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Abstract: Global warming is increasing the frequency and intensity of heat waves and droughts.
One important phase in the life cycle of plants is seed germination. To date, the association of the
temperature and water potential thresholds of germination with seed traits has not been explored
in much detail. Therefore, we set up different temperature gradients (5–35 ◦C), water potential
gradients (−1.2–0 MPa), and temperature × water potential combinations for nine native plants
in the Loess Plateau region to clarify the temperature and water combinations suitable for their
germination. Meanwhile, we elucidated the temperature and water potential thresholds of the plants
and their correlations with the mean seed mass and flatness index by using the thermal time and
hydrotime models. According to our findings, the germination rate was positively correlated with
the germination percentage and water potential, with the former rising and the latter decreasing as
the temperature increased. Using the thermal time and hydrotime models, the seed germination
thresholds could be predicted accurately, and the germination thresholds of the studied species
varied with an increase in germination percentage. Moreover, temperature altered the impact of
water potential on the germination rate. Overall, the base water potential for germination, but not the
temperature threshold, was negatively correlated with mean seed mass and was lower for rounder
seeds than for longer seeds. This study contributes to improving our understanding of the seed
germination characteristics of typical plants and has important implications for the management and
vegetation restoration of degraded grasslands.

Keywords: seed germination; temperature; water potential; thermal time model; hydrotime model;
Loess Plateau

1. Introduction

Global climate change is associated with an increase in droughts and heat waves [1,2].
Global climate change may prevent, delay, or promote species regeneration from seeds,
which may have an impact on the dynamics of plant populations and the composition of
vegetation [3–5]. The impacts of climate change on plants have been extensively studied,
but less attention has been paid to how these changes may affect plant regeneration [4,6].
However, based on seed germination, environment has a significant impact on plant recruit-
ment [7–9]. Seed germination is an essential life history event in plants and can be affected
by a variety of environmental factors and their interactions, such as temperature, water
potential, salinity, pH, and depth of burial [10–13]. The two most important environmental
variables for seed germination and the ensuing growth of seedlings are thought to be tem-
perature and water potential [14,15]. Understanding how environmental influences affect
the germination of seeds can help one not only to understand and predict the ecological
adaptations of species, but also to develop effective restoration strategies [16–18].

One major environmental element that can control enzyme activity and either stim-
ulate or prevent the generation of hormones that influence seed germination is tempera-
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ture [15,19–21]. The germination responses of seed lots to temperature can be characterized
through three cardinal temperatures [22,23]: a base temperature (Tb), below which the
seeds do not germinate; an optimal temperature (To), at which the process proceeds at its
fastest pace; and a ceiling temperature (Tc), above which the process is stopped [24–26].
These cardinal temperatures, Tb, Tc, and To, are associated with the range of ecological
and geographic circumstances to which a particular species has evolved, and serve to
couple the timing of germination with favorable conditions for subsequent growth and
development [27,28]. In general, temperate-region seeds require lower temperatures than
tropical-region seeds, and wild species have lower temperature requirements than domesti-
cated plants [29–31]. Understanding the germination process when affected by temperature
can help in assessing the germination characteristics or the establishment potential among
range species, particularly in arid and semiarid regions [32], and can be used to iden-
tify the geographical areas appropriate to a species or genotype so it can germinate and
establish [33].

Another crucial environmental component for seed germination is the availability of
water [14,34]. In many parts of the world, increasing global climate change is predicted
to lead to an increase in aridity [35,36]. In general, the seed germination percentage de-
clines and mean germination time increases with decreasing water potential, and certain
species may retain a reasonably high germination percentage even at very low water
potential [37,38]. For example, large seeds can buffer seedlings from the negative effects
of drought, and they have an advantage in establishing plants under low-soil-moisture
conditions [39]. Furthermore, compared to species accustomed to humid settings, those
acclimated to dry habitats may be less susceptible to water stress during seed germina-
tion [15,40]. Bradford (1990) [41] developed a hydrotime model to show how decreased
water potential affects the progress of seed germination, which is used to assess germi-
nation rates at various water potentials in a way that is comparable to the thermal time
model [14,41]. This threshold model quantifies the hydrotime constant (θH in MPa h−1),
the threshold water potential for germination or inherent level of osmotic tolerance (Ψb in
MPa), and the uniformity of seed germination in the population (σΨ), i.e., these biological
parameters reflect seed vigor [42,43]. The hydrotime model hypothesizes that germination
rates, or the inverse of time to germination, are positively proportional to the degree to
which the water potential of the growing medium surpasses the base or threshold value
necessary for the seeds to germinate [44,45].

The most vital phase of plant development and the beginning point of a new popula-
tion is thought to be seed germination [14,19,46]. In addition, it is one of the more delicate
phases of life and can easily result in seed inactivation or failure of establishment [47]. For
example, seed germination is driven by environmental factors (especially climatic vari-
ables), such as temperature and humidity conditions in the seedbed, and it is related to seed
traits, such as size and shape [48]. Seed germination responds differently to temperature
and moisture availability in different species and/or populations [49], but few studies
incorporate seed traits (e.g., size, shape, etc.) when assessing the response of germination
to temperature and moisture effectiveness. The shape and size of seeds have a considerable
impact on the germination process and also affect the seed hardiness, vigor, and quantity
of stored carbohydrates, thus affecting the success or failure of the seedling [10,50–52].
According to theoretical research, flat, elongated seeds should germinate more frequently
than round seeds [53]. Moreover, when it comes to seed germination and seedling survival,
large-seeded species frequently have an advantage over small-seeded ones [54]. Seed char-
acteristics determine the dynamics of plant communities and shed light on how different
species have adapted to environmental constraints and community structure [55].

The Loess Plateau, which is located in northern China, is one of the most severely
eroded areas in the world [56] and lies in a typical arid and semiarid region [57]. The
ecosystem in this region is under threat of degradation due to long-term soil erosion
disturbance and drought stress, and natural vegetation regeneration and restoration are
effective ways to curb ecological degradation [58]. However, the hilly–gullied Loess Plateau
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region is characterized by an arid climate and water deficit, which are serious constraints
to vegetation restoration and ecological construction [59]. Therefore, understanding the
effects of environmental factors on seed germination would be useful for conservation and
restoration. The most crucial elements in seed germination and seedling establishment,
according to earlier research, are temperature and water potential [60]. However, not much
research has been conducted to date on the region’s base water potential and temperature
threshold—also referred to as the three cardinal temperatures—for seed germination [14,61].
In addition, it is unknown how base water potential, temperature threshold, and seed size
and shape relate to plant germination.

Therefore, we performed a series of laboratory experiments on nine plant species
from the hilly–gullied Loess Plateau region to address the following questions: (1) What
impact do temperature and water potential have individually and together on native
plant seed germination? (2) What is the base water potential and temperature threshold
for germination in these species? (3) How do various plants respond when it comes to
temperature and water stress during germination? (4) How do temperature and base water
potential thresholds for germination relate to seed traits (size, shape)? (5) What are the
appropriate temperature and moisture combinations for germination in these species?
In general, this study contributes to a deeper understanding of the impact of changes in
climatic variables (temperature, moisture) on the seed germination of plant populations
in the hilly–gullied Loess Plateau region; additionally, it increases our understanding
of the ecological adaptations of species and enables us to formulate effective strategies
for restoration.

2. Results
2.1. Germination Responses to Temperature

The germination rate and percentage of nine native plant species from the loess hilly
areas were significantly impacted by temperature. (p < 0.05, Figure 1). The germination
rate and percentage of all species generally exhibited a tendency to rise, and then, fall with
temperature (Figure 1). High or low temperatures inhibited the germination of different
species to different degrees, and the germination percentage and rate of the studied seeds
were higher at 15–30 ◦C than at 5–10 ◦C and 35 ◦C. For example, at 5 ◦C, only Artemisia
sacrorum and Periploca sepium germinated, and the seeds of the other species did not
germinate (Figure 1). Most species had low germination rates, except for some heat-tolerant
plants such as P. sepium and Linum usitatissmum (Figure 1). The estimations of Tb, To, and Tc
were extrapolated using the linear relationship between germination rate and temperature.
In addition, germination temperature thresholds were influenced by seed germination
percentage (g) and varied with germination percentage between species (Figure 2, Table
S1), making it difficult to determine a universal pattern. Linear increases and reductions
in the germination rates below and above the To were seen when the germination rates
for various percentiles were plotted versus temperature. Specifically, Lespedeza davurica
seeds could germinate in a variety of temperature ranges, whereas Bothriochloa ischaemum,
L. usitatissmum, and Sophora davidii had a smaller range of germination temperatures and
were more sensitive to temperature than the rest of the species. Figure 3 illustrates how
the thermal time model may be used to estimate seed germination thresholds (Figure 3)
more precisely. For most of the species under study, the goodness of fit between actual and
anticipated germination rates was above 80% (Figure 3). The nine species were split into
four distinct subgroups using heat maps or cluster analyses based on how the temperature
affected the germination rate and germination percentage (Figure 4A). Specifically, one
subgroup was P. sepium, which showed high tolerance for high temperatures, and another
subgroup included A. sacrorum, which was more tolerant to cold than the rest of the species.
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Figure 1. Percentage and rate (1/T50) of seed germination in nine species at seven different tempera-
tures. Different uppercase letters indicate that germination percentage differed significantly (p < 0.05)
between temperature treatments; Different lowercase letters indicate that germination rate (1/T50)
differed significantly (p < 0.05) between temperature treatments; (A) Artemisia scoparia, (B) Artemisia
giraldii, (C) Artemisia sacrorum, (D) Periploca sepium, (E) Bothriochloa ischaemum, (F) Patrinia scabiosifolia,
(G) Linum usitSatissimum, (H) Lespedeza davurica, (I) Sophora davidii.
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Figure 2. Linear regression of temperatures and percentages of germination (1/tg) in nine species at
various percentiles where tg is the time to reach a specific germination percentage (d); (A) Artemisia
scoparia, (B) Artemisia giraldii, (C) Artemisia sacrorum, (D) Periploca sepium, (E) Bothriochloa ischaemum,
(F) Patrinia scabiosifolia, (G) Linum usitatissimum, (H) Lespedeza davurica, (I) Sophora davidii.
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Figure 3. Linear fit of observed and predicted germination rates of nine species. The blue line
represents the fitted trend line of the observed germination rates to the predicted germination rates;
the dots represent the predicted germination rates (predicted by the thermal time model) for various
observed germination rates. (A) Artemisia scoparia, (B) Artemisia giraldii, (C) Artemisia sacrorum,
(D) Periploca sepium, (E) Bothriochloa ischaemum, (F) Patrinia scabiosifolia (G) Linum usitatissimum,
(H) Lespedeza davurica, (I) Sophora davidii.
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Figure 4. The clustering analysis of germination percentages and rates (1/T50) under different
treatments among nine species; (A) germination percentages and rates (1/T50) for temperature
treatments; (B) germination percentages and rates (1/T50) for water potential treatments.
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2.2. Germination Responses to the Water Potential

Moisture had a significant impact on the germination percentages and rates of nine na-
tive plants of the loess hilly regions (p < 0.05, Figure 5). Germination percentages and rates
decreased as water potential decreased; however, different plants responded to drought
stress differently. For example, the germination percentage of S. davidii reached more than
80% under all five water potential treatments, while Patrinia scabiosifolia’s germination
percentage and germination rate were close to 0 at −1.2 MPa (Figure 5). In addition,
S. davidii and L. usitatissmum had a wide range of tolerance to drought stress, with their
base water potentials lower than −2 MPa, while P. sepium had a very sensitive tolerance
to the water potentials, with a base water potential of about −1.3 MPa (Table S2). Linear
regression of the germination rate and water potential of the studied species revealed
that the germination rate was significantly positively correlated with the water potential
(Figure S1), and that the base water potential varied weakly with the germination rate (g)
(Figure S1, Table S2). As shown in Figure 6, the hydrotime model was well fitted for all
species, with a goodness of fit of more than 80% between observed and predicted germi-
nation rates for the vast majority of the studied species (Figure 6). Heat map or cluster
analysis divided the nine species into three different subgroups according to the response
of germination percentages and rates to water potential (Figure 4B). One subgroup was
P. scabiosifolia, B. ischaemum, and P. sepium, which showed weak drought tolerance, and
another subgroup was A. sacrorum, Artemisia giraldii, and Artemisia scoparia, which showed
high drought tolerance (Figure 4B).
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Figure 5. Percentage and rate (1/T50) of seed germination in nine species at five different wa-
ter potential treatments; Different uppercase letters indicate that germination percentage differed
significantly (p < 0.05) between water potential treatments; Different lowercase letters indicate
that germination rate (1/T50) differed significantly (p < 0.05) between water potential treatments;
(A) Artemisia scoparia, (B) Artemisia giraldii, (C) Artemisia sacrorum, (D) Periploca sepium, (E) Bothriochloa
ischaemum, (F) Patrinia scabiosifolia, (G) Linum usitatissimum, (H) Lespedeza davurica, (I) Sophora davidii.
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Figure 6. Linear fit of observed and predicted germination rates of nine species. The green line
represents the fitted trend line of the observed germination rates to the predicted germination rates;
the dots represent the predicted germination rates (predicted by the hydrotime model) for various
observed germination rates. (A) Artemisia scoparia, (B) Artemisia giraldii, (C) Artemisia sacrorum,
(D) Periploca sepium, (E) Bothriochloa ischaemum, (F) Patrinia scabiosifolia, (G) Linum usitatissimum,
(H) Lespedeza davurica, (I) Sophora davidii.

2.3. Germination Responses to the Interaction of Temperature and Water Potential

Moisture and temperature are determinants of seed germination, and these two factors
can individually or jointly affect germination percentage. The results of a two-way ANOVA
on the studied species showed that the interaction of Species × T, Species × Ψ, T × Ψ,
and Species × T × Ψ had a significant impact on the germination percentage (p < 0.001).
At the same temperature, the germination percentage of most species decreased with
decreasing water potential, but the response of different species to water potential varied
with temperature. For example, the inhibitory effect of drought stress on germination in
most species was more pronounced at 30 ◦C than at other temperatures (Figure 7). However,
at 15 ◦C, drought stress appeared to more significantly inhibit the germination of the heat-
tolerant P. sepium, B. ischaemum, and L. usitatissmum than that of the other species (Figure 7).
In addition, temperature can modify the effect of water potential on the germination
percentage; under the appropriate temperature, seeds can also achieve a high germination
percentage under low water potential. For example, the germination percentage of S. davidii
at −1.2 MPa also exceeded 80% at 20 ◦C (Figure 7). At all temperature levels, all species
except S. davidii had the highest germination percentage at 0 MPa (Figure 7). Meanwhile,
according to the analysis of the influences of temperature-and-water potential interactions
on seed germination, the optimal temperature and moisture combinations were as follows:
A. scoparia: 15 ◦C, 0 MPa; A. giraldii: 15 ◦C, 0 MPa; A. sacrorum: 25 ◦C, 0 MPa; P. sepium:
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30 ◦C, 0 MPa; B. ischaemum: 30 ◦C, 0 MPa; P. scabiosifolia: 30 ◦C, 0 MPa; L. usitatissmum:
20 ◦C, −0.3 MPa; L. davurica: 25 ◦C, 0 MPa; S. davidii: 25 ◦C, −0.6 MPa.
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2.4. Relationships between Germination Thresholds and Seed Traits

The temperature thresholds for seed germination varied among the nine tested species
(Table S1). Among them, the base temperature was the lowest in P. scabiosifolia and the
highest in B. ischaemum (Table S1). A linear fit of mean seed mass to Tb revealed a weak
positive correlation (Figure 8A), whereas there was a weak negative correlation between
FI and base temperature (Figure 8C). Among the tested species, the optimal germination
temperature was the lowest in L. davurica and the highest in P. sepium (Table S1). Meanwhile,
the optimal temperature was negatively correlated with mean seed mass and positively
correlated with FI, but the correlation was not significant (p > 0.05, Figure 8A,C). The ceiling
temperatures were lowest in P. scabiosifolia and highest in L. davurica (Table S1). Ceiling
temperature was not correlated with mean seed mass, while there was a positive correlation
with FI (Figure 8). The base water potential for germination also varied among species; it
was highest in P. sepium, lowest in S. davidii, and ranged from −1.33 MPa to −2.07 MPa
for the other species (Table S2). A significant negative relationship existed between base
water potential and mean seed mass (p < 0.05, Figure 8B), and larger seeds had lower base
water potentials than smaller seeds. In addition, the relationship between FI and base water
potential was positive (Figure 8D), i.e., round seeds had lower base water potentials than
elongated seeds.
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potential thresholds.

3. Discussion
3.1. Effects of Temperature and Water Potential and Their Interaction in Seed Germination

Seed germination is an irreversible process, and once germination begins, the seedling
is either self-perpetuating or dies [62]. The observation of seed radicle protrusion is a
common method used to determine seed germination [63]. In many studies it is a widely
accepted practice to use radicle protrusion greater than 2 mm as a criterion for determining
seed germination and then calculating germination rates because this method offers a stan-
dardized and measurable indicator of seed viability and potential for successful growth. It
is crucial to remember, nevertheless, that a radicle protrusion larger than 2 mm does not
always imply the development of a seedling or fully grown plant [64]. For instance, poor
circumstances like inadequate temperature, water, or nutrition availability may prevent
a seed with a projecting radicle from developing into a viable seedling [65]. Temperature
is an important factor affecting seed germination, and different plants germinate under
different temperature ranges and optimal temperatures [55,66]. Temperature can speed up
germination within a particular range, but extremes in temperature can hinder germina-
tion due to membrane permeability, membrane-binding activity, and the denaturation of
enzymes [67,68]. The probable explanation is that suitable temperatures facilitate water
uptake by the seed, enhance enzymatic processes and respiration, and store nutrients in a
soluble state that is easy to use [69]. Understanding the response of plants to temperature
not only helps us to understand their ecological adaptations, but also helps in developing
effective vegetation restoration strategies [70]. This study’s findings on the species-specific
responses of seed germination to temperature are in line with other research, as various
species have different optimal temperatures and temperature ranges [71]. The different
responses of plants to temperature reflect their degree of adaptation to the environment,
and when plants are not well adapted to the local environment they will be eliminated
by the environment [72]. In addition, the temperature threshold for seed germination in
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different species in the same habitat varies [15]. In this study, the thermal time model
was used to derive the seed germination parameters of nine native species in the loess
hilly region, and their base temperatures for germination ranged from −7.46 to 9.67 ◦C
(Table S1). Among them, P. scabiosifolia exhibited seed germination at the lowest base
temperature and could even germinate under a temperature below zero, and the cluster
analysis also classified P. scabiosifolia as a subgroup (Figure 4A). Lower base temperature
(Tb) readings during germination indicate a plant’s ability to withstand cold stress [73].
In addition, compared to other species, B. ischaemum’s germination rate and germination
percentage increased more quickly as the temperature rose, and a greater base temperature
was required (Figure 1), which may be because B. ischaemum is a C4 plant and is light and
warmth loving.

These findings demonstrated that the availability of water had an impact on the
percentage and rate of seed germination. Water potential has been shown to have a
significant negative influence on seed germination [26]. This germination inhibition may
be thought of as a seed’s adaptive response to these circumstances; that is, the seeds will
not germinate when exposed to lower Ψ, retaining their potential to germinate in order to
reach the proper environmental conditions [29]. Distinct species have distinct hydrotime
constants (θH) and base water potentials (Ψb), which affect how seeds germinate in response
to water potential. The present study shows that seeds with low Ψb germinated better
than those with high Ψb at a low water potential, which is consistent with Zhang et al. [34].
For example, S. davidii still had a germination percentage of more than 80% at −1.2 MPa,
while P. scabiosifolia had a germination percentage close to 0 at −1.2 MPa. In addition, it is
generally accepted that seeds that are suited to germinate in circumstances of water stress
have an advantage when it comes to germination in arid or semiarid circumstances [74,75].

Numerous studies have found an interaction between T and Ψ regarding the percent-
age and rate of seed germination [76]. There was a positive correlation found between the
temperature range and soil water availability of the plant in its natural environment and
the capacity of seeds to germinate within that temperature range [77]. For example, tropical
species often have greater Tb requirements than temperate species, whereas mesic species
are less resistant to water stress (i.e., can germinate at lower water potential) than tropical
plants [78–80]. The species in this study, all of which are native to the loess hilly region,
have evolved traits or strategies that enable them to resist local risks, such as the ability to
germinate faster in hot environments to reduce the risk of drought. Our study shows that
the germination time course of the examined seeds can be accurately described by the ther-
mal time and hydrotime models, which is in line with other research conducted at different
temperatures and water potentials, respectively [76,81]. Additionally, the two models and
their standard deviation offer crucial details that are vital for both biology and ecology [82].
Recent years have seen a rise in the frequency of extreme temperature swings brought
on by climate change, as well as erratic precipitation and protracted droughts [83,84]. In
the context of climate change, evaluating the germination characteristics and resilience of
native seeds in the loess hilly region and clarifying their suitable germination conditions are
significant for assessing vegetation regeneration and ecological restoration in the region.

3.2. Ecological Correlates of Seed Performance

The germination requirements for temperature and moisture vary significantly across
plant populations, and seed traits can drive plant community dynamics [85]. Studying the
relationship between seed morphological characteristics, environmental factors, and seed
germination helps us to predict ecological population dynamics [51,86]. This study showed
that small seeds have a faster germination rate than large seeds under suitable tempera-
ture conditions (Figure 1). Since small seeds are less tolerant to stressful environmental
conditions, they are more sensitive to temperature changes, allowing them to germinate
rapidly and in large numbers under suitable conditions [87]. However, the present study
showed that there was almost no correlation between temperature threshold and seed
mass, which is inconsistent with previous studies [88]. The reason for this phenomenon
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may be that the temperature threshold is also influenced by other seed traits, such as seed
coat thickness and permeability, which influence imbibition and germination [89,90]. Seed
size showed a negative correlation with base water potential (Figure 8B), suggesting that
larger seeds are more resistant to arid environments than small seeds. Seedlings raised
from larger seeds are more resistant to drought, possibly because of their ability to explore
larger amounts of soil to offset water scarcity, to build a more extensive root system, or to
store more water [91,92]. Meanwhile, the high base water potential of small seeds is also a
risk-reduction feature that results in seed germination in wetter conditions, which prevents
seedlings from being exposed to dry conditions. The flatness index (FI) was positively
correlated with optimal temperature, ceiling temperature, and base water potential, but
none of these correlations were significant (Figure 8C,D). This may be because rounded
seeds are more easily covered by soil, whereas flattened or elongated seeds are less likely
to be covered by soil and are therefore more sensitive to the environment and subjected to
greater stress [93].

3.3. Implications for Management and Conservation

Previous studies have demonstrated that vegetation restoration is the fundamental
way to manage soil erosion in loess hilly regions [94]. However, the intra- and inter-annual
temperature and precipitation variations in this region are drastic, which constrains the nat-
ural regeneration of seeds. Vegetation regeneration depends on seed germination, and there
are interspecific differences in the response of germination to environmental variables [95].
Specifically, the cluster analysis showed that P. sepium was more tolerant to high tempera-
tures than the other species. This may be because P. sepium is the species at the highest stage
in the succession and can adapt to high-light habitats, so it could be considered as a species
for vegetation restoration on sunny slopes in the loess hilly region. In general, large seeds
are more tolerant to arid environments, so resowing large seeds rather than small seeds
can be considered as a method of vegetation restoration under poor moisture conditions.
Furthermore, as vegetation succession proceeds, habitat differentiation in vegetation types
occurs, mainly in the upward slope direction; for example, A. giraldii is mainly distributed
on sunny slopes, while A. sacrorum is mainly distributed on shady slopes [96]. Depending
on the impacts of temperature and water potential on native species, it is feasible to select
seasons and microhabitats (e.g., slope orientation, slope position) that are suitable for their
emergence; regarding environments with harsher thermal and hydrological conditions, it
is advisable to consider selecting more tolerant species for sowing to promote vegetation
regeneration. Land managers should understand the seed germination needs of different
populations to assure that seeds are planted at the most conducive times and under the
most favorable conditions to accomplish vegetation restoration [18].

4. Materials and Methods
4.1. Study Site

The study area, Ansai, is situated in the northwest of Yan’an City, Shaanxi Province,
China (109◦16.7654′ E–109◦17.3011′ E, 36◦44.1054′ N–36◦48.0715′ N), with an average
altitude of 1371.9 m a.s.l. (Figure 9), and it is a typically hilly and gullied region of the
Loess Plateau. The annual average temperature is about 9.8 ◦C, the frost-free period is
about 180 days, the annual precipitation is about 660 mm, and the annual average land
evaporation is about 1460 mm. The soil is mainly loess soil, with 33.2% sand, 63.2% silt, and
3.6% clay [97]. The type of vegetation belongs to the forest-steppe zone, and the dominant
species are Bothriochloa ischaemum, Stipa bungeana, Periploca sepium, etc. The area has 58%
vegetation coverage [98].
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4.2. Seed Collection and Preparation

This study used nine native plant species with high cover from the hilly–gullied Loess
Plateau region, representing the most common species used for vegetation restoration
succession in the region and belonging to different families with different seed traits (size,
shapes, etc.). Seeds were collected in 2019 in the small watershed of Zhifanggou and
Fangta, Ansai District, Yan’an City, and stored under dry, ventilated chamber conditions for
one year. The germination experiments were started in September 2020 and the sampled
seeds were sterilized in 10% sodium hypochlorite solution (Shanghai, China) for 10 min
and rinsed with deionized water for 5 min before the experiment. The seeds were then
placed on germination medium and a viability test was carried out prior to the germination
test. The germination percentage of the seeds in distilled water at room temperature was
more than 80%, indicating that the seeds tested in this experiment were non-dormant [99].
We mechanically cut S. davidii and L. davurica seeds with a scalpel, stripping the seed
coat to make them permeable to water. The seed mass was measured using a sensitive
balance (over 1/10,000 level) (Shanghai, China) (Table 1) [100]. Meanwhile, the length
(L), width (W), and height (H) of the seeds were measured using a slide caliper with four
replicates, and the FI (FI = (L+ W)/2 H) was used to characterize the seed shape [101].
The FI ranged from a value of 1 for spherical seeds to greater values for seeds with flat or
spindle shapes [93,102].

4.3. Experimental Design
4.3.1. Temperature Effects

In this experiment, seven fixed temperatures—5, 10, 15, 20, 25, 30, and 35 ◦C—were
utilized. A germination test was conducted with four replications by placing the seeds
in Petri (Yangzhou, China) dishes measuring 90 mm in diameter on two sheets of filter
paper (Hangzhou, China) saturated with 10 mL distilled water. Then, the Petri dishes
were placed in a thermostatic incubator (Shanghai, China) for germination, which was
programmed for a 12 h photoperiod under 0 MPa. To avoid seed germination competition
due to higher density or number, we set the quantity of P. sepium and L. davurica seeds to
25 seeds; the larger seeds of S. davidii to 20; and the rest of the seeds to 50, according to their
length, width, and height. The quantity of seeds that germinated was tallied every day, and
germination was defined as when the radicle broke through the seed coat and the length of
the radicle was ≥2 mm. A germination period of 30 days was used, and when there was
no more germination after three consecutive days, the germination test was terminated.
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Table 1. Seed morphology of the experimental species.

Species Family Length
(mm)

Width
(mm)

Height
(mm)

Individual
Mass (g) Shape Appendages FI

Seed
Storage

Time
(Month)

Artemisia
scoparia Asteraceae 0.662 ± 0.035 0.325 ± 0.019 0.215 ± 0.013 0.020 Oval-circular None 2.295 12

Artemisia
giraldii Asteraceae 0.923 ± 0.024 0.420 ± 0.018 0.360 ± 0.020 0.061 Oval None 1.865 12

Artemisia
sacrorum Asteraceae 1.091 ± 0.048 0.477 ± 0.014 0.350 ± 0.030 0.085 Oval None 2.240 12

Periploca
sepium Apocynaceae 8.152 ± 0.068 1.820 ± 0.050 0.852 ± 0.009 5.506 Long-circular Hair 5.852 12

Bothriochloa
ischaemum Poaceae 1.986 ± 0.085 0.744 ± 0.030 0.470 ± 0.036 0.432 Long-spindle Awn 2.904 12

Patrinia
scabiosifolia Caprifoliaceae 2.244 ± 0.029 1.156 ± 0.024 1.110 ± 0.037 0.810 Ellipsoid Wing 1.532 12

Linum usi-
tatissimum Linaceae 2.722 ± 0.106 1.446 ± 0.083 0.666 ± 0.064 0.849 Long-oval None 3.129 12

Lespedeza
davurica Fabaceae 3.238 ± 0.185 1.770 ± 0.053 1.156 ± 0.038 2.129 Obovate None 2.166 12

Sophora
davidii Fabaceae 3.064 ± 0.038 3.992 ± 0.087 2.952 ± 0.047 23.769 Oval None 1.195 12

4.3.2. Water Potential Effects

After the end of the temperature experiment, we found that most of the seeds exhibited
better germination performance at 20 ◦C. Therefore, we chose to evaluate the influence of
water potential on germination under the temperature condition of 20 ◦C. In Petri dishes
measuring 90mm in diameter, four seed duplicates were arranged on two filter paper sheets
wetted with either a separate 10 mL PEG solution or distilled water (control). Solutions of
polyethylene glycol 6000 (PEG 6000) (Hangzhou, China) were made in accordance with
Michel and Kaufmann’s (1973) protocols [103]. Every other day, the seeds were moved to
new filter paper that contained either distilled water or a fresh solution in order to maintain
relatively steady water potential during germination. The seed number settings for the
species were consistent with those of the temperature-effect germination experiments. A
light (12 h/12 h, daily photoperiod) was used to incubate the seeds at 20 ◦C with varying
water potentials of −0.3, −0.6, −0.9, and −1.2 MPa. The number of germinated seeds was
counted every day, and the germination period was 30 days.

4.3.3. Interactions of Temperature and Water Potential

By analyzing the temperature experiments, we found that the studied seeds had a
higher germination rate between 15 and 30 ◦C. Therefore, this experiment set four constant
temperatures (15, 20, 25, and 30 ◦C) and five levels of water potential (0, −0.3, −0.6,
−0.9, and −1.2 MPa), resulting in twenty different treatments, to investigate the combined
influence of temperature and water potential on seed germination. The number of seeds
and the incubator condition settings were consistent with the above two germination
experiments. The number of germinated seeds was counted every day and the germination
period was 30 days.

4.4. Mathematical Models

To calculate the time process of germination changing with temperature, a thermal
time model was used [42]. This model can be written as

θT(g) = (T − Tb)tg (1)

or
GRg = 1/tg = (T − Tb)/θT(g) (2)

θ2 = (Tc(g) − T)tg (3)
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or
GRg = 1/tg = (Tc(g) − T)tg/θ2 (4)

The temperature (◦C), base temperature (◦C), time to achieve a specific germination
percentage g (d), thermal time constant for a specific germination rate (g) in the population
at a sub-optimal temperature (◦C·d), thermal time constant at supra-optimal tempera-
tures (◦C·d), and ceiling temperature (◦C) are represented by T, Tb, tg, θT(g), θ2, and Tc(g),
respectively [29,42].

A hydrotime model (HT; Equations (5) and (6)) proposed by Gummerson (1986) was
used to quantify the response of germination rate to Ψ [104]:

θH = (Ψ − Ψb(g))tg (5)

or
GRg = 1/tg = (Ψ − Ψb(g))/θH (6)

The hydrotime constant (MPa·h), real water potential (MPa), and base water potential
(MPa) or drought tolerance threshold values are represented by the variables θH, Ψ, and
Ψb(g) [10,104].

The degree of fit between the predicted and observed data was evaluated using the
coefficient of determination (R2). The fraction variance accounted for by the simulation
model R2 was calculated using Equation (7):

R2 = 1 − ∑
(
yobs − ypre

)2/ ∑
(
yobs − yobs

)2 (7)

where yobs represents the observed values, ypre represents the predicted values, and yobs
represents the mean of the observed values. An R2 value of 1 indicates that the model is in
perfect accordance with the observations.

4.5. Statistical Analysis

All statistical analyses were conducted using SPSS 22.0, Excel 2021, and Origin 9.1
software. In both experiments, we employed one-way ANOVA to investigate the effects
of temperature and water potential on the germination percentage, or rate (1/T50), for
each species. The effects of species, temperature, and water potential on germination
characterizations were tested using two-way ANOVA. The Duncan test was used to screen
for significant differences between treatments at p < 0.05. The K-means clustering approach
was utilized to determine clusters of distinct subclasses. We used a thermal time model to
determine the temperature threshold for species germination and a hydrotime model to
determine the base water potential for the germination of different species. Linear fitting
between the observed and predicted germination rates was performed, and the coefficient
of determination (R2) was used to evaluate the goodness of fit of the model. Meanwhile, the
association between seed morphological characteristics and plant responses to temperature
and water potential was evaluated through the linear fitting of seed size and shape to base
temperature and base water potential, respectively.

5. Conclusions

Our findings show that in most species, the percentage and pace of germination in-
creased initially, declined with rising temperature, and subsequently dropped with falling
water potential. The species had different temperature thresholds and water potential
thresholds, and the thresholds changed with increasing germination percentage. In general,
the base water potential for germination was negatively correlated with mean seed mass
and was lower for more rounded seeds than for elongated seeds. However, a general
mechanism cannot yet be generalized between temperature thresholds and either mean
seed mass or FI. Each species differed in their resistance to external environmental stresses;
among them, A. sacrorum was more resistant to low temperatures; P. sepium to high temper-
atures; and L. davurica, S. davidii, L. usitatissmum, A. sacrorum, A. giraldii, and A. scoparia to
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drought stresses. Plants with strong resistance to high temperatures and drought can be
prioritized as species for vegetation restoration in loess hilly regions. The seed germination
of the nine native plant species can be accurately predicted using both the thermal and
hydrotime models, which can be used to forecast how the region’s flora will spread in the
event of climate change. However, the limitations of this study are the relatively small
number of species selected and the fact that only the effects of seed size and shape on
germination thresholds were considered. Future studies should increase the number of
species and consider the relationship between other seed traits (e.g., appendages and seed
coat) and germination thresholds to achieve a comprehensive understanding of the limiting
factors of vegetation regeneration in the region under climate change, and also to provide a
theoretical basis for ecological restoration construction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13050693/s1, Figure S1: Linear regression of germination
rate (1/tg) of nine species (different percentiles) and water potentials; Table S1: Estimation of cardinal
temperatures for seed germination of nine species at 0 MPa using linear regression analysis at different
percentiles (20–80%); Table S2: Estimation of cardinal water potential for seed germination of nine
species at 20 ◦C using linear regression analysis at different percentiles (20–80%).
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