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Abstract: The seed, a critical organ in higher plants, serves as a primary determinant of agricultural
productivity, with its quality directly influencing crop yield. Improper storage conditions can
diminish seed vigor, adversely affecting seed germination and seedling establishment. Therefore,
understanding the seed-aging process and exploring strategies to enhance seed-aging resistance are
paramount. In this study, we observed that seed aging during storage leads to a decline in seed
vigor and can coincide with the accumulation of hydrogen peroxide (H2O2) in the radicle, resulting
in compromised or uneven germination and asynchronous seedling emergence. We identified
the abscisic acid (ABA) catabolism gene, abscisic acid 8′-hydroxylase 2 (OsABA8ox2), as significantly
induced by aging treatment. Interestingly, transgenic seeds overexpressing OsABA8ox2 exhibited
reduced seed vigor, while gene knockout enhanced seed vigor, suggesting its role as a negative
regulator. Similarly, seeds pretreated with ABA or diphenyleneiodonium chloride (DPI, an H2O2

inhibitor) showed increased resistance to aging, with more robust early seedling establishment. Both
OsABA8ox2 mutant seeds and seeds pretreated with ABA or DPI displayed lower H2O2 content
during aging treatment. Overall, our findings indicate that ABA mitigates rice seed aging by reducing
H2O2 accumulation in the radicle. This study offers valuable germplasm resources and presents a
novel approach to enhancing seed resistance against aging.

Keywords: rice; seed aging; ABA; H2O2; germination; seedling establishment

1. Introduction

Seeds play a critical role in the plant’s life cycle, serving as essential materials for
planting and crop production in subsequent seasons. Therefore, it is imperative for seeds
to exhibit high yield potential and produce viable and vigorous offspring [1]. Following
harvest, crop seeds are typically stored under ambient conditions for varying durations,
ranging from weeks to years [2]. The germination process plays a pivotal role in assessing
the viability and vigor of seeds, thereby contributing to successful crop establishment in
the soil [3]. Seed vigor, which influences the rapid and uniform emergence of the radicle,
stands as a critical factor in this process. The longevity of seeds determines the vigor index,
which is influenced by their physiological characteristics, genetic composition, and the rate
of deterioration during storage [4]. Additionally, various environmental factors such as
temperature, humidity, moisture content, oil content, pathogen attacks, mechanical damage,
storage duration, and gaseous exchange directly or indirectly impact seed vigor [5].

The accumulation of reactive oxygen species (ROS) and ABA has been widely recog-
nized as a key factor contributing to seed deterioration during ambient storage [6–10]. The
interplay between ABA and ROS has been linked to plant growth, development, and stress
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responses [8,10–17]. H2O2 mediates ABA-induced plant stomatal closure and tolerance
to heat stress [14,15]. H2O2 influences the regulation of ABA catabolism during seed im-
bibition, thereby modulating seed dormancy and germination [13]. The accumulation of
H2O2 induced by ABA may also participate in the early induction of various antioxida-
tive genes, thereby enhancing tolerance to cold stress [16]. In rice seeds, ABA decreases
ROS production, leading to the repression of ascorbate and gibberellin accumulation [17].
Overproduction of ROS or hormonal imbalances can lead to disruptions in growth en-
zymes, metabolism, and alterations in cellular membranes and the cytoplasmic state during
storage [18–20]. However, whether and/or how the control of seed aging by ABA was
connected with ROS remains unclear.

Several methods are being used to improve seed resistance against aging. Genetic im-
provement is one approach. For example, ectopic expression of NnPER1, a Nelumbo nucifera
1-cysteine peroxiredoxin antioxidant in A. thaliana enhanced seed vigor and longevity [21].
In rice, the overexpression of PER1A improved resistance against aging, while knockout of
PER1A increased the rate of seed-viability loss during aging compared to the wild type [8];
Physicochemical methods are another approach. For instance, soybean seeds stored at 10 ◦C
and relative humidity below 40% can be preserved for up to two seasons [22]. Priming
seeds prior to aging treatment, which involves mixing seeds with moist vermiculite at
25 ◦C for 36 h followed by air-drying to the original moisture level, partially overcomes the
deteriorative effects of aging and improves seed quality [23]. Nanotechnology can also be
employed for the rejuvenation of aged seeds [24]; however, more studies are needed to find
effective methods to prevent seed aging. In this study, we showed that age-induced H2O2
accumulation in the radicle was identified as the primary cause of compromised or un-
even germination and asynchronous seedling emergence. Additionally, we demonstrated
that OsABA8ox2, acting as a negative regulator of seed vigor, can be utilized for breeding
aging-resistant varieties.

2. Results
2.1. Aging Significantly Decreases Rice Seed Germination and Seeding Establishment

The impact of aging on rice seed germination and seedling establishment was eval-
uated by subjecting seeds to various aging durations (i.e., 24 h, 48 h, 72 h). Compared
to seeds without aging treatment, those subjected to storage treatments exhibited sig-
nificantly lower germination rates and compromised germination status, with inhibited
radicle and coleoptile growth observed with increasing aging time (Figure 1A,B). While
unaged seeds achieved nearly 100% germination, those aged for 24 h and 48 h displayed
final germination rates of approximately 60% and 40%, respectively, with almost complete
failure of germination observed in seeds aged for 72 h (Figure 1A,B). Analysis using 2,3,5-
triphenyltetrazolium chloride (TTC) staining showed weaker staining in the coleorhiza,
radicle, and coleoptile of rice seeds aged for 48 h compared to the CK, indicating reduced
embryo viability, particularly in the radicle (Figure 1C).

Furthermore, equal numbers of rice seeds subjected to varying aging times were
planted in soil, and the percentage of seedling establishment was recorded. Results indicated
significantly lower seedling establishment rates for seeds aged for 24 h and 48 h compared to
the control, with notably suppressed radicle growth observed (Figure 1D,E). These findings
confirm that artificial aging significantly diminishes radicle viability and adversely affects
rice seed germination and seedling establishment. Notably, the radicle appears to be more
sensitive to aging, experiencing greater damage compared to the coleoptile.
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Figure 1. Aging significantly decreases rice seed germination and seedling establishment abilities. 

(A) Representative photographs of aged rice seeds during the imbibition process (48 h after sowing). 

Rice seeds were aged for 24, 48 or 72 h, 3 months after harvest, and then subjected to analysis. Scale 

bar = 10 mm. (B) Germination rates of rice seeds after different aging treatments. (C) 2,3,5-triphenyl-

tetrazolium chloride (TTC) staining of CK and seeds aged for 48 h. Scale bar = 1 mm. (D) The early 

seedling establishment phenotype of different samples (A) immediately following germination (1 

week after sowing). The top right corner of the image shows rice seeds subjected to 48 h of aging 

treatment, which fail to develop normal radicles and roots during early seedling growth. (E) The 

quantitative analysis of the seedling establishment rates of different samples are shown (1 week 

after sowing). Percentages are the average of three repeats ± SE. The asterisk (**) indicates a signifi-

cant difference at p < 0.01 by Student’s t-test analysis. 

2.2. More H2O2 Is Accumulated in the Radicle of Seeds under Aging Treatment 

As reactive oxygen species (ROS), particularly H2O2, are commonly recognized as 

crucial factors influencing seed longevity [8,25], we investigated H2O2 accumulation to 

evaluate overall oxidative stress in aged rice seeds (Figure 2). Remarkably, the embryos of 

seeds aged for 48 h exhibited more intense staining than the CK, particularly in the radicle 

(Figure 2A). Additionally, we conducted a relative quantification of H2O2 levels in seed 

embryos. The results revealed significantly higher H2O2 contents in the embryos of aged 

seeds compared to the CK during accelerated aging (Figure 2B). This finding corroborates 

the observations from DAB staining and provides insight into the radicle’s demise. 

 

Figure 1. Aging significantly decreases rice seed germination and seedling establishment abilities.
(A) Representative photographs of aged rice seeds during the imbibition process (48 h after sowing).
Rice seeds were aged for 24, 48 or 72 h, 3 months after harvest, and then subjected to analysis.
Scale bar = 10 mm. (B) Germination rates of rice seeds after different aging treatments. (C) 2,3,5-
triphenyltetrazolium chloride (TTC) staining of CK and seeds aged for 48 h. Scale bar = 1 mm.
(D) The early seedling establishment phenotype of different samples (A) immediately following
germination (1 week after sowing). The top right corner of the image shows rice seeds subjected
to 48 h of aging treatment, which fail to develop normal radicles and roots during early seedling
growth. (E) The quantitative analysis of the seedling establishment rates of different samples are
shown (1 week after sowing). Percentages are the average of three repeats ± SE. The asterisk (**)
indicates a significant difference at p < 0.01 by Student’s t-test analysis.

2.2. More H2O2 Is Accumulated in the Radicle of Seeds under Aging Treatment

As reactive oxygen species (ROS), particularly H2O2, are commonly recognized as
crucial factors influencing seed longevity [8,25], we investigated H2O2 accumulation to
evaluate overall oxidative stress in aged rice seeds (Figure 2). Remarkably, the embryos of
seeds aged for 48 h exhibited more intense staining than the CK, particularly in the radicle
(Figure 2A). Additionally, we conducted a relative quantification of H2O2 levels in seed
embryos. The results revealed significantly higher H2O2 contents in the embryos of aged
seeds compared to the CK during accelerated aging (Figure 2B). This finding corroborates
the observations from DAB staining and provides insight into the radicle’s demise.



Plants 2024, 13, 809 4 of 10

Plants 2024, 13, x FOR PEER REVIEW 3 of 10 
 

 

 

Figure 1. Aging significantly decreases rice seed germination and seedling establishment abilities. 

(A) Representative photographs of aged rice seeds during the imbibition process (48 h after sowing). 

Rice seeds were aged for 24, 48 or 72 h, 3 months after harvest, and then subjected to analysis. Scale 

bar = 10 mm. (B) Germination rates of rice seeds after different aging treatments. (C) 2,3,5-triphenyl-

tetrazolium chloride (TTC) staining of CK and seeds aged for 48 h. Scale bar = 1 mm. (D) The early 

seedling establishment phenotype of different samples (A) immediately following germination (1 

week after sowing). The top right corner of the image shows rice seeds subjected to 48 h of aging 

treatment, which fail to develop normal radicles and roots during early seedling growth. (E) The 

quantitative analysis of the seedling establishment rates of different samples are shown (1 week 

after sowing). Percentages are the average of three repeats ± SE. The asterisk (**) indicates a signifi-

cant difference at p < 0.01 by Student’s t-test analysis. 

2.2. More H2O2 Is Accumulated in the Radicle of Seeds under Aging Treatment 

As reactive oxygen species (ROS), particularly H2O2, are commonly recognized as 

crucial factors influencing seed longevity [8,25], we investigated H2O2 accumulation to 

evaluate overall oxidative stress in aged rice seeds (Figure 2). Remarkably, the embryos of 

seeds aged for 48 h exhibited more intense staining than the CK, particularly in the radicle 

(Figure 2A). Additionally, we conducted a relative quantification of H2O2 levels in seed 

embryos. The results revealed significantly higher H2O2 contents in the embryos of aged 

seeds compared to the CK during accelerated aging (Figure 2B). This finding corroborates 

the observations from DAB staining and provides insight into the radicle’s demise. 

 
Figure 2. Histochemical staining and quantification of H2O2 in aged rice seeds. (A) In situ detection
of H2O2 during seed aging using 3,3′-Diaminobenzidine (DAB) staining agents. Arrow indicates the
production site of H2O2. Scale bar = 1 mm. (B) Quantification of H2O2 content during seed aging.
Values are the average of three repeats ± SE. The asterisk (**) indicates a significant difference at
p < 0.01 by Student’s t-test analysis.

2.3. Inhibition of ABA Degradation Increases Germination and Seedling Establishment from Aged
Rice Seeds

The plant hormone ABA plays a crucial role in regulating seed vigor [8,9,26]. Accord-
ing to transcriptomic data reported by Wang et al. [8], the ABA catabolism gene, abscisic acid
8′-hydroxylase 2 (OsABA8ox2), which is significantly induced by aging treatments, appears
to play an important role in ABA catabolism during the artificial aging process. To investi-
gate whether OsABA8ox2 influences seed aging, we generated rice OsABA8ox2 knockout
mutants using the CRISPR/Cas9 method as in [27] and an OsABA8ox2 overexpression
line. Sequencing analysis confirmed the presence of two independent mutants, KO-3 and
KO-11, which harbored a 1-bp deletion and a 1-bp insertion in the first exon of OsABA8ox2,
respectively (Figure 3A,B). Subsequently, we assessed the ABA content in rice seeds of the
OsABA8ox2-OE line and OsABA8ox2 mutants. Our results revealed that overexpression
of OsABA8ox2 significantly reduced the ABA content in rice seeds, while the content in
OsABA8ox2 mutants increased significantly (Figure 3C).
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mutated sequence of OsABA8ox2 mutants produced via CRISPR-Cas9. KO-3 harbors a 1-bp deletion
(dashed line) and KO-11 contains a 1-bp insertion (red letter). PAM, protospacer adjacent motif.
The red arrow indicates the mutation site. (B) Chromatogram of the OsABA8ox2 sequence across
the mutated site in WT and the OsABA8ox2 mutants. Red box shows the base insertion or deletion
in OsABA8ox2. (C) ABA content of rice seeds of the OsABA8ox2-OE line and OsABA8ox2 mutants.
(D) Representative photographs of aged rice seeds (C) during the imbibition process (48 h after
sowing). (E) Survival rate of the OsABA8ox2-OE lines and OsABA8ox2 mutant seeds after aging
treatments. (F) The early seedling establishment phenotype of different samples (D) immediately
following germination (1 week after sowing). After 48 h of aging treatment, seedlings fail to establish
from the OE-26 seeds. Values are the average of three repeats ± SE. The asterisk (**) indicates a
significant difference at p < 0.01 by Student’s t-test analysis.

To evaluate the impact of OsABA8ox2 on seed aging, we conducted an artificial aging
test. Our observations showed that overexpression of the OsABA8ox2 gene led to a dramatic
reduction in seed germination completion in accelerated aging (Figure 3D,E). Notably,
seeds of the OsABA8ox2-OE line exhibited mortality during maturation and after drying,
in contrast to knockouts of the OsABA8ox2 gene (KO-3 and KO-11), which demonstrated
substantially improved seed resistance against aging. Specifically, after aging for 48 h,
over 80% of OsABA8ox2 mutants remained viable compared to only 43% for the wild type
(ZH11). Furthermore, while all ZH11 seeds had perished following 72 h of aging treatment,
approximately 45% of OsABA8ox2 mutant seeds were still viable (Figure 3E). Additionally,
OsABA8ox2 mutant seedlings exhibited superior growth compared to the ZH11 seedlings
derived from rice seeds aged for 48 h (Figure 3F). These findings support the conclusion
that inhibiting ABA degradation enhances seed resistance against aging and improves
seedling establishment from aged rice seeds.

2.4. Exogenous ABA Reduces the Concentrations of H2O2 and Positively Regulates the Seedling
Establishment in Artificially Aged Rice Seeds

The interplay between ABA and H2O2 in plant tissues has been extensively discussed
in the literature [11,28], with confirmation of their pivotal roles in seed vigor [8]. Thus,
we investigated whether the increased resistance against aging observed in OsABA8ox2
mutants is associated with changes in H2O2 and ABA levels. To test this hypothesis,
we examined H2O2 contents in OsABA8ox2 mutant seeds and observed that the H2O2
levels in seeds of KO-3 were significantly lower than those of the WT (Figure 4A,B). We
postulated that the existence of ABA reduces the concentrations of H2O2 during accelerated
aging. Indeed, seeds primed with ABA exhibited a slight, albeit not significant, increase in
H2O2 content after 48 h of aging treatment (Figure 4A,B). Similarly, seeds pretreated with
DPI also showed reduced H2O2 accumulation in the embryo following aging treatment
(Figure 4A,B).

Consistent with OsABA8ox2 mutant seeds, seeds pretreated with ABA and DPI ex-
hibited higher survivability than the CK during accelerated aging treatment, particularly
notable when aged for 72 h, with over 30% survival compared to none in the CK group
(Figure 4C). Moreover, the germination rates, radicle growth, and early seedling establish-
ment of seeds pretreated with ABA and DPI were comparable to those of unaged ZH11
seeds (Figure 4D,E). These findings collectively suggest that a low concentration of ABA
reduces H2O2 concentrations and positively regulates seedling establishment in artificially
aged rice seeds. Furthermore, this study offers novel insights and strategies for breeding
and genetic enhancement aimed at improving seed storage longevity and aging tolerance.
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Figure 4. ABA and diphenyleneiodonium chloride (DPI) treatments reduce H2O2 content and
positively regulate the seedling establishment in artificially aged rice seeds. (A) Histochemical
staining with DAB to determine the localization of H2O2 in aged rice seeds. (B) Quantification of
H2O2 content after seed aging (48 h after aging treatment). (C) Survival rate of rice seeds pretreated
with ABA or DPI under different aging treatments. (D) Representative photographs of aged rice seeds
(C) compared with ZH11 without aging treatment during the imbibition process (48 h after sowing).
(E) The early seedling establishment phenotype of different samples (D) immediately following
germination (1 week after sowing). Values are the average of three repeats ± SE. The asterisk (**)
indicates a significant difference at p < 0.01 by Student’s t-test analysis.

3. Discussion

Seed aging represents an irreversible process characterized by the gradual decline of
seed vigor, including reduction in antioxidant systems, disruption of cellular membranes,
genetic integrity damage, lipid peroxidation, and protein degradation [29–32]. ROS serve as
key modulators of seed aging, initiating early bursts during accelerated aging, potentially
leading to dynamic changes in mitochondria and seed inactivation [8,33]. The plant
hormone ABA plays an indispensable role in regulating seed maturation and vigor [8,9,26].
Several studies have explored strategies to slow down seed aging and enhance seed
vigor by manipulating ABA and H2O2 synthesis, degradation, and downstream signaling
pathways [8,21,34,35]. Under artificial aging conditions, rice varieties with higher levels of
ABA and lower levels of H2O2 demonstrate enhanced resistance to aging [8]. In this study,
we provide new insights into the crosstalk between ABA and H2O2 during seed aging and
offer novel insights and novel approaches to enhance seed resistance against aging.

Prolonged storage under high-temperature and high-humidity conditions results in
reduced seed quality and vigor, making seeds less viable after sowing [36–39]. Similarly,
our results demonstrate that seed aging during storage leads to decreased germination and
loss of seed vigor, which is irreversible (Figure 1). During accelerated aging, aged seeds
initially display suppressed germination, followed by radicle viability loss, and ultimately
complete inactivation (Figure 1A–C). This underscores the radicle’s heightened sensitivity
to aging stress, experiencing greater damage than the coleoptile. Histochemical staining
and H2O2 quantification in aged rice seeds provide insights into this phenomenon, with
increased H2O2 accumulation observed in the embryo, particularly in the radicle (Figure 2).
This research reinforces the potential of ROS scavenging to enhance seed resistance against
aging [21,40,41].
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Our findings suggest that the regulation of seed vigor by H2O2 in rice seeds may be
linked to the ABA degradation pathway, a cross-talk often associated with plant growth,
development, and stress responses [8,10–17]. Under aging treatment, OsABA8ox2 was
significantly induced, leading to decreased ABA content [8] and increased H2O2 content
(Figure 2). Subsequent validation of OsABA8ox2 functionality through transgenic lines
revealed that overexpression of OsABA8ox2 reduced ABA content and conferred aging
tolerance to transgenic seeds. Conversely, seeds of OsABA8ox2 mutants or those pretreated
with ABA and DPI exhibited lower H2O2 levels and increased resistance to aging, resulting
in more robust early seedling establishment (Figure 3). Overall, these findings suggest
that manipulating H2O2 scavenging, particularly in the radicle, and modulating the ABA
degradation pathway through OsABA8ox2 represent effective strategies to enhance seed
resistance against aging. In addition, pretreatment with exogenous ABA or ROS scavengers
is a simple and effective method to enhance seed resistance to aging.

Some factors in the ABA signaling pathway have been demonstrated to participate
in seed aging [34,42,43]. For example, the extreme alleles of abscisic acid insensitive 3
(ABI3), a crucial downstream component of ABA signaling, have been found to severely
compromise seed longevity and vigor, while the ABA biosynthesis mutant abscisic acid
deficient 1 also exhibits reduced traits [42,43]. Additionally, the bZIP transcription factor
encoded by ABSCISIC ACID INSENSITIVE 5 (ABI5) serves as a key regulator of seed
maturation and vigor in legumes [34]. These findings, along with those of the present
study, significantly enhance our understanding of the molecular mechanisms underlying
seed-aging regulation. However, identifying the specific ABA signal and elucidating the
mechanism by which ABA regulates seed aging through the ROS signaling pathway are
key areas for our future research.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Rice variety ZH11 (O. sativa cv. Zhong Hua 11) was used in this study. OsABA8ox2
mutants KO-3 and KO-11 and overexpression line OE-26 were as reported previously [27].
All varieties were cultivated in paddy fields at Hunan Agricultural University during the
rice-growing season and were harvested simultaneously 40 days after flowering, then dried
in sunlight for one week. Afterward, the rice seeds underwent an accelerated seed-aging
test following a three-month equilibration period at room temperature. Upon germination,
all germinated rice seeds were transferred to soil and cultivated in greenhouses under
a photoperiod of 16 h light and 8 h dark at 25 ◦C. After one week, the rates of seedling
establishment were quantified as the percentage of germinated seeds that successfully
developed into established seedlings.

4.2. Accelerated Seed-Aging Test

The accelerated seed-aging procedure followed the method outlined by Wang et al. [8].
Dry seeds were subjected to aging in a tightly closed container maintained at 100% relative
humidity and a temperature of 45 ◦C. For germination analysis, a minimum of 25 aged
seeds were selected and placed on moistened filter paper in darkness at 30 ◦C. Germination
was scored based on a ≥1 mm coleoptile emergence. The germination rates of seeds were
recorded daily. Germination ratio (%) = number of germinated seeds/total number of
seeds × 100%. Each treatment was replicated three times, and the data were subjected to
statistical analysis.

4.3. Histochemical Staining and Quantification of H2O2

Aged seeds were imbibed in 0.1% 3,3′-Diaminobenzidine (DAB; adjusted to pH 6.0
with HCl) for 3 h at 25 ◦C in darkness. Afterward, aged seeds were rinsed three times with
deionized water, and the staining was scanned using an EPSON V700 Scanner (EPSON
(China) Co., Ltd., Beijing, China). H2O2 levels were measured using H2O2 reagent kits
(Beijing Solarbio Science & Technology Co., Ltd., Beijing, China) following the manufac-
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turer’s instructions. A total of 25 embryos (about 20 mg) were homogenized and mixed in
500 µL lysis buffer. After centrifuging for 5 min at 4 ◦C at 12,000× g, 250 µL of supernatant
was blended and homogenized with 25 µL detection reagent 2 and 50 µL detection reagent
3. After centrifuging for 5 min at 4 ◦C at 12,000× g, the supernatant was discarded, and
250 µL detection reagent 4 was added to the precipitate. After dissolution, it was used to
detect H2O2 levels. H2O2 was detected at 415 nm and the absolute amount was calculated
based on a standard curve.

4.4. ABA and DPI Pretreatments

For seed pretreatment method, seeds were initially surface-disinfected with 5% NaClO
and subsequently rinsed multiple times with deionized water. Seeds were then immersed
in 10 µM ABA or 20 µM DPI for a duration of 4 h at 4 ◦C. Seeds that were soaked solely in
deionized water served as the control (CK). After pretreatment, the seeds were air-dried in
a shaded area at room temperature, then sealed in polyethylene bags, and stored at 4 ◦C
for further experimentation.

4.5. ABA Measurement

The quantification of ABA contents was conducted by Wuhan MetWare Biotechnology
Co., Ltd. (Wuhan, China), as previously described [27]. Briefly, fifty seeds were rapidly
frozen in liquid nitrogen and ground into a fine powder. Subsequently, 50 mg of the
powdered sample was utilized for hormone extraction, using a mixture of methanol, water,
and formic acid in the ratio of 15:4:1. The combined extracts were then evaporated to
dryness under a stream of nitrogen gas and redissolved in 80% methanol. The resulting
sample extracts were filtered and analyzed using an LC-ESI-MS/MS system (consisting of
an HPLC Shim-pack UFLC SHIMADZU CBM30A system coupled with an MS Applied
Biosystems 6500 Triple Quadrupole). The internal standards of 2H6-ABA were employed
in this study for accurate quantification.

4.6. Seed Viability

The viability of seeds was estimated using 2,3,5-triphenyltetrazolium chloride (TTC)
staining. For TTC staining, after incubation in water for 12 and 48 h, 30 aged and unaged
seeds were selected and stained in 0.5% TTC and kept in the dark at 35 ◦C for 3 h, and then
washed three times with water. Subsequently, the seeds were scanned using an EPSON
V700 Scanner.
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