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Abstract: The tomato as a raw material for processing is globally important and is pivotal in dietary
and agronomic research due to its nutritional, economic, and health significance. This study explored
the potential of machine learning (ML) for predicting tomato quality, utilizing data from 48 cultivars
and 28 locations in Hungary over 5 seasons. It focused on ◦Brix, lycopene content, and colour (a/b
ratio) using extreme gradient boosting (XGBoost) and artificial neural network (ANN) models. The
results revealed that XGBoost consistently outperformed ANN, achieving high accuracy in predicting
◦Brix (R² = 0.98, RMSE = 0.07) and lycopene content (R² = 0.87, RMSE = 0.61), and excelling in colour
prediction (a/b ratio) with a R² of 0.93 and RMSE of 0.03. ANN lagged behind particularly in colour
prediction, showing a negative R² value of −0.35. Shapley additive explanation’s (SHAP) summary
plot analysis indicated that both models are effective in predicting ◦Brix and lycopene content in
tomatoes, highlighting different aspects of the data. SHAP analysis highlighted the models’ efficiency
(especially in ◦Brix and lycopene predictions) and underscored the significant influence of cultivar
choice and environmental factors like climate and soil. These findings emphasize the importance of
selecting and fine-tuning the appropriate ML model for enhancing precision agriculture, underlining
XGBoost’s superiority in handling complex agronomic data for quality assessment.

Keywords: tomato quality; extreme gradient boosting; artificial neural network; prediction; shapley
additive explanations

1. Introduction

Tomato (Solanum lycopersicum L.), as one of the world’s paramount vegetable crops,
is an important component of the global diet. It is one of the focal points of agronomic
research due to its nutritional, economic, and health significance, and is also recognized for
its culinary versatility, since the fruits are an abundant source of nutrients and bioactive
compounds [1–5]. During the ripening process of tomatoes, a series of dramatic changes in
metabolic pathway activities occur, fundamentally shaping the appearance and internal
quality of the fruit [6]. Among the pivotal attributes of tomatoes that result from these
alterations are their Brix value, lycopene content, and the indicative fruit colour.

The Brix degree (◦Brix) is a prominent indicator of soluble solids content, mainly rep-
resenting sugar concentration in juice. High ◦Brix values typically correspond to a sweeter
taste and significantly influence overall flavour intensity, which aligns with consumer
preferences in both commercial and domestic tomato cultivars [7–9]. The ◦Brix can be
easily measured by refractometer, but estimating it solely based on maturity varies with
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the cultivar [10]. This measurement is particularly valuable in the food industry for quality
control, ensuring consistency in products such as wines and sauces where sugar content is
critical for taste and preservation [11].

Lycopene, a potent antioxidant and the primary carotenoid giving ripe tomatoes their
red hue, has been extensively studied for its health benefits. A plethora of research [12–15]
links lycopene intake to a reduced risk of chronic diseases like cardiovascular diseases and
cancer. Beyond its health attributes, lycopene also influences consumer acceptance, with its
content varying mainly due to factors like the tomato variety and environmental conditions
including temperature, light, and water supply [16,17]. While the lycopene content can
be roughly estimated based on fruit colour [18,19], precise measurements require more
complex and costly laboratory analyses [20–22].

The colour and uniformity of tomato fruit are fundamental factors that consumers
prioritize when assessing fruit quality. This visual attribute serves as the main determinant
in tomato-purchasing decisions, as the ever-evolving shade of tomatoes (transitioning
from green to deep red or even yellow based on the cultivar) act as vital visual cues.
These cues subsequently influence consumer selection, quality evaluations, and market
dynamics [23,24]. Consumers often associate specific colours with superior taste, higher
nutritional value, and freshness. In general, fruit colour can be measured by visual analysis
or different instrumental methods such as colorimetry, spectrophotometry, or a computer
vision system. In this context, the chromaticity ratio (a/b ratio) derived from colorimetric
data provides a quantifiable measure of the tomato’s colour balance, offering an objective
method to assess the shift in hue as tomatoes ripen, which is crucial for quality control and
breeding programs [25].

As the global population expands, the imperative to ensure consistent and high-quality
tomato yields becomes even more paramount. This challenge is magnified by the uncertain-
ties of climate change, which introduces threats such as droughts and rising temperatures,
emphasizing the need for innovative agricultural approaches [26,27]. Concurrently, the
technological advances of the digital age are furnishing the agricultural sector with expan-
sive datasets derived from a myriad of sources. As farmers globally not only harvest crops
but also glean invaluable data from their fields, there is a growing potential to harness this
information to refine crop and management strategies [28]. A key objective in agriculture is
to decrease production costs without compromising yield or quality [29]. Advancements
in computer science have popularized machine learning (ML) techniques, which utilize
features extracted from these datasets [30]. Such ML-driven insights can potentially revolu-
tionize farming practices, making them more efficient and sustainable as highlighted in
studies [31,32].

Two techniques have prominently emerged as viable contenders for agricultural data
processing: extreme gradient boosting (XGBoost) and artificial neural networks (ANNs).
XGBoost is a highly efficient gradient boosting framework, excelling in both classification
and regression tasks [33,34]. It stands out as an advanced gradient boosting decision tree
algorithm. Recognized for top performance, XGBoost is an open-source boosted tree toolkit,
appreciated for its ability to combine multiple tree models into a powerful learning frame-
work. Its proficiency in handling large-dimensional datasets, especially in gene expression
research, highlights its significance [35–38]. Concurrently, ANNs have gained widespread
recognition in the deep learning domain for their ability to process high-dimensional data
and extract meaningful features [30,39]. These features offer transformative insights, po-
tentially reshaping agricultural practices towards sustainability. Particularly in the field of
remote sensing, ANNs are routinely employed to forecast vegetation parameters and crop
yields, as demonstrated in studies [40–42]. However, the deployment of ANNs presents
certain challenges, such as optimizing the number and size of hidden layers, determining
the appropriate learning rate, the need for expansive training datasets, and confronting
issues like overfitting.

Thus, in the backdrop of these advancements, this study embarks on a dual-pronged
approach, harnessing the strengths of both XGBoost and ANNs to predict the quality
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metrics of tomatoes such as Brix, lycopene content, and fruit colour, the latter being
quantified through the a/b ratio in the Hunter Lab colour space. By comparing their
performances on a multi-year and multi-location dataset, this study aims to highlight the
predictive capabilities of XGBoost and ANN. This will provide crucial insights for upcoming
breeding initiatives and will make progress in ensuring tomato quality, especially in the
face of growing challenges.

2. Materials and Methods
2.1. Dataset Description

In this study, a comprehensive dataset was utilized encompassing physicochemical
characteristics and environmental factors across a diverse selection of tomato cultivars over
five consecutive growing seasons from 2017 to 2021. The dataset included observations of
48 cultivars and 28 locations (Loc) within Hungary.

The selection and distribution of cultivars varied annually, with 25 cultivars at
7 locations in 2017, 22 cultivars at 18 locations in 2018, 27 cultivars at 19 locations in
2019, 27 cultivars at 18 locations in 2020, and 26 cultivars at 15 locations in 2021. This
variability provided a rich dataset for analysing tomato quality traits under diverse envi-
ronmental conditions. For each cultivar–location combination within a given year, multiple
measurements were conducted on a random sample selection after harvesting on the same
day to assess the quality traits of the tomatoes, ensuring the robustness of the dataset. A
total of 28,747 individual measurements were recorded for each of the three main variables
of interest which were the ◦Brix (denoting water-soluble solids content (Brix)), lycopene
concentration, and fruit colour (quantified through the a/b ratio as a measure of colour
balance in the Hunter Lab colour space).

To understand the impact of meteorological factors on tomato cultivation, meticulous
records were analysed over growing seasons covering various climatic factors. These
records were sourced from the Operational Drought and Water Scarcity Management
System in Hungary (General Directorate of Water Management, Budapest, Hungary). This
database provided a comprehensive overview of the conditions for each growing season,
defined specifically as the period from 30 May to 30 August of each year, which is the
favourable and usual growing period for tomatoes in Hungary, covering mostly the period
from intensive vegetative growth to harvest. The number of days with temperatures
between 21 ◦C and 27 ◦C (T21_27) was noted, as this range is optimal for tomato growth.
Total precipitation (TotPrecip) during the growing season and the number of rainy days
(RainDays) were recorded to understand moisture availability. Additionally, the average
relative humidity (AvgRH) was monitored to assess the overall moisture content in the
air. The number of days with relative humidity within the 40% to 70% range (RH40_70)
was also tracked, being the ideal range for tomato cultivation. Furthermore, instances of
high humidity were observed, specifically days when the average daily relative humidity
exceeded 90% (RH_90+), as such conditions could adversely affect plant health. Alongside
these climatic factors, the soil type (SoilTyp) at each location was classified according to the
USDA soil classification system.

2.2. Measurement of Tomato Quality Traits

The physicochemical properties of tomatoes were assessed using state-of-the-art auto-
mated stations. Brix was measured by the SV01 from the Maselli Misure Quality Station
(2020 Maselli Misure S.p.A, Parma, Italy), which first processed the tomatoes into juice
followed by an automatic refractometric analysis to determine the water-soluble solids
content, presented on a temperature-compensated scale with a range from 0 to 10 Brix and
accuracy within ±0.15 Brix, adhering to the nD/Bx [43] standard. Lycopene content was
quantified via an automated spectrophotometric analysis, reporting concentration levels in
mg/100 g with measurement limits of 0 to 80 mg/100 g, an accuracy up to 0.5 mg/100 g,
and a repeatability ±0.25 mg/100 g. Additionally, fruit colour was assessed through spec-
trophotometric analysis measuring the colorimetric coordinates L, a, b, from which the
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chromaticity ratio (a/b ratio) was derived to evaluate the balance between red and yellow
hues, with a repeatability for X, Y, Z coordinates less than 0.07, ensuring consistency in the
colour assessment of the tomatoes.

2.3. Data Preprocessing

The dataset underwent several preprocessing steps to ensure data quality and facilitate
exploratory analysis. The initial preprocessing involved the transformation of categorical
attributes such as ‘Loc’, ‘Cultivar’, and ‘SoilTyp’. Each of these attributes were transformed
into one-hot encoded vectors to convert them into numeric representations suitable for
ML algorithms [44,45]. Then, the dataset’s integrity was assessed by quantifying missing
entries within each column. Missing values within numerical columns were imputed using
the respective column’s mean, while those in categorical columns were replaced with the
mode. This approach helped maintain the original distribution of the data and minimize
the distortion introduced by imputation. After clean-up occurred, an in-depth exploration
into the relationships between the different variables was conducted using a correlation
matrix visualized on a heatmap, utilizing the seaborn library.

2.4. Machine Learning Models
2.4.1. XGBoost Model

The XGBoost model is known for its efficiency in handling missing values and evalu-
ating feature importance based on gradient-boosted decision trees. This model iteratively
refines predictions by adding trees that minimize error [34]. To prepare the dataset for
time series predicting, lag features for the ‘Predicted Variable’ (i.e., Brix, lycopene, a/b
ratio) column were engineered, considering lag values from the previous one- to three-time
steps. A rolling mean (moving average) feature was computed for the ‘Predicted Variable’
column, with a window of three time points to capture temporal patterns and to smoothen
out short-term fluctuations [46]. The dataset was split into training and test subsets, em-
ploying a fivefold time series split method, partitioning the dataset into five sequential
time-based segments. Each segment is utilized once as the test set, while all previous
segments form the training set. This approach enables iterative training and validation of
the model on distinct portions of the dataset, thereby maintaining the integrity of temporal
sequences and avoiding leakages of future information during model training [47]. Each
feature subset underwent standardization using the StandardScaler method, ensuring zero
mean and unit variance. The XGBoost regression model was employed for the prediction
task. The model’s hyperparameters were optimized through grid search coupled with
threefold cross-validation. The hyperparameter grid encompassed various combinations of
‘n_estimators’, ‘max_depth’, ‘learning_rate’, ‘colsample_bytree’, and ‘gamma’ to minimize
the squared error. Once the optimal hyperparameters were identified, the model was
trained on the entirety of the training dataset and subsequently evaluated on the test set.
The performance was assessed using the R-squared value, root mean squared error (RMSE)
(1), and magnitude relative error (MRE) (2) where:

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 and (1)

MRE =
|yi − ŷi|
|yi|

(2)

n is the number of observations in the dataset,
yi is the actual value for the i-th observation,
ŷi is the predicted value for the i-th observation.

2.4.2. ANN Model

Artificial neural networks (ANNs), inspired by the human brain’s neural network,
excel in modelling complex non-linear data relationships [45]. For the ANN model, data
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was sorted chronologically based on the ‘Year’ column. To capture potential temporal
patterns, lag features were generated for the ‘Predicted Variable’ measurements spanning
three previous time points. Additionally, a three-time point rolling average was computed
to smoothen short-term fluctuations. The architecture of the model was determined through
hyperparameter tuning, which included the number of neurons, dropout rates, and learning
rates [48]. The network featured two hidden layers with a variable number of units,
dropout layers for regularization, and an output layer for predictions. A random search,
complemented by early stopping based on validation loss to prevent overfitting, facilitated
systematic hyperparameter exploration. The data was split into training and test subsets
using a fivefold time series split method, partitioning the dataset into five sequential time-
based segments ensuring a chronological division and preventing future data leakage
during the training process. Both training and test datasets were standardized to have zero
mean and unit variance using StandardScaler. The trained ANN was then evaluated on the
test set, with model performance evaluated using the R-squared value, RMSE, and MRE.

2.5. Feature Importance Analysis with SHAP

The SHAP (shapley additive explanation) value analysis, developed by Lundberg and
Lee [49], was utilized to highlight the impact of individual features on the predictions of
both XGBoost and ANN models. SHAP values measure each feature’s contribution to the
prediction by assessing their marginal contribution across all possible feature combinations.
For the XGBoost model, following optimization, SHAP analysis was conducted on features
including ‘Loc’, ‘Cultivar’, ‘SoilTyp’, ‘AvgT’, ‘T21_27’, ‘TotPrecip’, ‘RainDays’, ‘AvgRH’,
‘RH40_70’, and ‘RH_90+’. The data was standardized using the StandardScaler method
before computing the SHAP values for the training set, thus showcasing the average
contribution of each feature [50]. In the case of the ANN model, the training data was
adapted to be compatible with the SHAP library, employing the GradientExplainer method
to compute SHAP values for the same features. For both models, categorical features
such as ‘Loc’, ‘Cultivar’, and ‘SoilTyp’ required aggregation to assess their collective
importance. SHAP summary plots were generated to visualize the relative importance
and effect of each feature. These plots employed a dot plot format, where the x-axis
represented the magnitude of SHAP values, and the y-axis represented the features. A
dual-colour scheme was used, with red and blue indicating high and low feature values,
respectively, illustrating the directional influence of each feature on the model predictions.
The observed differences in the SHAP graphs between the XGBoost and ANN models can
be primarily attributed to their intrinsic architectural differences and the specific methods
used for SHAP value calculation. The XGBoost model operates within a gradient boosting
framework and utilizes decision trees, facilitating a more straightforward computation of
SHAP values by assessing the impact of each feature across an ensemble of trees. In contrast,
the ANN model, comprising a complex network of neurons with non-linear activations,
necessitates the use of approximation methods such as the SHAP. GradientExplainer makes
the calculation of SHAP values more intricate. This complexity contributes to the variations
observed in the visual representations of feature importances in the SHAP graphs for
each model.

3. Results
3.1. Correlation Heatmap

The generated correlation heatmap offers a comprehensive insight into the linear
relationships between the climatic variables, Brix, lycopene and a/b ratio (Figure 1). The
intensity and direction of relationships are visually represented through a spectrum ranging
from cool blue for negative correlations to warm red for positive ones, a method validated
by Waskom [51]. Notably, the heatmap reveals a significant positive correlation between
‘AvgT’ (average temperature) and ‘T21_27’ (number of days with temperatures between
21 ◦C and 27 ◦C), suggesting that higher average temperatures during growing seasons of-
ten correlate with an increased number of days in the optimal temperature range for growth.
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Moreover, ‘TotPrecip’ (total precipitation) and ‘RainDays’ (number of rainy days) show a
strong alignment, underscoring the intuitive link between increased rainy days and higher
total precipitation, a key factor in agricultural water resource management and irrigation
strategies. Conversely, an inverse relationship is observed between ‘AvgRH’ (average
relative humidity) and ‘RH40_70’ (days with 40% to 70% humidity), indicating that seasons
with higher overall humidity tend to have fewer days within the ideal humidity range for
cultivation. The ‘a/b ratio’ also demonstrates notable correlations with several climatic
parameters. All eight meteorological variables were incorporated as independent factors in
our predictive models, aiming to provide comprehensive insights into the influences on
fruit quality and yield.
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3.2. Model Performance
3.2.1. Brix

The developed algorithms exhibited a high degree of accuracy when estimating the
Brix values (Figure 2). The XGBoost model yields an impressively robust R2 value of 0.98
and low RMSE of 0.07. Such results not only vouch for the XGBoost algorithm’s capability
but also highlight the significance of the chosen features in predicting Brix values from
other climatic and quality variables. On the other hand, the ANN model resulted in an R2

of 0.89 and RMSE of 0.17, marking its good performance in intricate predictive modelling
scenarios. The presented scatter plots from the two distinct models provide insights
into their performance efficacy in predicting Brix values. Both plots display a significant
concentration of data points around the black line representing x = y, highlighting the
commendable accuracy of both models. For the XGBoost model and the ANN model, the
percentage of predictions deviating less than 5% are 97% and 89%. Those deviating between
5% and 10% were 2.6% and 8.4%, respectively, and those deviating between 10% and 15%
were 0.4% and 1.4%. Those deviating more than 15% are 0.06% and 1.12%. It is noteworthy
that a predominant cluster of data points for both models lie within the 5% error margin,
signifying that the model predictions are not only accurate but also consistent. These
statistics underscore the models’ competence in closely estimating the actual water-soluble
solid content, despite some error margins which can be expected in predictive modelling.

The MRE graph in Figure 3 provided a visual assessment of the prediction errors
made by the XGBoost and ANN models in estimating Brix values. According to Figure 3A,
the MRE for the XGBoost model was as low as approximately 0.25% in some intervals,
indicating high predictive accuracy. However, it reached upwards of 2% in others, sug-
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gesting a reasonable predictive performance overall. On the other hand, the second graph
demonstrated the MRE for the ANN model, which ranged significantly from approximately
0.5% to nearly 7%. While both models showed areas of agreement between actual and
predicted Brix values, the ANN model exhibited higher variability in prediction accuracy.
This variability suggested that, in this specific application, the XGBoost model might have
offered more consistent predictions compared to the ANN model.
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3.2.2. Lycopene

It is represented in the graphs that a high degree of correlation was exhibited with
predicted and actual lycopene contents for both algorithms (Figure 4). The XGBoost
model yielded an R2 value of 0.87 and a RMSE value of 0.61, accounting for 87% of the
variance in observed lycopene content. In contrast, the ANN model had an R2 of 0.84
and a RMSE of 0.86, attesting to its substantial explanatory capability. While both models
exhibited commendable accuracy in predicting the lycopene content, minor inconsistencies
were observed. The line representing ideal prediction, where predicted values coincide
with actual measurements, serves as a benchmark for accuracy. It was revealed that a
significant proportion of predictions from both models lie within the 10% deviation margin,
underscoring their precision. More specifically, for the XGBoost model and the ANN model,
the percentage of predictions deviating less than 5% were 84.55% and 86.45%, respectively,
and predictions that deviated between 5% and 10% were observed to be 10.31% and 10.28%,
respectively. Those that fell between 10% and 15% deviation were 4.81% and 1.96%, and
finally, predictions that deviated more than 15% were at 0.34% and 1.31%.

The MRE graph in Figure 5 revealed fluctuations in prediction accuracy across the
dataset. Comparatively, the XGBoost model demonstrated a more stable performance, with
most data groups maintaining an MRE below 4%, suggesting generally robust predictive
accuracy. On the other hand, the ANN model, as depicted in Figure 5B, exhibited higher
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variability in its MRE, oscillating across different values and suggesting varying degrees
of predictive accuracy. Notably, some segments exhibited a relatively high MRE, peaking
just below 6%. The bar representations of actual versus predicted lycopene values in both
graphs were closely aligned, indicating reasonable predictive capabilities. The XGBoost
model presented slightly superior performance in terms of consistency and reduced error.
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(n = 28,474).
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3.2.3. a/b ratio

The XGBoost model demonstrated a high degree of accuracy, achieving a R² value
of 0.93 and a RMSE of 0.03, indicating a strong fit to the data (Figure 6A). In contrast, the
ANN model yielded a higher RMSE of 0.138. While this suggested a reasonable proximity
of predictions to actual observations, the model’s negative R² value of −0.35 indicated a
poor fit to the dataset. This finding suggested that either the current ANN model was
not optimal for this dataset, or there were underlying issues with either the dataset or its
processing. In terms of prediction deviation, 99.45% of predictions had been within 5% of
the actual values for the XGBoost model, while only 0.42%, 0.13%, and 0.00% had deviated
by 5–10%, 10–15%, and over 15%, respectively. This indicated a high level of accuracy
for most predictions. On the other hand, the ANN model had shown larger deviations:
81.29% of predictions had been within 5%, and 13.32%, 2.93%, and 2.47% had deviated
by 5–10%, 10–15%, and over 15%, respectively. Notably, the ANN model had displayed
significant deviations beyond the ±5% and ±10% margins (Figure 6B), suggesting areas of
unreliability. It is worth noting that despite the moderate correlation observed in the ANN
model indicating a positive linear relationship between observed and predicted values, the
negative R² value pointed to its failure in adequately fitting the variance in the data. This
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discrepancy underscored the importance of comprehensive evaluation metrics in model
assessment. The RMSE of 0.138, while seemingly small, was significant if the dependent
variable in the dataset exhibited low variability. This magnitude of RMSE reflected the
fact that ANN model’s predictions were, on average, 0.138 units away from the actual
values, leading to consistent and notable inaccuracies. Thus, the practical utility of the
ANN model in this context was limited, as evidenced by its negative R² value, despite a
moderate correlation.
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Figure 6. Actual vs. predicted a/b ratio utilizing (A) XGBoost and (B) ANN models. Black solid line
indicates perfect prediction, meaning that y = x. Red short-dashed lines, black dashed lines, and red
long-dashed lines indicate ± 5, 10, and 15% deviation from the y = x line, respectively (n = 28,474).

In our analysis, the XGBoost model demonstrated satisfactory predictive performance.
Its MRE fluctuated but remained relatively low, peaking slightly above 0.8% (Figure 7A). In
contrast, the ANN model exhibited significantly greater variability in its predictions. The
MRE of the ANN model reached as high as approximately 12%, indicating that, on average,
its predictions deviated by a maximum of 12% from the actual values. Although the bar
representations of both actual and predicted a/b ratio values in the two graphs suggested a
decent level of predictive accuracy, the XGBoost model markedly outperformed the ANN
model in terms of prediction fidelity and consistency.
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3.3. SHAP
3.3.1. Brix

Noticeable differences were observed in the importance of features and their effects
on the models’ predictions as a result of the conducted comparative analysis of the SHAP
summary plots for the XGBoost and ANN models (Figure 8). The most important difference
between the SHAP plots of the two ML model was that positive feature values contributed
to mainly positive SHAP values in the ANN model, but were sorted differently for the
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XGBoost. The ‘Cultivar’ feature was paramount in the XGBoost model, displaying a broad
range of SHAP values that are both positive and negative, indicating a robust association
between certain cultivars and elevated Brix levels. This suggested the significance of genetic
attributes in enhancing water soluble solids content. The features related to humidity such
as ‘RH40_70’ and ‘AvgRH’ showed a substantial spread of SHAP values across the x-axis,
suggesting variable effects on Brix prediction, where both low and high relative humidity
levels could either positively or negatively impact the accumulation of water-soluble solids
in fruits, contingent upon other interacting variables. In contrast, in the ANN model
the plot revealed a consistent pattern: higher feature values are invariably associated
with positive SHAP values, while lower feature values correspond to negative SHAP
values. This suggests a monotonic behaviour where the magnitude of a feature’s value
is directly proportional to its impact on the output of the model. The ‘Cultivar’ feature
demonstrated a more uniform effect across the entire dataset, with a tendency toward
positive contributions, reflecting its significant and consistent influence on the model’s
prediction of the Brix. Similarly, the SHAP values for ‘Loc’ and ‘SoilTyp’ indicate that
geographical location and soil type are influential factors in predicting Brix levels, with
higher and lower values of these features consistently impacting the model’s output. The
variable ‘Year’ also emerged as a significant temporal factor in the ANN model, potentially
capturing the effects of varying climatic conditions across years, indicative of the model’s
capability to assimilate temporal dynamics into its predictive mechanism. The SHAP
analysis showed that the XGBoost model attributed more importance to ‘AvgT’ than to
‘TotPrecip’. Contrastingly, the effect of ‘TotPrecip’ on the prediction of Brix was important
in the ANN model. However, the ways in which these factors influenced Brix predictions
in each model differed, possibly reflecting inherent differences in data assumptions and the
models’ strategies for integrating features.
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3.3.2. Lycopene

The SHAP summary plots for the XGBoost and ANN models provided valuable
insights into the determinants of lycopene content in tomato fruits (Figure 9). The analysis
of the XGBoost model revealed that the ‘Cultivar’ and ‘RH40_70’ features had a significant
impact on the model’s predictions of lycopene content. The ‘Cultivar’ feature showed
a wide spread of SHAP values, indicating that different cultivars had varying levels of
influence on the lycopene prediction. This suggested a complex, potentially non-linear
relationship with the target variable. Variable ‘RH40_70’ showed a more concentrated
range of SHAP values, suggesting a consistent but less influential effect on the model’s
predictions. Other features were represented with SHAP values clustered closer to the
centre, implying a more moderate impact on the lycopene content prediction. For the
ANN, the ‘Cultivar’ feature exhibited the most substantial influence on the model’s output
with a broad spread of dots, indicating that the influence was more positive than negative.
This implied a complex interplay where certain cultivars could have had a substantial
impact, either augmenting or diminishing the potential lycopene content determined by
genetic background. Although the general directionality of feature values and their impact
on the model’s predictions might have suggested a monotonic pattern, the spread and
distribution of the SHAP values did not necessarily imply a linear relationship but rather a
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consistent pattern recognized by the neural network where certain features were favourable
for lycopene production. The colour gradient added another layer of interpretability. For
instance, the XGBoost plot showed that both high and low values of ‘AvgT’ did not exhibit
simple linear relationships with lycopene. Instead, its impact was nuanced, with both
high and low values influencing predictions in both positive and negative directions. This
complexity may have mirrored how biological processes formed agricultural crops in
response to environmental factors. Additionally, temporal trends reflected in the ‘Year’
feature’s SHAP values could have pointed to evolving agricultural practices or climatic
shifts over time, further highlighting the multifaceted nature of lycopene biosynthesis.
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3.3.3. a/b ratio

Examining the SHAP summary plots of the two ML models that had been designed
to predict tomato fruit colour values (particularly the a/b ratio), distinct patterns of feature
influence had emerged (Figure 10). The ‘Year’ feature in the XGBoost model had exhibited
a high distancing of SHAP values, with clusters on both the positive and negative sides
of the zero line, indicating a variable influence on the model’s prediction with some years
contributing to an increase and others to a decrease in the predicted a/b ratio. The ‘Cultivar’
feature exhibited a unidirectional effect, with a pronounced aggregation of its SHAP values
on the positive side, indicating a uniform contribution to the increase in the model’s predicted
a/b ratio. Notably, this increase is predominantly associated with the lower encoded values
of ‘Cultivar’, as indicated by the abundance of blue points. Conversely, ‘TotPrecip’ was pre-
dominantly associated with decreases in the a/b ratio, suggesting a positive relationship. For
the ANN model, interpreting the SHAP values became more challenging due to the negative
R2 score. The model had predominantly exhibited negative SHAP values for features such
as ‘Cultivar’, ‘SoilTyp’, and ‘RH40_70’. These consistently downward predictions indicated
that these features often reduced the predicted value compared to the model’s baseline. The
dominance of negative SHAP values and the lack of variation in SHAP value direction, unlike
the variability observed in the XGBoost model, raised concerns about potential overfitting,
insufficient feature representation, or inadequate network architecture to capture the complex-
ities of the dataset. Furthermore, the ANN’s poor performance metric, as highlighted by the
negative R² score, implied that the model was less informative than a simple average of the
target variable, suggesting that the model’s internal representations and learned weights did
not generalize well to the data’s underlying structure.
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4. Discussion
4.1. Correlation Heatmap

The correlation heatmap provided an invaluable visual summary of the intricate
interrelationships among climatic variables, Brix, lycopene, and a/b ratio in tomato fruits.
The strong positive association between ‘AvgT’ and ‘T21_27’ underscored the synchronicity
of average seasonal temperatures with the frequency of days experiencing temperatures
between 21 and 27 ◦C. This relationship is pivotal, as temperatures within this range
were known to be conducive for the optimal growth of tomato plants and could influence
various biochemical processes, including the synthesis of sugars and pigments [52]. Close
alignment was found between ‘TotPrecip’ and ‘RainDays’, affirming the notion that seasons
with more accumulated rainfall were characterized by a higher number of rainy days.
Excessive rainfall, especially during the fruit development stage, could influence fruit
texture and water content, and could even lead to conditions such as fruit cracking [53]. As
was expected, an inverse correlation was observed between ‘AvgRH’ and ‘RH40_70’ and
could be indicative of specific climatic patterns affecting the impact of certain stresses. A
season with consistently high humidity might have had fewer fluctuations, resulting in
fewer days with humidity levels within the 40% to 70% range. Such patterns could influence
plant transpiration rates, nutrient uptake, and susceptibility to certain diseases [54]. High
humidity levels might reduce transpiration rates, leading to an accumulation of sugars in
the fruit, thereby elevating the Brix values [55], however, no correlation was found between
Brix and RH_90+. It is well-established that external factors can modulate the synthesis
of pigments and antioxidants in tomatoes [56,57]. By contrast, there was no significant
correlation revealed between climatic factors and Brix or lycopene content. Instead, the
a/b ratio correlated significantly with T21_27, and moderate relationships were indicated
with AvgT, RainDays, and RH_90+.

4.2. Model Performance
4.2.1. Brix

The prediction of water-soluble solids content, which is an important quality trait for
the food and beverage sector, was effectively handled by our ML models [11]. The XGBoost
model demonstrated slightly superior performance, attributed to its gradient boosting
mechanism which effectively handle linear and non-linear relationships, missing values,
outliers, and diverse data types. Conversely, the ANN showcased robustness in capturing
intricate patterns in multi-dimensional data. Its performance in predicting Brix values,
though substantial, suggested limitations in capturing certain complexities, unlike XGBoost.
This research built upon previous findings such as Silva et al. [58], who used a global
climate model and highlighted the significant impact of extreme climatic conditions (like
increased heat and dry stress) on tomato quality. These conditions were crucial factors that
could potentially enhance the accuracy of ML predictions. Complementing this, Zuo [59]
demonstrated the use of visual datasets in tomato quality grading using ML and image
processing, and Égei et al. [60] revealed the efficacy of VIS-NIR spectroscopy in determining
soluble solids content applying partial least square regression (PLSR) model obtaining R2

of 0.72 and 0.88 for calibration and validation, respectively. Notably, our models, derived
from climatic and environmental data using more cost-effective methods, amplified their
potential for broader, non-destructive applications. The significance of this approach was
highlighted by comparing it with earlier works. For instance, Ecarnot et al. [61] reported a
R² of 0.86 using a portable VIS-NIR spectrometer for the rapid assessment of tomato Brix,
whereas our refined ML approaches demonstrated greater precision. Additionally, the non-
destructive Brix prediction model by Gomes et al. [62,63] showed a R² of 0.95 and RMSE of
1.34 using PLSR, and a R² of 0.91 and RMSE of 1.36 using principal component analysis
(PCA), underscoring the enhanced efficacy of our ML methods (especially regarding RMSE).
Ultimately, the significant aggregation of predictions within the 5% error margin for both
models highlighted their practical value for predicting tomato quality in relation to climatic
conditions, demonstrating their potential for aiding in long-term agricultural planning
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and ensuring consistent product quality over time. The minimal inaccuracies observed,
particularly for values scattered in brackets with higher error, further attested to the
robustness and reliability of these models.

4.2.2. Lycopene

Lycopene content is a pivotal component in determining the nutritive and organoleptic
qualities of tomatoes. In our analysis, both the XGBoost and ANN models demonstrated
a significant positive correlation between the predicted and actual values of lycopene
content, with R² values of 0.87 for XGBoost and 0.84 for ANN. These figures indicated
a strong correlation, aligning with previous studies that highlighted the effectiveness of
ML in agricultural data analysis [64–66]. The XGBoost model, traditionally renowned for
handling structured/tabular data [34], showed a slightly better performance with a RMSE
of 0.61, compared to the ANN model’s RMSE of 0.86. This can be attributed to its scalability
and capability of handling various types of prediction problems, including its resilience
against overfitting and ability to implicitly handle missing values. Conversely, ANNs are
known for their versatility in handling complex, non-linear data patterns [67,68]. Although
the ANN model here showed a marginally lower precision than XGBoost, it is important to
consider that its performance can be influenced by factors such as architecture design and
the number of layers. The high percentage of predictions within 10% deviation from actual
values (84.55% for XGBoost and 86.45% for ANN) underscored the practical applicability
of these models in precision agriculture, particularly for quality control and breeding
programs [69]. Liu et al. [70] utilized methods including partial least squares (PLS), least
squares-support vector machines (LS-SVM), and back propagation neural network (BPNN)
to predict lycopene content from spectral data, reporting R² values of 0.50, 0.91, and 0.93,
respectively. Similarly, Sharma et al. [71] used linear multivariate regression (LMVR) to
predict lycopene content in tomatoes using physicochemical attributes, achieving a R² of
0.7. These findings highlighted the enhanced capabilities of modern XGBoost and ANN
models in accurately predicting lycopene content. Despite the impressive performance
of our models, it is crucial to acknowledge that all predictive tools are subject to inherent
limitations. Factors such as sample diversity, experimental conditions, and algorithmic
assumptions can affect their precision. Ultimately, both the XGBoost and ANN models
demonstrated significant potential for predicting lycopene content. However, due to its
simplicity and proven track record, the XGBoost model emerges as the more favourable
choice in our study.

4.2.3. a/b ratio

In our study, the comparison between XGBoost and ANN models in predicting the
a/b ratio in tomato cultivars offers significant insights. The XGBoost model, known for its
gradient boosting framework and ability to manage varied datasets [34], demonstrated a
substantial advantage. It not only showed higher accuracy, as evidenced by an impressive
R² value of 0.93 and a minimal RMSE of 0.03, but also greater consistency in predictions.
This indicates the model’s robustness in capturing the complex interplay of climatic and
soil parameters, benefiting from its adaptability and regularized boosting technique. Con-
versely, the ANN model’s performance was not satisfactory. It exhibited a negative R²
value of −0.35 and a higher RMSE of 0.138, suggesting significant issues in its fit to the
dataset and potential problems such as overfitting, inadequate training, or a mismatch in
model complexity [45,72]. The negative R² value suggested that the model’s predictions
were worse than a simple mean of the observed data, raising questions about its suitability
for this application. Additionally, the discrepancy between RMSE and R² could be due to
RMSE’s sensitivity to outliers, while R² reflects the overall variance explained [73]. Fur-
thermore, the prediction deviation analysis underscored the XGBoost model’s reliability,
with 99.45% of its predictions within a 5% margin of the actual values, demonstrating
its utility for precision-dependent applications [34]. In contrast, the ANN model showed
larger prediction deviations, with only 81.29% of predictions within the same margin,
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highlighting its limitations in high-precision applications [45]. The significance of RMSE in
datasets with low variability becomes particularly noteworthy—even a seemingly small
RMSE in the ANN model indicates consistent and notable inaccuracies [74]. Moreover,
the ANN model’s negative R² value underlines a fundamental inadequacy, suggesting its
inefficiency compared to even basic mean-based prediction models [73].

4.3. SHAP

Recognizing the critical role of interpretability in agricultural applications, our analysis
was extended to SHAP value computations. The SHAP summary plots of the two ML
models revealed the influence of different features on the prediction values. These plots
served as interpretable visual aids that can elucidate the complex inner workings of these
models, especially in a domain that requires a nuanced understanding of the interplay
between multiple factors [75].

4.3.1. Brix

Our analysis revealed distinguishing features between the XGBoost and ANN models
in predicting Brix values in tomato fruits, aligning with previous research that highlights
the sensitivity of ML models to feature selection and interaction [76]. The prominence of
‘Cultivar’ in the XGBoost model echoed the findings in [77,78] where it was reported that
the genetic makeup of a cultivar as a decisive factor in fruit soluble solids content. The
positive SHAP values associated with ‘Cultivar’ suggest that certain genetic characteristics
may be key drivers of Brix levels, potentially offering a pathway for targeted breeding
programs [79–81]. The variable impacts of relative humidity observed in our study are
consistent with the results published by Shin et al. [82], which demonstrated the com-
plex roles of relative humidity in tomato fruit development and ripening. Our findings
suggest that not only the range but also the duration of specific humidity levels could be
critical, warranting further investigation into their interactions with other environmental
factors. In contrast, while ANNs are inherently equipped to model complex, non-linear
interactions [83,84], the monotonic behaviour observed in the SHAP plot suggests that
the model may be capturing more direct and additive relationships between features and
the Brix for the given dataset. Such an observation suggests that the neural network has
adapted to the dataset’s structure by identifying and leveraging what appears to be a
straightforward linear association of features with the target variable. The distributions of
SHAP values for ‘Loc’ and ‘SoilTyp’ underscore the potential for ANN models to discern
subtle influences of edaphic and geographical factors, aligning with [85,86], which posit
that soil characteristics could profoundly affect fruit quality. For instance, certain soil types
may be consistently beneficial or detrimental to the dissolved sugar content, depending on
their nutrient profiles or water retention capacities. The role of the ‘Year’ variable in captur-
ing annual climatic variations provided an intriguing insight into the temporal dynamics
affecting Brix levels. As suggested in [87] and [88], shifts in agricultural practices, adoption
of new technologies, or even changing climate patterns can manifest in fluctuations in
the quality and nutritional content of crops. The distinct influences of meteorological
factors observed in our study add to a growing body of evidence that suggest weather
conditions play a pivotal role in Brix levels, which is also supported by the comprehensive
analysis of climate impacts on fruit nutrition value by Stewart and Ahmed [89]. While our
results provided valuable contributions to predictive modelling in agriculture, they also
emphasized the importance of considering the specific model’s interpretive framework.
The differences in feature importance between the XGBoost and ANN models could reflect
the indicate of fundamental differences in their data processing methodologies [90]. This
underlines the importance of interpretability and reliability in ML models, especially in
domains where decision making is closely tied to model outputs [91].
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4.3.2. Lycopene

The XGBoost model, except for the ‘Cultivar’ and ‘RH40_70’ features, demonstrated
a balanced feature influence with tight SHAP value clustering, suggesting a nuanced
consideration of feature contributions, akin to findings by Lundberg and Lee [49] on in-
terpretable ML models. Notably, the ‘Cultivar’ variable had stood out as a significant
determinant with a complex and non-linear influence on lycopene content, in line with
the research of Lundberg and Lee [92], which reported the subtleties of genetic factors
in crop quality predictions. Furthermore, the finding was in agreement with the work
of Bineau et al. [93], documenting the genetic diversity among tomato cultivars and its
impact on the accumulation of secondary metabolites. However, the broad distribution of
SHAP values for the ‘Cultivar’ feature within the ANN model likely signifies the model’s
ability to capture complex, non-linear interactions between this feature and the lycopene,
an aspect that mirrors the observations made by Wang et al. [94] regarding the capabilities
of deep learning in capturing intricate biological phenomena. The spread of SHAP values
for environmental features like ‘RH40_70’ and ‘Loc’ underscored the multifactorial nature
of lycopene synthesis, as suggested in [95], emphasizing the critical roles of both genetic
and environmental factors. This is further supported by [96–98], in which the influence of
specific environmental conditions on lycopene synthesis and preservation was noted. The
influence of the ‘AvgT’ on the lycopene content prediction potentially indicates adaptive
physiological responses to environmental stresses, aligning with [99] on plant stress biol-
ogy, where extreme temperature could be associated with either higher or lower lycopene
content. Temporal variability in lycopene content, signified by the ‘Year’ SHAP values,
could be indicative of the dynamic interplay between cultivation methods, environmental
shifts, and plant genetics over time. This observation aligns with the longitudinal studies
by Arah et al. [100], highlighting the evolutionary trajectories in agricultural practices and
post-harvest handling techniques. While these insights were compelling, a potential risk
of overfitting with the ANN model, as indicated by the extensive spread of SHAP values,
must be acknowledged. Further validation with independent datasets, as recommended
in [101], would be necessary to confirm the robustness of the findings. Additionally, inte-
grating multi-omics data, as discussed by Kang et al. [102], could enhance the interpretabil-
ity of the predictive models, offering a more holistic view of the factors influencing the
lycopene content.

4.3.3. a/b ratio

The observed variability in the SHAP values for the ‘Year’ feature within the XGBoost
model aligns with previous research that indicates temporal dynamics can significantly
affect agricultural outcomes [103]. The dispersion suggested that the impact of ‘Year’ on the
a/b chromaticity ratio was not linear and may be influenced by other interacting factors,
such as changing climate conditions or agricultural practices over time [104–106]. The
‘Cultivar’ feature’s consistent influence on increasing the a/b ratio, particularly at lower
feature values, confirmed the importance of genetic factors in determining tomato fruit
colour [107]. The positive pronounced aggregation of the SHAP values reflected a poten-
tially strong genotype–phenotype relationship, which has been widely documented in crop
quality traits [108]. In contrast, the ‘TotPrecip’ feature’s association with the a/b ratio may
be indicative of the dilution effect of precipitation on fruit colour concentration, a finding
that was supported by the work of Oh et al. [109], who noted that water availability could
lead to the dilution of phytochemicals in fruits. Additionally, precipitation can modulate
physiological processes in plants, impacting the synthesis and accumulation of pigments
responsible for colour, which in turn affected the a/b ratio as was supported in [110]. The
ANN model’s predominantly negative SHAP values and the accompanying negative R²
score present a stark contrast to the XGBoost model and raise questions about ANN’s
suitability for this task. This finding is particularly surprising regarding the increasing
reliance on ANN models in precision agriculture [111]. The consistent underperformance,
as indicated by the negative R² score, may be due to overfitting, which is a common chal-
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lenge with ANN models [112]. It is suggested that the network architecture may have not
been adequately optimized for the dataset. The lack of variation in the direction of SHAP
values for the ANN model contrasted sharply with the XGBoost model and suggested
that the former may not be capturing the true underlying data patterns. This discrepancy
emphasizes the need for a thorough cross-validation and hyperparameter tuning process,
which has been identified as a crucial step in model development [113,114]. Furthermore,
the negative R² score suggests that the ANN model’s predictive power was worse than a
naïve model, which would simply predict the average a/b ratio for all observations [115].

5. Future Work and Recommendations

To address limitations in our current models, a more comprehensive approach to
data collection and diversity could be implanted. By incorporating a broader spectrum of
climatic variables such as light intensity and quality and wind speed, we can provide a
deeper understanding of environmental impacts on tomato quality [116,117]. Furthermore,
by expanding the dataset to include a wider variety of tomato cultivars (like heirloom
or more hybrid varieties), we could allow for a more robust analysis of genetic factors
influencing Brix, lycopene, and a/b ratio [118,119].

Using advanced data preprocessing methods such as feature scaling normalization [101]
and non-linear transformations [120] could significantly improve our model’s accuracy. Addi-
tionally, the incorporation of anomaly detection methods [121] could help in identifying and
handling outliers, ensuring the reliability of the models.

For the ANN model, especially in predicting the a/b ratio, recalibration is needed.
Investigating various neural network architectures like deeper networks or recurrent neural
networks might help us capture temporal and complex interactions more efficiently [45].
Additionally, experimenting with different activation functions such as leaky rectified
linear function (LReL) [122] or optimization algorithms [123] may also enhance the model’s
performance. In the same way, for the XGBoost model, optimizing hyperparameters like
the learning rate, tree depth, and the number of trees can improve its performance [34].
Exploring feature interaction constraints [124] could be useful for understanding complex
data relationships better and improving the model’s performance.

In agricultural research (particularly predictive modelling) the exploration and imple-
mentation of diverse algorithms and methodologies hold significant potential. The idea of
hybrid models, notably the combination of XGBoost and ANNs, could offer a promising
research path. Such models could effectively integrate the feature interactions captured by
tree-based algorithms with the complex pattern recognition abilities of neural networks.
This approach aligns with ensemble techniques, as suggested by Shahhosseini et al. [125],
where combining multiple model predictions such as a weighted ensemble of XGBoost
and ANN enhances both stability and accuracy. Moreover, the concept of model stacking,
introduced by Wolpert [126], involves using the outputs of XGBoost and ANN as inputs
for a secondary model, possibly a simpler regression model, to enhance the accuracy of
predictions further.

Deep learning is known for its capability to handle large and complex datasets, and
stands as an effective strategy for capturing nonlinear interactions between environmental,
genetic, and temporal factors. Convolutional neural networks (CNNs) for example, could
be used to analyse satellite or field imagery in order to assess crop health and predict
quality traits [127]. Additionally, recurrent neural networks (RNNs), especially long short-
term memory (LSTM) networks, could be effective in modelling sequential data such as
time-series climatic data to predict crop quality attributes [128].

Unsupervised learning algorithms are not only capable of analysis but also of evalua-
tion. Clustering techniques like K-means or hierarchical clustering could give insights into
sub-populations or environmental conditions within agricultural data, as indicated in [129].
PCA can help reducing dataset complexity, highlighting key features, and boosts model
efficiency and interpretability as described in [130].
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ML in agriculture plays a key role as decision-supporting tool, helping farmers in
selecting appropriate cultivars and optimizing planting schedules by predicting important
factors such as Brix and lycopene content. This aligns with the findings of Lobell and
Gourdji [131], who highlighted the importance of predictive models in crop selection and
agricultural productivity. Moreover, considering the influence of climatic variables, these
models can assist in adapting farming practices to changing weather patterns. Tools de-
veloped from these models can predict the impact of anticipated climatic changes on crop
quality, thereby aiding in the development of proactive strategies, a concept reinforced
by Ray et al. [132] who emphasized the importance of climate-adaptive agricultural prac-
tices. Additionally, the substantial impact of climatic factors on tomato quality highlights
these models’ potential in studying the broader effects of climate change on agriculture.
Researchers and policymakers can use these models to project future trends in crop qual-
ity under various climate scenarios, aiding in forming mitigation strategies. This aspect
is supported by Challinor et al. [133], who emphasized the importance of modelling in
understanding climate change impacts on agriculture.

These findings highly valuable in the food industry as they can serve the development
of non-destructive quality assessment tools, especially for assessing Brix content, which
is essential for ensuring taste and quality [134]. Additionally, predictive models also play
a crucial role in maintaining product consistency, a key factor for consumer satisfaction
and brand reputation, by adjusting processing parameters, a point highlighted in [135].
Furthermore, the models from this study hold a promise in the potential application
beyond tomatoes. They could advantage a deeper understanding and optimization of
quality parameters across various agricultural products of other crops, as supported by
Liakos et al. [64], in showcasing the diverse applications of ML in agriculture.

6. Conclusions

These findings underscore the superior predictive capabilities of the XGBoost model
in the aforementioned scenarios and reveal limitations of the ANN model, especially in
predicting a/b ratio. The SHAP summary plot analysis shows that both models effectively
predict Brix values and lycopene content in tomatoes, but with different focal points. XG-
Boost emphasized the genetic makeup of cultivars and their interaction with environmental
factors, whereas the ANN model captures complex genetic interactions and direct feature
relationships. Additionally, our results highlighted the significant influence of temporal
factors, particularly ‘Year’, on the a/b chromaticity ratio, suggesting a complex interplay
with climatic conditions and agricultural practices. The limitations of the ANN model in
this aspect, as evidenced by its negative SHAP values and R² score, underline the necessity
of meticulous model selection, optimization, and validation in precision agriculture.
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