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Abstract: Plant spring phenology in grasslands distributed in the Northern Hemisphere is highly
responsive to climate warming. The growth of plants is intricately influenced by not only air
temperature but also precipitation and soil factors, both of which exhibit spatial variation. Given the
critical impact of the plant growth season on the livelihood of husbandry communities in grasslands,
it becomes imperative to comprehend regional-scale spatial variation in the response of plant spring
phenology to climate warming and the effects of precipitation and soil factors on such variation. This
understanding is beneficial for region-specific phenology predictions in husbandry communities.
In this study, we analyzed the spatial pattern of the correlation coefficient between the start date
of the plant growth season (SOS) and the average winter–spring air temperature (WST) of Inner
Mongolia grassland from 2003 to 2019. Subsequently, we analyzed the importance of 13 precipitation
and soil factors for the correlation between SOS and average WST using a random forest model
and analyzed the interactive effect of the important factors on the SOS using linear mixing models
(LMMs). Based on these, we established SOS models using data from pastoral areas within different
types of grassland. The percentage of areas with a negative correlation between SOS and average
WST in meadow and typical grasslands was higher than that in desert grasslands. Results from the
random forest model highlighted the significance of snow cover days (SCD), soil organic carbon
(SOC), and soil nitrogen content (SNC) as influential factors affecting the correlation between SOS
and average WST. Meadow grasslands exhibited significantly higher levels of SCD, SOC, and SNC
compared to typical and desert grasslands. The LMMs indicated that the interaction of grassland
type and the average WST and SCD can effectively explain the variation in SOS. The multiple linear
models that incorporated both average WST and SCD proved to be better than models utilizing WST
or SCD alone in predicting SOS. These findings indicate that the spatial patterns of precipitation and
soil factors are closely associated with the spatial variation in the response of SOS to climate warming
in Inner Mongolia grassland. Moreover, the average WST and SCD, when considered jointly, can be
used to predict plant spring phenology in husbandry communities.

Keywords: grassland; plant phenology; climate warming; precipitation; soil; spatial pattern; Inner
Mongolia; husbandry community; prediction

1. Introduction

Climate warming has become the primary changing environmental factor affecting
natural ecosystems [1,2]. Phenology is a rhythmic phenomenon influenced by natural
biological and abiotic processes in response to periodic changes in climate conditions.
Examples include plant green-up and the melting of ice and snow [3,4]. Global climate
change has induced extensive phenology changes in nature [5,6]. These changes not
only disrupt interspecific relationships, such as nutrition and symbiosis formed during
species evolution [7], but also impact biodiversity and the dynamic balance of ecosystems
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by influencing material cycles and energy flow [8–10]. Plant phenological change is an
important component of research on the ecological effects of climate warming. The growth
period of plants directly affects the balance of terrestrial ecosystems [11,12], and the start
date of the plant growth season (SOS) is closely related to changes in air temperature,
representing an independent phenological feature in the ecosystems responding to climate
change [13–17].

Grasslands distributed in the Northern Hemisphere are a type of vulnerable vegetation
where the SOS is particularly sensitive to climate warming [18,19]. Additionally, grasslands
play a crucial role in animal husbandry, making the impact of climate warming on the
plant growth season in these areas closely linked to the livelihoods of local communities.
Plant growth in grassland ecosystems is influenced not only by air temperature but also by
precipitation and soil factors [20–22]. Snow cover significantly affects SOS in grasslands by
contributing to soil water supply through snow melting and increasing soil temperature in
winter [23–26]. The reduction in snow cover days (SCD) can result in soil freezing and plant
root death, consequently delaying SOS [27,28]. In addition, soil nutrients also influence
plant phenology. For instance, soil nitrogen affects the plant phenology of grassland
ecosystems on the Tibetan Plateau [22]. Studies on forest ecosystems indicate that the
influence of climate on plant growth is more pronounced in the soil organic layer. Changes
in soil nutrients due to long-term precipitation alterations in the soil organic layer affect
the seasonal trajectories of fine root biomass [29]. Therefore, it is necessary to understand
the integrated effects of precipitation and soil factors on the response of SOS to climate
warming in grasslands.

The precipitation and soil factors often display spatial and temporal variations [30–32].
For example, SCD increased significantly in the central Andes of Chile and Argentina
between 2000 and 2016 [33], while it decreased in the Mongolia Plateau between 1982
and 2015 [34]. Continental-scale studies conducted in Asia, North America, Europe, and
the Northern Hemisphere revealed that SCD increases with increasing altitude [31], and
the response of SCD to climate warming varies along latitudinal gradients [35]. Regional-
scale studies have demonstrated that SCD increases with the increasing altitude in the
Alps [36], and it increases with latitude in northeast China [37]. The soil factors also exhibit
significant spatial heterogeneity. Altitude, gradient, and the roughness of terrain show
significant correlations with soil organic matter and total nitrogen [38]. Therefore, the
spatial heterogeneities of precipitation and soil factors may induce spatial variation in the
sensitivity of SOS responding to climate warming.

Despite numerous studies demonstrating spatial variation in the response of SOS to
climate warming [4,14,18], most of these studies were conducted at the continental scale
and did not consider the integrated effects of precipitation and soil factors [39]. Grassland
ecosystems are regionally distributed, such as the Eurasian grassland located in the north of
the Eurasian continent [34,40]. Regional-scale and multi-factor research is more precise for
understanding the sensitivity of SOS responses to climate warming in grassland ecosystems.
Therefore, it is necessary to investigate the spatial variation in grassland SOS response
to climate warming and the effects of precipitation and soil factors on such variation at
regional scales.

Inner Mongolia, China, located on the Eurasian grassland [40,41], features diverse
grassland types, including meadow grasslands, typical grasslands, and desert grasslands,
distributed from east to west. The annual precipitation for these grassland types varies,
with meadow grasslands receiving 400–450 mm, typical grasslands receiving 300–350 mm,
and desert grasslands receiving 150–200 mm. Snow cover is present throughout the region
in winter. Positioned between 37◦34′ N and 53◦23′ N, Inner Mongolia exhibits altitudes
ranging from 90 to 3300 m [42]. This spatial variation in precipitation and soil factors
makes Inner Mongolia a suitable case for investigating the spatial variation in the Start-
of-Season (SOS) response to climate warming and its drivers in grasslands. Moreover,
the grasslands of Inner Mongolia serve as crucial pastures, linking the response of SOS
to climate warming directly to the livelihoods of local communities. Establishing SOS
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prediction models for local pastoral communities is imperative, requiring a regional scale
and multi-factor approach. In this paper, we conducted an analysis of the spatial variation
in the responses of SOS to climate warming in Inner Mongolia from 2003 to 2019, utilizing
MOD13A1 and MYD13A1 data. We also examined the effects of precipitation and soil
factors on such variation. Based on the results of driver analyses, we established models to
predict SOS in pastoral areas within meadow, typical, and desert grasslands, respectively.
These models aim to optimize grazing management in husbandry communities.

2. Results
2.1. Spatial Pattern of Temporal Trends in SOS and Average Winter–Spring Air Temperature

Trends in SOS (Figure 1a) and average winter–spring air temperature (WST) (Figure 1b)
in Inner Mongolia grassland from 2003 to 2019 exhibited evident spatial heterogeneity. The
SOS was significantly advanced in 32% of the pixels and significantly delayed in 21% of
the pixels. The change rates of SOS in meadow grasslands, typical grasslands, and desert
grasslands were −1.06 days/year, −0.27 days/year, and +0.56 days/year, respectively. The
average WST displayed an increasing trend in 99.9% of the study area, with significant
spatial variations (Figure 1b). The increasing rates of average WST for meadow grass-
lands, typical grasslands, and desert grasslands were 0.073 ◦C/year, 0.072 ◦C/year, and
0.078 ◦C/year, respectively.
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Figure 1. Spatial pattern of temporal changes from the start date of the plant growth season (SOS)
(a) and average winter–spring air temperature (WST) (b) in Inner Mongolia grassland from 2003 to
2019. “+” in (a) indicates delay, “–” indicates advance; “+” in (b) indicates rise, “–” indicates decrease.

2.2. Spatial Pattern of the Correlation between SOS and Average WST

The proportion of pixels exhibiting a significant correlation between the SOS and aver-
age WST accounted for 34.2% of the total pixels (p < 0.05). Within this, 28.7% displayed a
negative correlation, while 5.5% exhibited a positive correlation (Figure 2a). The areas with
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negative correlation coefficients in meadow and typical grasslands were higher compared
to desert grasslands, with percentages of 85.4%, 83%, and 68.9% for the three types of
grassland, respectively (Figure 2b). The areas with significant negative correlation coeffi-
cients in meadow and typical grasslands were also higher compared to desert grasslands,
with percentages of 25.4%, 32.5%, and 15.9% for the three types of grasslands, respectively
(Figure 2b). Conversely, the positive correlation percentage was higher in desert grasslands
compared to meadows and typical grasslands.
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Figure 2. Spatial patterns of the correlation coefficient between SOS and average winter–spring air
temperatures (WST) for Inner Mongolia grassland from 2003 to 2019 (a), and the pixel percentage of
negative and positive between SOS and average winter–spring air temperature (WST) correlation
coefficients in the meadow, typical and desert grasslands (b). The percentage of pixels with significant
correlations is denoted between parentheses.

The pixels with a significant negative correlation coefficient between SOS and WST
were distributed in the 39◦ N~51◦ N and 300 m~2100 m ASL meadow grasslands (Figure 3a),
in the 37◦ N~50◦ N and 400 m~2800 m ASL typical grasslands (Figure 3b), and in the 37◦

N~46◦ N and 900 m~2300 m ASL desert grasslands (Figure 3c).
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Figure 3. Altitude and latitude distribution of the pixels with a significant negative correlation
between SOS and WST in meadow grasslands (a), typical grasslands (b), and desert grasslands (c).
Dots represent values with significant negative correlation between SOS and WST.

2.3. Effects of Precipitation and Soil Factors on the SOS–WST Correlation

The results of the random forest model indicate that the average %IncMSE of the
13 factors was 63.29%. Among these, the factors with %IncMSE values higher than the
average of the 13 factors included snow cover days (SCD), soil nitrogen content (SNC),
and soil organic carbon content (SOC). Notably, SCD had the highest %IncMSE at 115.67%
(Figure 4).
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Figure 4. The effects of precipitation and soil factors on the correlation coefficient between SOS and
average WST in a random forest model. SCD: snow cover days, SNC: soil nitrogen content, SOC: soil
organic carbon content, SCOD: snow cover onset date, ATBPG: the average temperature of the seven
days before the onset of plant growth, PDM: precipitation of driest month, PWQwarmest: precipitation
of warmest quarter, WSP: winter and spring precipitation, PCQ: precipitation of coldest quarter,
PWM: precipitation of wettest month, AP: annual precipitation, PDQ: precipitation of driest quarter,
and PWQwettest: precipitation of wettest quarter.



Plants 2024, 13, 520 6 of 16

2.4. Spatial Patterns of SCD, SNC and SOC in Inner Mongolia Grassland

The average SCD from 2003 to 2019 exhibited significant variations across differ-
ent types of grassland (Figure 5a). Meadow grasslands had the longest average SCD
(103 days/year), while desert grasslands had the shortest (54 days/year) (Figure 5b). Simi-
larly, the average SNC and SOC from 2016 to 2019 displayed significant variations across
different types of grasslands (Figure 5c,e). Meadow grasslands showed the highest SNC
and SOC values (307.38 cg/kg and 284.89 dg/kg, respectively), while desert grasslands
showed the lowest values (131.09 cg/kg for SNC and 94.5 dg/kg for SOC) (Figure 5d,f).
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Figure 5. Spatial pattern of SCD, SNC, and SOC in Inner Mongolia grassland (a,c,e) and the differences
of SCD, SNC, and SOC for different types of grasslands (b,d,f). SCD: snow cover days, SNC: soil
nitrogen content, SOC: soil organic carbon content. The values of a, b, and c up the bars indicate
significant differences between the groups.

2.5. The Interactive Effects of Grassland Type, WST, SCD, SNC, and SOC on SOS

Based on the results of the random forest model and the spatial patterns of important
factors, linear mixed models (LMMs) were established using all the single variables and
interactions of grassland type, WST, SCD, SNC, and SOC on SOS as explanatory variables.
Ranked in ascending order of AIC values, the top seven models are listed in Table 1. The
results show that the model with the interaction of grassland type, WST, and SCD had the
smallest AIC value (Table 1), suggesting that the interaction of grassland type, WST, and
SCD effectively explains the variation in SOS.
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Table 1. Linear mixed models for the effect of interactions between WST, SCD, SNC, and SOC on SOS
of Inner Mongolia grassland. SOS: the start date of plant growth season; WST: average winter–spring
air temperature; SCD: snow cover days; SNC: soil nitrogen content; and SOC: soil organic carbon
content.

Response Variable Explanatory Variables AIC F p

Grassland type × WST × SCD 2473.1 83.4 <0.001
Grassland type × WST 2541.3 78.7 <0.001

WST × SCD 2556.4 24.9 <0.05
SOS Grassland type × WST × SNC 2582.1 68.3 <0.001

WST 2594.2 18.4 <0.05
WST × SNC 2611.4 15.7 <0.05

Grassland type × WST × SOC 2621.7 47.4 <0.001

2.6. Models for Predicting SOS in Sampled Pastoral Areas

Based on the LMM with the smallest AIC value, WST and SCD were selected as factors
to establish models for predicting SOS in sampled pastoral areas using multiple linear
regression (Table 2) and simple linear regression. The optimal models, selected based on
the criteria of R2 > 0.5, VIF < 10, and the smallest RMSE and MAE, are as follows: meadow
grasslands, SOS = −6.778 WST − 0.305 SCD + 79.873; typical grasslands, SOS = −21.046
WST − 0.279 SCD + 5.146; and desert grasslands, SOS = −13.647 WST − 0.178 SCD + 47.640
(Table 2).

Table 2. Multiple linear regression and simple linear regression models for SOS prediction in pastoral
communities distributed in different types of grasslands of Inner Mongolia. (SOS: the start date
of plant growth season; WST: average winter–spring air temperature; SCD: snow cover days; VIF:
variance inflation factor. RMSE: root mean square error, and MAE: mean absolute error).

Grassland Types Models R2 p VIF RMSE MAE

SOS = −11.884WST + 18.528 0.313 <0.001 4.877 3.734
Meadow

grasslands SOS = −0.399SCD + 135.983 0.425 <0.001 4.347 3.518

SOS = −6.778WST − 0.305SCD + 79.873 0.506 <0.001 1.305 3.676 2.921

SOS = −26.378WST − 53.866 0.491 <0.001 8.792 6.635
Typical

grasslands SOS = −0.420SCD + 155.220 0.355 <0.001 10.860 8.548

SOS = −21.046WST − 0.279SCD + 5.146 0.628 <0.001 1.146 8.274 6.351

SOS = −17.133WST + 17.848 0.422 <0.001 4.368 3.507
Desert grasslands SOS = −0.282SCD + 126.849 0.295 <0.001 4.648 3.750

SOS = −13.647WST − 0.178SCD + 47.640 0.529 <0.001 1.171 3.812 3.188

3. Discussion

Global warming has led to the continuous advancement of SOS in various regions
of the Northern Hemisphere [43,44]. Our findings indicate a warming trend in Inner
Mongolia grassland during the period of 2003–2019, particularly in the northeast. The
region experiencing SOS advancement surpasses the area experiencing an SOS delay in
Inner Mongolia grassland. Previous research on the Mongolian Plateau showed that SOS
advanced by 0.3 days/year from 2001 to 2017 [45]. In contrast, our study found that SOS in
Inner Mongolia grassland advanced by 0.18 days/year from 2003 to 2019. Similarly, our
results differ from those of Sa et al. concerning the Mongolian Plateau (0.39 days/year) [46].
These disparities may result from the following main reasons. Firstly, variations in the
models used to estimate SOS in different studies are given as follows: we employed the
S-G model in TIMESAT to simulate the NDVI curve, while Sa et al. used a logistic function.
The S-G model automates the NDVI curve’s simulation and SOS extraction, reducing errors
associated with the manual simulation of the NDVI curve [47]. Secondly, differences in
the research areas might contribute to existing studies’ cover of the Mongolian Plateau
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(including Inner Mongolia of China and Mongolia), while our research specifically focuses
on Inner Mongolia. The latitude of Mongolia is higher, and the area of steppe grasslands
is larger than in Inner Mongolia [48]. Thirdly, considering the fact that available studies
and our study were conducted using a relatively short time series, the use of different time
windows for analyses may also result in variations in SOS. These differences may contribute
to distinctions between our results and those reported in existing studies. Additionally,
the temporal change trend of SOS in Inner Mongolia grassland in this study was less
than the 0.38 days/year found in the Loess Plateau [49] and the 0.19 days/year found in
Xinjiang [50]. Therefore, it underscores the importance of conducting plant phenology
responses to climate change on a regional scale.

It is noteworthy that the SOS in desert grasslands exhibited a delayed trend from
2003 to 2019. In these areas, the average increase rate of the average WST was 0.078 ◦C/year.
The proportion of pixels showing a significant positive correlation between SOS and average
WST accounted for 6.1% of the pixels with significant correlations. This percentage was
higher than that observed in meadows and typical grasslands, suggesting that the SOS
in certain areas of desert grasslands may be delayed due to rising air temperatures. The
SOS in desert grasslands is influenced not only by air temperature but also by soil water
content [51]. The highest rate of increase in air temperatures in desert grasslands, coupled
with increased evaporation, leads to a reduction in soil water content and consequent
delays in SOS. Simultaneously, the limited SCD in desert grasslands contributes to soil
freezing and plant root death, further contributing to the delayed SOS [27,28].

Despite the evident warming and SOS advancement trends in Inner Mongolia grass-
land from 2003 to 2019, only 28.7% of the total pixels exhibited a significant negative
correlation between SOS and the average WST. This highlights the spatial variation in the
response of SOS to climate warming. Therefore, it is necessary to analyze the interaction
of average WST and other environmental factors on the SOS. The higher percentage of
negative correlation in meadow and typical grasslands suggests that SOS is more sensitive
to climate warming in these areas compared to desert grasslands. This spatial variation
underscores the importance of considering variations in precipitation and soil properties.
Results from the random forest model indicate that precipitation and soil factors influence
the response of SOS to climate warming, with SCD identified as the most critical factor.
SCD reflects winter precipitation, contributing to increased soil water and the maintenance
of soil temperature [25,26]. Warm and moist soil conditions are beneficial for plant growth
by promoting plants to green up and increasing the net photosynthetic rate [52,53]. The
spatial pattern of SCD reveals that SCD is highest in meadow grasslands and lowest in
desert grasslands. As precipitation gradually decreases from east to west in Inner Mongo-
lia [54], the meadow and typical grasslands in the northeast experience more snow cover in
winter, maintaining higher soil temperature and humidity. The combined effect of warm
air and moist soil promotes plant growth in meadows and typical grasslands, making the
SOS response to climate warming more sensitive in these regions. Conversely, the central
and western regions of Inner Mongolia, characterized by an arid or semi-arid climate
with less snow cover, experience a shorter SCD [40]. This condition is less conducive to
plant growth in desert grasslands in the central and western regions, resulting in the less
sensitive response of SOS to climate warming in this grassland type. Our results regarding
the altitude distribution of pixels with a significant negative correlation between SOS and
WST show that most of the pixels of desert grasslands are distributed in relatively higher
altitude (above 2000 m ASL) areas, which may be associated with the increase in SCD with
altitude [31].

While numerous studies have explored the impact of terrain on the relationship be-
tween SOS and climate change [6,13,23], there has been limited focus on the influence
of soil factors on this relationship [39]. Since soil nutrients play a crucial role in plant
growth [20] and the spatial variation in soil factors is significant [38], it becomes essential
to consider the effects of soil factors on the correlation between SOS and air temperature.
The results from our random forest model highlight the significance of SOC and SNC
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in influencing the response of SOS to average WST. SNC promotes photosynthesis and
accelerates plant growth [55], while SOC supports plant root growth and facilitates nutrient
uptake [56]. Our results show that SNC and SOC in Inner Mongolia grassland exhibit clear
spatial differences (Figure 5), decreasing from northeast to southwest. Meadow grasslands
have significantly higher SNC and SOC compared to typical and desert grasslands. Ad-
ditionally, typical grasslands exhibit higher SNC and SOC levels than desert grasslands.
Soil that is both moist and nutrient-rich is favorable for plant growth [57]. Moreover, the
abundance of SOC and SNC influences the species composition of the plant community,
affecting plant phenology due to the differences among species [58]. In meadow grasslands,
dominant plant species include S. baicalensis, L. Chinensis, and Cleistogenes mucronata. In
desert grasslands, dominant species comprise S. Krylovii, S. bungeana, and A. ordosica. The
growth of species in meadow grasslands requires better hydrothermal conditions than
those in desert grasslands [21]. Consequently, the differences in soil nutrients and plant
species composition contribute to a more sensitive response of SOS to climate warming in
meadows and typical grasslands compared to desert grasslands. Despite the importance
of SNC and SOC, the results of LMMs show that the interaction of grassland types, WST,
and SCD exhibits the smallest AIC value. Why do the models, including SOC, and SNC
have a higher AIC? The fact that the spatial pattern of grassland types aligns with the
patterns of SNC and SOC may be an important reason. The spatial pattern of grassland
types represents the effects of SNC and SOC in the model with the smallest AIC.

The SOS is intricately linked to the grazing plans of husbandry communities. The
ability to predict the plant growth date is crucial for effective grazing management. In Inner
Mongolia, local communities typically commence grazing approximately 15 days after
green up, ensuring optimal grass growth and preventing the degradation of grasslands [59].
Therefore, determining the onset of plant growth in spring is critical for establishing
the appropriate grazing time. Local residents traditionally rely on their observations
on the grass green-up date for the previous two or three years to gauge the start date
of plant growth in the current year [59]. However, climate change may disrupt these
traditional observations. To mitigate the impact of climate change, communities have had
to purchase more forage grass to sustain their animals, leading to increased economic
costs [60]. Based on the LMM with the smallest AIC, models that incorporate WST and SCD
can be established in three types of grasslands, respectively. Our results in Table 2 show
that the models incorporating both WST and SCD have the smallest RMSE and MAE values
in three types of grasslands, which indicates that the prediction models for SOS using both
WST and SCD are better than those using WST or SCD alone. Additionally, the coefficients
of these models on three types of grasslands are different, which suggests that the prediction
model should be established based on the grassland type in which the pastoral community
is located. The local animal husbandry departments can use long-term local SOS, WST,
and SCD data can establish models for predicting SOS and continuously record annual
SOS, WST, and SCD data to refine the models. In future research, the effectiveness of these
models should also be tested by comparing them with the traditional methods of local
husbandry people.

4. Materials and Methods
4.1. Study Area

Our study site was Inner Mongolia grassland, China’s mid-northern region, between
37◦34′ N~53◦23′ N and 97◦12′ E~126◦04′ E, covering an area of 866,700 km2 (Figure 6). The
altitude ranges from 90 to 3300 m. Inner Mongolia grassland forms a transitional zone
between arid and semiarid areas in the northwest of China. Conditions in winter are cold
and dry, and in summer, it is warm and wet [61,62]. The annual average air temperature
is 5.5 ◦C [63]. Annual precipitation gradually decreases from approximately 400 mm in
the east to about 200 mm in the west, resulting in a transition in grasslands from meadow,
typical, and desert grasslands from east to west [42] (Figure 6). The dominant plant species
in meadow grasslands are S. baicalensis, L. Chinensis, and Cleistogenes mucronata [64,65]. The
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dominant species in typical grasslands are Stipa grandis and Leymus chinensis [65]. The
dominant plant species in desert grasslands are S. Krylovii, S. bungeana, and A. ordosica [64].
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4.2. Research Design

Firstly, we analyzed the spatial pattern of the SOS variation trend and the average WST
variation trend from 2003 to 2019 for Inner Mongolia grassland. Secondly, we examined
the spatial pattern of correlation coefficients between the SOS and average WST from
2003 to 2019 in Inner Mongolia grassland, representing the spatial distribution of the SOS
response to climate warming. Thirdly, we investigated the effects of nine precipitation
factors and two soil factors on the correlation coefficients between the SOS and average
WST. This was accomplished using a random forest model to identify the most influential
environmental factors. Subsequently, we established linear mixed models (LMMs) to
analyze the interactive effects of grassland types, WST, and the important environmental
factors identified by the random forest model on SOS. Finally, we selected three 10 km
× 10 km pastoral community quadrats in each type of grassland to establish models for
predicting the SOS in the pastoral areas (Figure 6). Multiple linear regression models
and simple linear models, utilizing the factors identified in the optimal LMM, were then
established for the SOS prediction in pastoral areas of different grassland types.

4.3. Data Acquisition
4.3.1. Grassland Types

The permanent grassland area in Inner Mongolia from 2003 to 2019 was derived from
the MCD12Q1 product, which was generated by the International Geosphere Biosphere
Program (IGBP) [66], with a spatial resolution of 500 m and was downloaded from the
Land Process Distributed Activity Archive Center of the United States Geological Survey
(USGS) “https://appeears.earthdatacloud.nasa.gov/ (accessed on 27 May 2020)”. We
intersected the permanent grassland area in Inner Mongolia from 2003 to 2019 with the
1:500,000 grassland resource distribution map in China “https://www.resdc.cn/data.aspx?
DATAID=355 (accessed on 5 July 2020)” and determined the three main types of grasslands
in Inner Mongolia.

4.3.2. SOS Data

Normalized Difference Vegetation Index (NDVI) data are suitable for use to calculate
the SOS [67]. We used the dynamic threshold method to extract SOS, which defines the SOS
as the corresponding date when NDVI rises to a certain threshold [68]. In this study, the
SOS is defined as the date when the NDVI value reaches 20% of its amplitude. We selected
the NDVI datasets of MOD13A1 and MYD13A1 (version 6) from MODIS to extract the
SOS of Inner Mongolia grassland from 2003 to 2019. The dataset had a spatial resolution
of 500 m and a time interval of 16 days (https://ladsweb.nascom.nasa.gov; (accessed on
27 May 2020)). The quality layer of MOD (MYD) 13A1 NDVI data was used to remove

https://appeears.earthdatacloud.nasa.gov/
https://www.resdc.cn/data.aspx?DATAID=355
https://www.resdc.cn/data.aspx?DATAID=355
https://ladsweb.nascom.nasa.gov
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low-quality pixels. We loaded NDVI into the TIMESAT software for SOS extraction [69]. We
removed the negative value of NDVI because it indicates that there are no green plants. The
dual logistic function and median filter (Spike value = 0.5) were used to remove abnormal
values. To estimate the SOS, an amplitude threshold of 0.2 was selected to account for
varying ground phenology characteristics [70].

4.3.3. Average WST Data

The average WST was calculated as the monthly average air temperature data from
November of the previous year to April of the current year. Monthly average air tem-
perature data were sourced from “the monthly average air temperature dataset with
a 1 km resolution in China from 1901 to 2020” at Loess Plateau Sub Center, National
Earth System Science Data Center, National Science & Technology Infra-structure of China
(http://loess.geodata.cn; accessed on 27 May 2020).

4.3.4. Precipitation and Soil Data

SCD is calculated using MODIS MOD10A1 and MYD10A1 (http://nsidc.org; accessed
on 20 June 2020)). Cloud pixels need to be eliminated from the original MODIS snow data
to accurately calculate SCD. To perform this, we first combined MYD10A1 and MOD10A1
data using the maximum synthesis method to reduce some of the cloud pixels [71]. The
data without cloud from the previous day (or the next day) were then used to substitute
the data from the day with cloud coverage, and the four–neighbor–pixel method was used
to further remove the cloud pixels [72]. A cloud layer pixel is classified as a snow layer
pixel if at least three snow layer pixels are present in the four adjacent pixels [73]. The snow
cover phenology parameters were calculated as follows:

SCD =
n

∑
i=1

(Si)

where n represents the total number of days in a year; Si denotes a non-snow or snow pixel,
with a value of 0 or 1, respectively.

The precipitation data were sourced from the Global Climate and Weather Dataset
(https://www.worldclim.org/; accessed on 20 June 2020), including the precipitation of
the coldest quarter (PCQ), precipitation of the warmest quarter (PWQwarmest), precipitation
of the driest quarter (PDQ), precipitation of the wettest quarter (PWQwettest), precipitation
of the driest month (PDM), precipitation of the wettest month (PWM), annual precipitation
(AP), winter and spring precipitation (WSP), the snow cover onset date (SCOD), and the
average temperature of the seven days before the onset of plant growth (ATBPG). Soil
data were sourced from the Soil Grid (https://soilgrids.org/; accessed on 20 June 2020),
including soil organic carbon (SOC) and soil nitrogen content (SNC). The area data were
converted to point data for subsequent analysis. We loaded all the area data into ArcGIS
and used the “raster to point” tool to convert area data to point data.

4.4. Statistical Analysis

The least square method was used to extract the temporal trend of SOS and average
winter–spring air temperature at the pixel level from 2003 to 2019 [74]. The formula is as
follows:

Slope =
n∑n

i=1 iXi − ∑n
i=1 i∑n

i=1 Xi

n∑n
i=1 i2 − (∑n

i=1 i)2

where i is from 1 to n, n is the total number of years, and Xi is the SOS or average winter–
spring air temperature of the ith year. A slope < 0 indicates a downward trend, while a
slope > 0 indicates an upward trend.

Pearson correlation analysis was used to assess the relationship between the SOS and
average WST at the pixel level. The t-test was used to examine the significance of change
trends in the SOS and average WST, as well as the significance of the correlation between

http://loess.geodata.cn
http://nsidc.org
https://www.worldclim.org/
https://soilgrids.org/
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the SOS and average WST. The change trend and correlation were considered significant
when p < 0.05.

A random forest model was utilized to identify the precipitation and soil factors sig-
nificantly affecting the correlation coefficients between the SOS and average WST. Random
forest is a multivariate analysis method that ranks the relative importance of environmental
factors, effectively avoiding overfitting and collinearity. The relative importance of an
environmental factor is determined by the increase in prediction error when the data for
that factor are replaced [75]. The Percentage of Increased Mean Square Error (%IncMSE)
measures the decrease in prediction accuracy when the values of an environmental factor
are replaced with random numbers [76]. An environmental factor with a %IncMSE value
higher than the average %IncMSE value of all factors is considered important [77]. In this
study, the dependent variable is the correlation coefficient between the SOS and average
WST, and the independent variables include the following 13 precipitation and soil factors:
PCQ, PWQwarmest, PDQ, PWQwettest, PDM, PWM, AP, WSP, SCOD, ATBPG, SCD, SNC,
and SOC. The model was established using the “random forest package” in R software [78].
Based on the result of the random forest model, linear mixed models (LMMs) were estab-
lished to determine the interactive effect of important factors on SOS. Different interactive
factors between grassland types and important environmental factors were used as fixed
factors, with pixels as random factors. The model with the smallest AIC value was selected
as the better model compared to others. LMMs were established in SPSS (20.0), and the
significance level was set at 0.05.

The important factors identified in the optimal LMM were used to establish the SOS
prediction models. The pixels in the quadrats were converted into points, and MODIS data
of the SOS, average WST, and the factors in the optimal LMM at each point were extracted.
Eighty percent of the points were used to establish the prediction model, and 20% of the
points were used to test the predictability of the models. Multiple linear regression was used
to establish prediction models with two independent variables. Simple linear regression
was used to establish models with one independent variable. The multi-collinearity of
two or more environmental factors in the model was tested using the variance inflation
factor (VIF). VIF > 10 indicates high collinearity [79]. The predictability of the models was
evaluated using the root mean square error (RMSE) and mean absolute error (MAE) [80].

RMSE =

√
∑n

i=1(Oi − Pi)
2

n

MAE =
1
n∑n

i=1|Oi − Pi|

where n is the number of data, Oi is the ith observed values, and Pi is the ith predicted
values. The model with R2 > 0.5, VIF < 10, and the smallest RMSE and MAE values were
selected as the prediction model for SOS using the “stats” package in R.

5. Conclusions

Temporal variations in plant spring phenology and average winter–spring air temper-
ature from 2003 to 2019 exhibit spatial heterogeneity in Inner Mongolia grassland. There
are spatial differences in the response of the SOS to climate warming. Snow cover days,
soil organic carbon, and nitrogen content, which show a significant spatial pattern across
different types of grassland, are the main factors related to such spatial variation. The
interaction terms of the average winter–spring air temperature and SCD have the greatest
influence on the SOS for different types of grasslands. The binary linear model composed
of average winter–spring air temperature and SCD can predict the SOS effectively. MODIS
NDVI, average winter–spring air temperature, and snow cover data can be valuable in the
grazing management of husbandry communities.
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