 0.59/0.46 
C 0.29/0.24 0.38/0.24 0.42/0.35 0.43/0.34 0.44/0.36 
D 0.56/0.29 0.61/0.33 0.63/0.36 0.64/0.36 0.64/0.36 

B 
A 0.47/0.3 0.62/0.41 0.68/0.49 0.68/0.51 0.67/0.51 
C 0.21/0.22 0.35/0.31 0.45/0.41 0.48/0.43 0.49/0.43 
D 0.4/0.12 0.58/0.2 0.67/0.26 0.68/0.26 0.68/0.25 

C 
A 0.5/0.36 0.66/0.47 0.71/0.51 0.72/0.52 0.72/0.52 
B 0.15/0.13 0.19/0.23 0.21/0.28 0.22/0.34 0.21/0.33 
D 0.38/0.17 0.47/0.25 0.49/0.29 0.52/0.30 0.51/0.31 

D 
A 0.67/0.34 0.74/0.37 0.76/0.38 0.77/0.39 0.77/0.39 
B 0.31/0.08 0.43/0.10 0.48/0.14 0.49/0.15 0.49/0.14 
C 0.26/0.12 0.34/0.13 0.37/0.15 0.37/0.16 0.36/0.16 

 
Figure A1. Prediction ability (PA) of oil and protein contents were estimated through 10-fold cross-
prediction within each population in the six USDA germplasm populations, using the G-BLUP 
model. Pink color indicates oil content, and green indicates protein content. Error bars represent 
predicted value distribution of 10-fold cross-validation. 

Figure A1. Prediction ability (PA) of oil and protein contents were estimated through 10-fold cross-
prediction within each population in the six USDA germplasm populations, using the G-BLUP model.
Pink color indicates oil content, and green indicates protein content. Error bars represent predicted
value distribution of 10-fold cross-validation.

References
1. Oil Mill Gazetteer Group. Oil Mill Gazetteer; American Soybean Association: 2004; p. 110. Available online: https://omg-ojs-

tamu.tdl.org/omg/ (accessed on 23 March 2024).
2. Nonoy, B.; Diego, J.; Qijian, S.; Randall, N.; Perry, C.; Jim, S.; Aaron, L. A Population Structure and Genome-Wide Association

Analysis on the USDA Soybean Germplasm Collection. Plant Genome 2015, 8, 3. [CrossRef] [PubMed]
3. Hwang, E.Y.; Song, Q.; Jia, G.; Specht, J.E.; Hyten, D.L.; Costa, J.; Cregan, P.B. A genome-wide association study of seed protein

and oil content in soybean. BMC Genom. 2014, 15, 1. [CrossRef] [PubMed]
4. Keim, P.; Diers, B.W.; Olson, T.C.; Shoemaker, R.C. RFLP mapping in soybean: Association between marker loci and variation in

quantitative traits. Genetics 1990, 126, 735–742. [CrossRef] [PubMed]
5. Zhu, Y.L.; Song, Q.J.; Hyten, D.L.; Van Tassell, C.P.; Matukumalli, L.K.; Grimm, D.R.; Hyatt, S.M.; Fickus, E.W.; Young, N.D.;

Cregan, P.B. Single-Nucleotide Polymorphisms in Soybean. Genetics 2003, 163, 1123. [CrossRef] [PubMed]
6. Song, Q.; Jenkins, J.; Jia, G.; Hyten, D.L.; Pantalone, V.; Jackson, S.A.; Schmutz, J.; Cregan, P.B. Construction of high resolution

genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genom. 2016, 17, 33. [CrossRef]
[PubMed]

7. Zhang, J.; Wang, X.; Lu, Y.; Bhusal, S.J.; Song, Q.; Cregan, P.B.; Yen, Y.; Brown, M.; Jiang, G.L. Genome-wide Scan for Seed
Composition Provides Insights into Soybean Quality Improvement and the Impacts of Domestication and Breeding. Mol. Plant
2018, 11, 460–472. [CrossRef] [PubMed]

8. Yongce, C.; Shuguang, L.; Zili, W.; Fangguo, C.; Jiejie, K.; Junyi, G.; Tuanjie, Z. Identification of Major Quantitative Trait Loci for
Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping. Front. Plant Sci. 2017, 8, 1222.

9. Leamy, L.J.; Zhang, H.; Li, C.; Chen, C.Y.; Song, B.H. A genome-wide association study of seed composition traits in wild soybean
(Glycine soja). BMC Genom. 2017, 18, 3–15. [CrossRef] [PubMed]

10. Li, D.; Zhao, X.; Han, Y.; Li, W.; Xie, F. Genome-wide association mapping for seed protein and oil contents using a large panel of
soybean accessions. Genomics 2018, 111, 90–95. [CrossRef]

11. Lande, R.; Thompson, R. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 1990, 124,
743–756. [CrossRef]

12. Hospital, F.; Moreau, L.; Lacoudre, F.; Charcosset, A.; Gallais, A. More on the efficiency of marker-assisted selection. Theor. Appl.
Genet. 1997, 95, 1181–1189. [CrossRef]

13. Moreau, L.; Charcosset, A. Experimental evaluation of several cycles of marker-assisted selection in maize. Euphytica 2004, 137,
111–118. [CrossRef]

14. Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altmann, T.; Stitt, M.; Willmitzer, L.; Melchinger,
A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci.
USA 2012, 109, 8872–8877. [CrossRef] [PubMed]

15. Maher, B. The case of the missing heritability. Nature 2008, 456, 18–21. [CrossRef] [PubMed]
16. Meuwissen, T.H.E.; Hayes, B.J.B.; Goddard, M.E.M. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps.

Genetics 2001, 157, 1819–1829. [CrossRef] [PubMed]
17. Heffner, E.L.; Jannink, J.L.; Iwata, H.; Souza, E.; Sorrells, M.E. Genomic Selection Accuracy for Grain Quality Traits in Biparental

Wheat Populations. Crop Sci. 2011, 51, 2597–2606. [CrossRef]

https://omg-ojs-tamu.tdl.org/omg/
https://omg-ojs-tamu.tdl.org/omg/
https://doi.org/10.3835/plantgenome2015.04.0024
https://www.ncbi.nlm.nih.gov/pubmed/33228276
https://doi.org/10.1186/1471-2164-15-1
https://www.ncbi.nlm.nih.gov/pubmed/24382143
https://doi.org/10.1093/genetics/126.3.735
https://www.ncbi.nlm.nih.gov/pubmed/1979039
https://doi.org/10.1093/genetics/163.3.1123
https://www.ncbi.nlm.nih.gov/pubmed/12663549
https://doi.org/10.1186/s12864-015-2344-0
https://www.ncbi.nlm.nih.gov/pubmed/26739042
https://doi.org/10.1016/j.molp.2017.12.016
https://www.ncbi.nlm.nih.gov/pubmed/29305230
https://doi.org/10.1186/s12864-016-3397-4
https://www.ncbi.nlm.nih.gov/pubmed/28056769
https://doi.org/10.1016/j.ygeno.2018.01.004
https://doi.org/10.1093/genetics/124.3.743
https://doi.org/10.1007/s001220050679
https://doi.org/10.1023/B:EUPH.0000040508.01402.21
https://doi.org/10.1073/pnas.1120813109
https://www.ncbi.nlm.nih.gov/pubmed/22615396
https://doi.org/10.1038/456018a
https://www.ncbi.nlm.nih.gov/pubmed/18987709
https://doi.org/10.1093/genetics/157.4.1819
https://www.ncbi.nlm.nih.gov/pubmed/11290733
https://doi.org/10.2135/cropsci2011.05.0253


Plants 2024, 13, 1260 19 of 20

18. Hickey, J.M.; Dreisigacker, S.; Crossa, J.; Hearne, S.; Babu, R.; Prasanna, B.M.; Grondona, M.; Zambelli, A.; Windhausen, V.S.;
Mathews, K.; et al. Evaluation of Genomic Selection Training Population Designs and Genotyping Strategies in Plant Breeding
Programs Using Simulation. Crop Sci. 2014, 54, 1476–1488. [CrossRef]

19. Alexandra, D.; Amandine, G.; Simon, T.; Michel, R.; Bruno, C.; Jean, D.; Brigitte, M. Genomic Selection for Yield and Seed Protein
Content in Soybean: A Study of Breeding Program Data and Assessment of Prediction Accuracy. Crop Sci. 2017, 57, 1325–1337.

20. Zhang, J.; Song, Q.; Cregan, P.B.; Jiang, G.-L. Genome-wide association study, genomic prediction and marker-assisted selection
for seed weight in soybean (Glycine max). Theor. Appl. Genet. 2016, 129, 117–130. [CrossRef]

21. Habier, D.; Fernando, R.; Dekkers, J. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values.
Genetics 2008, 177, 2389–2397. [CrossRef]

22. Jannink, J.-L.; McCouch, S.; Begum, H.; Akdemir, D.; Spindel, J. Genome-wide prediction models that incorporate de novo GWAS
are a powerful new tool for tropical rice improvement. Hered. Int. J. Genet. 2016, 116, 395–408.

23. Lorenz, A.J. Resource Allocation for Maximizing Prediction Accuracy and Genetic Gain of Genomic Selection in Plant Breeding:
A Simulation Experiment. G3 Genes Genomes Genet. 2013, 3, 481–491. [CrossRef]

24. Kainer, D.; Lanfear, R.; Foley, W.J.; Külheim, C. Genomic approaches to selection in outcrossing perennials: Focus on essential oil
crops. Theor. Appl. Genet. 2015, 128, 2351–2365. [CrossRef] [PubMed]

25. Heffner, E.L.; Jannink, J.L.; Sorrells, M.E. Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding
Program. Plant Genome 2011, 4, 1. [CrossRef]

26. Crossa, J.; Pérez, P.; Hickey, J.M.; Burgueo, J.; Mathews, K. Genomic prediction in CIMMYT maize and wheat breeding program.
Heredity 2013, 112, 48. [CrossRef] [PubMed]

27. Zhang, J.; Zhao, J.; Liang, Y. Efficiency of genomic selection for tomato fruit quality. Mol. Breed. 2016, 36, 29.
28. Guo, Z.; Tucker, D.M.; Lu, J.; Kishore, V.; Gay, G. Evaluation of genome-wide selection efficiency in maize nested association

mapping populations. Theor. Appl. Genet. 2012, 124, 261–275. [CrossRef]
29. Piepho, H.P. Ridge Regression and Extensions for Genomewide Selection in Maize. Crop Sci. 2009, 49, 1165–1176. [CrossRef]
30. Bernardo, R. Best Linear Unbiased Prediction of Maize Single-Cross Performance. Crop Sci. 1996, 36, 50–56. [CrossRef]
31. Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Sorrells, M.E. Genomic and pedigree-based prediction for leaf, stem, and stripe rust

resistance in wheat. Theor. Appl. Genet. 2017, 130, 1415–1430. [CrossRef]
32. Habier, D.; Fernando, R.L.; Kizilkaya, K.; Garrick, D.J. Extension of the bayesian alphabet for genomic selection. BMC Bioinform.

2011, 12, 186. [CrossRef]
33. Gianola, D. Priors in whole-genome regression: The bayesian alphabet returns. Genetics 2013, 194, 573. [CrossRef]
34. Campos, G.D.L.; Gianola, D.; Rosa, G.J.M. Reproducing kernel Hilbert spaces regression: A general framework for genetic

evaluation. J. Anim. Sci. 2009, 87, 1883–1887. [CrossRef] [PubMed]
35. González-Camacho, J.M.; Campos, G.D.L.; Pérez, P.; Gianola, D.; Cairns, J.E.; Mahuku, G.; Babu, R.; Crossa, J. Genome-enabled

prediction of genetic values using radial basis function neural networks. Theor. Appl. Genet. 2012, 125, 759–771. [CrossRef]
[PubMed]

36. Haile, T.A.; Walkowiak, S.; N’Diaye, A.; Clarke, J.M.; Pozniak, C.J. Genomic prediction of agronomic traits in wheat using
different models and cross-validation designs. Theor. Appl. Genet. 2021, 134, 381–398. [CrossRef]

37. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
38. Ceron-Rojas, J.J.; Crossa, J.; Arief, V.N.; Basford, K.; Rutkoski, J. A Genomic Selection Index Applied to Simulated and Real Data.

G3 Genes Genomes Genet. 2015, 5, 2155–2164. [CrossRef]
39. Kaler, A.S.; Purcell, L.C.; Beissinger, T.; Gillman, J.D. Genomic prediction models for traits differing in heritability for soybean,

rice, and maize. BMC Plant Biol. 2022, 22, 87. [CrossRef]
40. Riedelsheimer, C.; Endelman, J.B.; Stange, M.; Sorrells, M.E.; Jannink, J.L.; Melchinger, A.E. Genomic Predictability of Intercon-

nected Biparental Maize Populations. Genetics 2013, 194, 493. [CrossRef]
41. Technow, F.; Burger, A.; Melchinger, A.E. Genomic Prediction of Northern Corn Leaf Blight Resistance in Maize with Combined

or Separated Training Sets for Heterotic Groups. G3 Genes Genomes Genet. 2013, 3, 197–203. [CrossRef]
42. Habyarimana, E. Genomic prediction for yield improvement and safeguarding of genetic diversity in CIMMYT spring wheat

(Triticum aestivum L.). Aust. J. Crop Sci. 2016, 10, 127–136.
43. Bernardo, R.; Yu, J. Prospects for Genomewide Selection for Quantitative Traits in Maize. Crop Sci. 2007, 47, 1082–1090. [CrossRef]
44. Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in

wheat (Triticum spp.)—ScienceDirect. Plant Sci. 2016, 242, 23–36. [CrossRef] [PubMed]
45. Dawson, J.C.; Endelman, J.B.; Heslot, N.; Crossa, J.; Poland, J.; Dreisigacker, S.; Manès, Y.; Sorrells, M.E.; Jannink, J.L. The use of

unbalanced historical data for genomic selection in an international wheat breeding program. Field Crops Res. 2013, 154, 12–22.
[CrossRef]

46. Haffke, S. Quantitative-Trait Loci (QTL) Mapping of Important Agronomical Traits of the Grain and Biomass Production in
Winter Rye (Secale cereale L.). 2015. Available online: http://opus.uni-hohenheim.de/volltexte/2015/1119/ (accessed on 5 April
2023).

47. Beche, E.; Gillman, J.D.; Song, Q.; Nelson, R.; Scaboo, A.M. Genomic prediction using training population design in interspecific
soybean populations. Mol. Breed. 2021, 41, 15. [CrossRef] [PubMed]

https://doi.org/10.2135/cropsci2013.03.0195
https://doi.org/10.1007/s00122-015-2614-x
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1534/g3.112.004911
https://doi.org/10.1007/s00122-015-2591-0
https://www.ncbi.nlm.nih.gov/pubmed/26239409
https://doi.org/10.3835/plantgenome2010.12.0029
https://doi.org/10.1038/hdy.2013.16
https://www.ncbi.nlm.nih.gov/pubmed/23572121
https://doi.org/10.1007/s00122-011-1702-9
https://doi.org/10.2135/cropsci2008.10.0595
https://doi.org/10.2135/cropsci1996.0011183X003600010009x
https://doi.org/10.1007/s00122-017-2897-1
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1534/genetics.113.151753
https://doi.org/10.2527/jas.2008-1259
https://www.ncbi.nlm.nih.gov/pubmed/19213705
https://doi.org/10.1007/s00122-012-1868-9
https://www.ncbi.nlm.nih.gov/pubmed/22566067
https://doi.org/10.1007/s00122-020-03703-z
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1534/g3.115.019869
https://doi.org/10.1186/s12870-022-03479-y
https://doi.org/10.1534/genetics.113.150227
https://doi.org/10.1534/g3.112.004630
https://doi.org/10.2135/cropsci2006.11.0690
https://doi.org/10.1016/j.plantsci.2015.08.021
https://www.ncbi.nlm.nih.gov/pubmed/26566822
https://doi.org/10.1016/j.fcr.2013.07.020
http://opus.uni-hohenheim.de/volltexte/2015/1119/
https://doi.org/10.1007/s11032-021-01203-6
https://www.ncbi.nlm.nih.gov/pubmed/37309481


Plants 2024, 13, 1260 20 of 20

48. Gianola, D.; Schon, C.C. Cross-Validation Without Doing Cross-Validation in Genome-Enabled Prediction. G3 Genes Genomes
Genet. 2016, 6, 3107–3128. [CrossRef] [PubMed]

49. Rio, S.; Mary-Huard, T.; Moreau, L.; Charcosset, A. Genomic selection efficiency and a priori estimation of accuracy in a structured
dent maize panel. Theor. Appl. Genet. 2018, 132, 81–96. [CrossRef] [PubMed]

50. Zhang, X.; Pérez-Rodríguez, P.; Semagn, K.; Beyene, Y.; Babu, R.; López-Cruz, M.A.; Vicente, F.S.; Olsen, M.; Buckler, E.;
Jannink, J.L. Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using
low-density and GBS SNPs. Heredity 2015, 114, 291–299. [CrossRef] [PubMed]

51. Habier, D.; Fernando, R.L.; Dekkers, J.C.M. Genomic Selection Using Low-Density Marker Panels. Genetics 2009, 182, 343–353.
[CrossRef]

52. Liu, X.; Wang, H.; Wang, H.; Guo, Z.; Xu, X.; Liu, J.; Wang, S.; Li, W.X.; Zou, C.; Prasanna, B.M. Factors affecting genomic selection
revealed by empirical evidence in maize. Crop J. 2018, 6, 341–352. [CrossRef]

53. Smallwood, C.J.; Saxton, A.M.; Gillman, J.D.; Bhandari, H.S.; Wadl, P.A.; Fallen, B.D.; Hyten, D.L.; Song, Q.; Pantalone, V.R.
Context-Specific Genomic Selection Strategies Outperform Phenotypic Selection for Soybean Quantitative Traits in the Progeny
Row Stage. Crop Sci. 2019, 59, 54–67. [CrossRef]

54. Crossa, J.; Campos, G.D.L.; Perez, P.; Gianola, D.; Burgueno, J.; Araus, J.L.; Makumbi, D.; Singh, R.P.; Dreisigacker, S.; Yan, J.
Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers. Genetics 2010, 186,
713–724. [CrossRef] [PubMed]

55. Clark, S.A.; Hickey, J.M.; Daetwyler, H.D.; Werf, J.H.V.D. The importance of information on relatives for the prediction of genomic
breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics Selection
Evolution Gse 2012, 44, 4. [CrossRef] [PubMed]

56. Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; Gustavo, D.L.C.; Burgueño, J.; Camacho-González,
J.M.; Pérez-Elizalde, S.; Beyene, Y. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci.
2017, 22, 961–975. [CrossRef] [PubMed]

57. Cuevas, J.; Crossa, J.; Montesinos-López, O.A.; Burgueo, J.; Pérez-Rodríguez, P.; Campos, G.D.L. bayesian genomic prediction
with genotype 3 environment interaction kernel models. G3 Genes Genomes Genet. 2019, 7, 41–53. [CrossRef] [PubMed]

58. Combs, E.; Bernardo, R. Genomewide Selection to Introgress Semidwarf Maize Germplasm into U.S. Corn Belt Inbreds. Crop Sci.
2013, 53, 1427–1436. [CrossRef]

59. Zhao, Y.; Gowda, M.; Liu, W.; Würschum, T.; Reif, J.C. Accuracy of genomic selection in European maize elite breeding
Populations. Theor. Appl. Genet. 2011, 124, 769–776. [CrossRef]

60. Sarinelli, J.M.; Murphy, J.P.; Tyagi, P.; Holland, J.B.; Brown-Guedira, G. Training population selection and use of fixed effects
to optimize genomic predictions in a historical USA winter wheat panel. Theor. Appl. Genet. 2019, 132, 1247–1261. [CrossRef]
[PubMed]

61. Muleta, K.T.; Bulli, P.; Zhang, Z.; Chen, X.; Pumphrey, M. Unlocking Diversity in Germplasm Collections via Genomic Selection:
A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat. Plant Genome 2017, 10, 3. [CrossRef]

62. Stewart-Brown, B.B.; Song, Q.; Vaughn, J.N.; Li, Z. Genomic Selection for Yield and Seed Composition Traits within an Applied
Soybean Breeding Program. G3 Genes Genomes Genet. 2019, 9, 2253–2265. [CrossRef]

63. Thavamanikumar, S.; Dolferus, R.; Thumma, B.R. Comparison of Genomic Selection Models to Predict Flowering Time and Spike
Grain Number in Two Hexaploid Wheat Doubled Haploid Populations. G3 Genes Genomes Genet. 2015, 5, 1991–1998. [CrossRef]
[PubMed]

64. Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Development and Evaluation of SoySNP50K,
a High-Density Genotyping Array for Soybean. PLoS ONE 2013, 8, e54985. [CrossRef] [PubMed]

65. Browning, B.; Tian, X.; Zhou, Y.; Browning, S. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 2021, 108,
1880–1890. [CrossRef]

66. Resende, M.D.V.; Resende, M.F.R.; Sansaloni, C.P.; Petroli, C.D.; Missiaggia, A.A.; Aguiar, A.M.; Abad, J.M.; Takahashi, E.K.;
Rosado, A.M.; Faria, D.A. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and
accelerating breeding for complex traits in forest trees. New Phytol. 2012, 194, 116–128. [CrossRef]

67. Crossa, J.; Jarquín, D.; Franco, J.; Pérez-Rodríguez, P.; Burgueño, J.; Saint-Pierre, C.; Vikram, P.; Sansaloni, C.; Petroli, C.; Akdemir,
D. Genomic Prediction of Gene Bank Wheat Landraces. G3 Genes Genomes Genet. 2016, 6, 1819–1834. [CrossRef] [PubMed]

68. Bengio, Y.; Gr, Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 2003, 16, 700–707.
[CrossRef]

69. Perez, P.; de Los Campos, G. Genome-Wide Regression and Prediction with the BGLR Statistical Package. Genetics 2014, 198,
483–495. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1534/g3.116.033381
https://www.ncbi.nlm.nih.gov/pubmed/27489209
https://doi.org/10.1007/s00122-018-3196-1
https://www.ncbi.nlm.nih.gov/pubmed/30288553
https://doi.org/10.1038/hdy.2014.99
https://www.ncbi.nlm.nih.gov/pubmed/25407079
https://doi.org/10.1534/genetics.108.100289
https://doi.org/10.1016/j.cj.2018.03.005
https://doi.org/10.2135/cropsci2018.03.0197
https://doi.org/10.1534/genetics.110.118521
https://www.ncbi.nlm.nih.gov/pubmed/20813882
https://doi.org/10.1186/1297-9686-44-4
https://www.ncbi.nlm.nih.gov/pubmed/22321529
https://doi.org/10.1016/j.tplants.2017.08.011
https://www.ncbi.nlm.nih.gov/pubmed/28965742
https://doi.org/10.1534/g3.116.035584
https://www.ncbi.nlm.nih.gov/pubmed/27793970
https://doi.org/10.2135/cropsci2012.11.0666
https://doi.org/10.1007/s00122-011-1745-y
https://doi.org/10.1007/s00122-019-03276-6
https://www.ncbi.nlm.nih.gov/pubmed/30680419
https://doi.org/10.3835/plantgenome2016.12.0124
https://doi.org/10.1534/g3.118.200917
https://doi.org/10.1534/g3.115.019745
https://www.ncbi.nlm.nih.gov/pubmed/26206349
https://doi.org/10.1371/journal.pone.0054985
https://www.ncbi.nlm.nih.gov/pubmed/23372807
https://doi.org/10.1016/j.ajhg.2021.08.005
https://doi.org/10.1111/j.1469-8137.2011.04038.x
https://doi.org/10.1534/g3.116.029637
https://www.ncbi.nlm.nih.gov/pubmed/27172218
https://doi.org/10.1115/1.1789979
https://doi.org/10.1534/genetics.114.164442

	Introduction 
	Results 
	Phenotypic Analysis 
	PCA and Phylogenetic Analysis 
	Genomic Prediction through Within-Population Prediction and Across-Population Prediction for Each Population in USDA Germplasm 
	Genomic Prediction through Across-Population Prediction from Populations of USDA Germplasm Accessions to the Breeding Population 
	Genomic Prediction between Across-Population with Different Model and Different SNP Number 
	Comparing Genomic Prediction Ability between within Breeding Population and Across-Population Prediction from Populations of USDA Accessions to the Breeding Population 

	Discussion 
	Genetic Similarity and Population Structure between Training Set and Testing Set and Training Set Size Has a Large Influence on the PA 
	Effect of Model Selection on Prediction Ability 
	Effect of Markers Number Selection on Prediction Ability 
	The Within-Population Prediction Got Higher Ability Than Across-Population Prediction 

	Materials and Methods 
	Plant Materials 
	Phenotyping 
	Genotyping 
	Genomic Prediction 
	Training Population Selection 
	Marker Selection 

	Conclusions 
	Appendix A
	References

