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Abstract: Anacardium occidentale L. stem bark Traditional Herbal Preparations (AoBTHPs) are widely
used in traditional medicine to treat inflammatory conditions, such as diabetes. The present study
aims to evaluate the anti-inflammatory, antioxidant, and genotoxic potential of red and white Por-
tuguese AoBTHPs. Using a carrageenan-induced rat paw edema model, a significant anti-edema
effect was observed for all tested doses of white AoBTHP (40.2, 71.5, and 127.0 mg/kg) and the
two highest doses of red AoB THP (71.5 and 127.0 mg/kg). The anti-edema effect of red AoBTHP’s
highest dose was much more effective than indomethacin 10 mg/kg, Trolox 30 mg/kg, and Tempol 30
mg/kg. In DPPH, FRAP, and TAC using the phosphomolybdenum method, both types of AoBTHPs
showed similar antioxidant activity and no genotoxicity up to 5000 µg/plate in the Ames test. The
LC-UV/DAD-ESI/MS fingerprint allowed the identification of gallic and protocatechuic acids as the
two main marker compounds and the presence of catechin, epicatechin, epigallocatechin gallate, and
ellagic acid in both AoBTHPs. The obtained results support the validation of red and white AoB and
their THPs as anti-inflammatory agents and contribute to the possible development of promising
new therapeutic options to treat inflammatory conditions.

Keywords: cashew; ethnopharmacology; free radical scavenger; inflammation; pre-clinical safety;
phytochemistry

1. Introduction

Inflammation is a physiological response of the immune system to tissue injury, foreign
organisms, toxic compounds, or radiation exposure [1]. In these cases, inflammatory
responses can be induced to remove noxious stimuli and initiate the healing process by
activating immune cells and inflammatory signaling pathways [2,3]. Clinically, acute
inflammation is characterized by pain, heat, redness, swelling, and loss of function [4].
If acute inflammatory responses fail to restore tissue homeostasis, the inflammation can
become chronic and lead to significant destruction of the injured tissue [5,6]. Chronic
low-grade inflammation, characterized by persistently elevated levels of circulating pro-
inflammatory cytokines, contributes to, or at least exacerbates, a wide range of debilitating
non-communicable diseases, such as cancer, cardiovascular disease, and diabetes mellitus,
making a significant contribution to the global disease burden [3,7].

Reactive oxygen species (ROS) generated from various biological (e.g., normal cell
functions) and environmental sources (e.g., ultraviolet radiation) may directly or indirectly
mediate the inflammation and tissue dysfunction associated with inflammatory condi-
tions [8]. Furthermore, excessive production of ROS and reduced antioxidant concentration
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can promote oxidative stress [9]. It is accepted that post-inflammatory oxidative stress can
potentiate the inflammatory response through different pathways and vice versa [10].

Pharmacological treatment of inflammatory diseases usually includes non-steroidal
anti-inflammatory drugs [11]. They promote the suppression of prostaglandin biosynthesis
by inhibiting the enzyme cyclooxygenase (COX). However, there are relevant gastroin-
testinal and cardiovascular systemic adverse effects associated with prolonged use of
such drugs, respectively, due to the inhibition of COX-1 and COX-2 enzymes [12]. For
these reasons, the pursuit of new, safer, and effective anti-inflammatory agents is needed
and includes the study of medicinal plants used in traditional medicine as a source of
anti-inflammatory traditional herbal preparations and natural products [13,14].

The practice of traditional medicine combined with the ethnobotanical knowledge
of populations has led to numerous reports on the use of medicinal plants in pathologies
with an inflammatory concern [15–17]. Based on these reports, laboratory studies have
developed in recent decades, focusing on scientific validation of the traditional uses of
these plants and on the discovery of novel drugs [18,19].

One of the most popular species native to South America is Anacardium occidentale
L., commonly known as the cashew, which has been widely used in traditional medicine
to treat various diseases [20–22]. The use of Anacardium occidentale bark (AoB) in tradi-
tional medicine to treat inflammatory conditions has been reported in different African
and American countries [20,23,24]. Therefore, several pre-clinical studies have been con-
ducted to enhance the knowledge about the anti-inflammatory effect of AoB extracts.
Olajide et al. (2013), using lipopolysaccharide-stimulated microglia, found that the anti-
inflammatory properties of a methanolic AoB extract were associated with the inhibition
of inflammation-associated cytokine production and inducible nitric oxide synthase and
COX-2 gene expression by blocking nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mi-
croglia [25]. Despite the different modes of preparing the AoB extracts (solvents, medicinal
plant-to-solvent ratio, and type of extraction) and the selected models, all in vivo studies
showed the anti-inflammatory activity of the AoB-tested samples (Table 1) [26–30].

Portuguese traditional herbal preparations (THPs) based on aqueous extracts of red
and white types of Anacardium occidentale stem bark (AoB) have been used in the Commu-
nity of Portuguese Language Countries for more than 30 years to control type 2 diabetes by
oral administration [23], a relevant inflammatory condition [31,32].

In our laboratory, these AoBTHPs have already undergone phytochemical and phar-
macological evaluations to scientifically validate their traditional use in diabetes treatment
and to ensure their safety [23,33,34]. In a 14-day repeat-dose toxicity test in mice, no
treatment-related signs of toxicity were seen at doses up to 402 mg/kg of the red and
white AoBTHPs. The micronucleus test and comet assay performed on CD-1 mice adminis-
tered a single dose of 2000 mg/kg (per os) of each AoBTHP showed no in vivo genotoxic
potential [23]. Both AoBTHPs proved to be a source of natural antioxidants with free
radical scavenging potential in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay [23,35].
The hypoglycemic activity was observed at doses of 40.2, 71.5, and 127.0 mg/kg/day of red
AoBTHP using a db/db mouse model. The highest AoBTHP dose showed a more potent
antidiabetic effect than glibenclamide [34]. The botanical identification parameters have
been established for the red and white AoBs as raw herbal materials for pharmaceutical
use. In addition, the chemical profiles of their marker compounds were established using
thin-layer chromatography and high-performance liquid chromatography coupled with an
ultraviolet photodiode array detector (LC-UV/DAD). Gallic and protocatechuic acids were
identified in both AoB types [33–35]. Furthermore, spectrophotometry has been used to
quantify secondary metabolites on AoB, with the results showing that condensed tannins
and triterpenoids are the main classes of secondary metabolites [23,33].
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Table 1. In vivo studies on the anti-inflammatory effects of A. occidentale stem bark extracts.

Type of
Extraction

Extract Dose and
Route of

Administration

Duration of
Study

Positive
Control Model Results Ref.

Acetone 0.1, 0.3 and
1 g/kg p.o. 5 h Indomethacin

10 mg/kg p.o.

Acetic
acid-induced

abdominal
writhing

Dose-related
inhibition of acetic

acid-induced
abdominal writhing

(18.9–62.9%)

[30]

Acetone 1 g/kg p.o. 5 h Indomethacin
10 mg/kg p.o.

Croton
oil-induced ear

edema

Inhibition of the
edematogenic

response after topical
application of croton

oil (56.8%)

[30]

Acetone 0.1, 0.3 and
1 g/kg p.o. 5 h Dexamethasone

2 mg/kg s.c.

Carrageenan-
induced

peritonitis

Dose-related
reduction of

leukocyte migration
(24.8–49.6%)

[30]

Acetone and
ethyl acetate

12.5, 25, 50 and
100 mg/k p.o. 7 h Indomethacin

10 mg/kg i.p.

Carrageenan,
Bradykinin,

and
Prostaglandin-
induced mice
paw edema

Dose- and
time-dependent

effects in reducing
paw edema in mice.

Significant antiedema
effect after PGE2 and
bradykinin challenge.

[26]

Acetone
and ethyl

acetate

50 and
100 mg/kg p.o. 11 h Indomethacin

10 mg/kg i.p.

Carrageenan-
induced

peritonitis

Inhibition of
carrageenan-induced
leukocyte number in
the peritoneal cavity

at 4 h (57%).

[26]

Aqueous 800 mg/kg p.o. n/a Diclofenac
100 mg/kg p.o.

Egg albumin-
induced rat
paw edema

Time-related
reduction of the rat’s

hind paw
[27]

Aqueous 100, 200,
400 mg/kg p.o. 7 h Indomethacin

10 mg/kg p.o.

Carrageenan-
induced rat
paw edema

Rat paw edema
reduction

(45.03, 48.17
and 52.88%)

[29]

Ethanol 100, 200,
400 mg/kg p.o. 7 h Indomethacin

10 mg/kg p.o.

Carrageenan-
induced rat
paw edema

Rat paw edema
reduction

(60.73, 68.32
and 70.68%)

[29]

Methanol 25, 50, 100 and
200 mg/kg i.p. 8 h 30 min

Entoxifylline
100 mg/kg, i.p.;

L-NAME
5 mg/kg

LPS-induced
septic shock

in Swiss mice

Dose-dependent
effect in mortality

reduction
(83–0% of mortality)

[28]

Methanol 25, 50, 100 and
200 mg/kg i.p. 8 h 30 min

Entoxifylline
100 mg/kg, i.p.;

L-NAME
5 mg/kg

LPS-induced
plasma leakage

in Swiss
mice skin

Dose-dependent
inhibition of
dye leakage

[28]

i.p.—intraperitoneal; i.v.—intravenous; LPS—Lipopolysaccharide; n/a—not available; PGE2—prostaglandin E2;
p.o.—per os; Ref.—Reference; s.c.—subcutaneous.

Our aim is to enhance the knowledge of the therapeutic potential of the aforementioned
Portuguese traditional formulations made from raw materials subjected to pharmacog-
nostic characterization, which have already been evaluated in vivo for their antidiabetic
potential and preclinical safety. Given the correlation between the mechanisms of inflam-
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mation and diabetes, this work includes the evaluation of the in vivo anti-inflammatory
and in vitro antioxidant activity of these preparations using widely accepted and well-
established methodologies, namely the anti-inflammatory activity through carrageenan-
induced rat paw edema model and in vitro antioxidant activity using DPPH method, Ferric
Reducing Antioxidant Power (FRAP) assay, and Total Antioxidant Capacity (TAC) by the
phosphomolybdenum method. Additionally, phytochemical profiles of red and white
AoBTHPs will be characterized, and their marker compounds will be identified by Liquid
Chromatography-Ultraviolet/Diode Array Detector-Electrospray Ionization-Tandem Mass
Spectrometry (LC-UV/DAD-ESI-MS/MS), as well as the assessment of in vitro genotoxic
potential by the Ames test.

Through this approach, we intend to advance our understanding of the therapeutic
potential of these chemically characterized red and white Portuguese AoBTHPs at specific
tested doses to treat inflammatory diseases.

2. Results
2.1. Genuine Drug Extract Ratio and Extract Chemical Standardization

The genuine drug extract ratio (DER), i.e., the ratio of the amount of starting herbal
substance to genuine herbal preparation [36], was 1:7.62 for red AoBTHP and 1:7.92 for
white AoBTHP. The standardization of Portuguese AoBTHPs was previously determined
based on their total phenolic content using the Folin–Ciocalteu method, and the obtained
values were 31.39 ± 0.50 mg GAE/g AoB and 31.36 ± 0.54 mg GAE/g AoB, for red and
white AoBTHPs, respectively.

2.2. LC-UV/DAD-ESI-MS/MS Phytochemical Profile

The typical chromatographic fingerprint of red AoBTHP is shown in Figure 1. The
chemical profile of white AoBTHP is similar to that of red AoBTHP.
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Figure 1. Red AoBTHP LC-UV/DAD Maxplot wavelength (λ = 210–600 nm) chromatogram profile.
1: gallic acid; 2: protocatechuic acid; 3: catechin; 4: epicatechin; 5: epigallocatechin gallate; 6: ellagic acid.

The results clearly show the presence of six peaks (peaks 1–6). Data on the chro-
matographic properties of these peaks are shown in Table 2. Retention time, UV/DAD
absorption spectrum, and mass fragmentation patterns in negative ion mode are given.
Based on these chromatographic and spectral data, the presence of gallic acid (peak 1),
protocatechuic acid (peak 2), catechin (peak 3), epicatechin (peak 4), epigallocatechin gal-
late (peak 5), and ellagic acid (peak 6) is determined by comparison the data obtained
with the PubChem database [37], literature data [38] and co-chromatography with the
corresponding reference substances.
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Table 2. LC-UV/DAD-ESI-MS/MS-based identification of red A. occidentale traditional herbal prepa-
ration marker compounds.

Peak N Rt
(min)

UV-Vis
(λmax)

Molecular
Formula

Molecular
Weight a

[M − H]−
(m/z)

MS/MS
Fragmention (m/z) Compound Name

1 16.21 272 C7H6O5 170.12 169 125 Gallic acid
2 24.71 260, 294 C7H6O4 154.12 153 109 Protocatechuic acid
3 32.32 237, 275 C15H14O6 290.27 289 245, 137, 125, 109 Catechin
4 37.87 237, 274 C15H14O6 290.27 289 245, 137, 125, 109 Epicatechin
5 38.66 275 C22H18O11 458.4 457 305, 288, 169, 125 Epigallocatechin gallate
6 51.79 253, 369 C14H6O8 302.19 301 283, 257, 229, 185 Ellagic acid

Peak N: Peak number; Rt: retention time; [M − H]−: negative mass electrospray ionization mode. a Retired from
PubChem database [37].

2.3. Ames Test

During the procedure, no precipitation of all tested concentrations of red and white
AoBTHPs was observed in the culture plates in the whole battery of strains. The main
results of the Ames test are presented in Table 3.

Table 3. The plate incorporation test without metabolic activation.

Samples
(µg/Plate)

Revertant Colonies per Plate (Mean ± SD)

TA98 TA100 TA102 TA1535 TA1537

Red AoB
THP

5000 24.0 ± 2.65 135.3 ± 11.7 228.3 ± 6.4 15.3 ± 0.6 18.0 ± 2.0
3750 21.0 ± 3.61 127.7 ± 15.3 243.3 ± 9.7 15.7 ± 2.5 15.0 ± 2.6
2500 22.0 ± 1.73 171.0 ± 12.2 297.0 ± 51.2 13.0 ± 1.7 16.7 ± 1.5
1250 23.7 ± 3.21 186.3 ± 8.1 221.7 ± 18.6 12.3 ± 5.0 14.7 ± 2.5
625 24.7 ± 4.93 186.3 ± 11.0 280.0 ± 15.6 10.3 ± 1.5 15.0 ± 1.7
250 23.7 ± 4.73 181.0 ± 17.7 305.0 ± 11.4 11.7 ± 2.3 14.7 ± 3.2

White AoB
THP

5000 31.7 ± 1.53 114.3 ± 12.9 259.0 ± 5.6 13.7 ± 2.3 17.3 ± 0.6
3750 27.3 ± 2.52 144.0 ± 5.3 258.7 ± 7.8 14.0 ± 1.0 16.0 ± 0.0
2500 32.7 ± 0.58 133.3 ± 10.8 286.7 ± 34.3 12.0 ± 2.0 17.7 ± 3.1
1250 31.0 ± 1.00 147.0 ± 13.7 296.0 ± 15.1 14.7 ± 2.3 15.0 ± 0.0
625 30.7 ± 0.58 142.7 ± 11.6 291.0 ± 28.1 12.7 ± 3.1 14.7 ± 1.5
250 28.3 ± 4.16 151.3 ± 22.2 286.7 ± 9.7 13.7 ± 3.1 14.3 ± 2.1

Negative Control 23.3 ± 0.58 166.7 ± 25.8 276.0 ± 14.1 14.3 ± 1.5 14.3 ± 2.3

Positive Control 487.7 ± 30.2 a 1048.0 ± 43.2 b 881.0 ± 26.2 c 827.3 ± 13.1 b 179.7 ± 19.4 d

SD: Standard deviation; a 2-nitrofluorene (5 µg/plate); b sodium azide (1.5 µg/plate); c tert-butyl-hydroperoxide
(50 µg/plate); d 9-aminoacridine (100 µg/plate).

None of the tested concentrations of red and white AoBTHPs (250, 625, 1250, 2500, 3750,
and 5000 µg/plate) induced an increase in the number of revertant colonies in bacterial
strains TA98, TA 100, TA 102, TA 1335, and TA1537. In contrast, a clear increment in the
amount of spontaneous revertants of the bacterial strains was found in all positive controls,
compared with the negative control.

Moreover, a decrease in the background lawn of the plates was not observed in any
tested concentrations of red and white AoBTHPs compared to the negative control.

2.4. Antioxidant Activity

A standard calibration curve was constructed for each spectrophotometric assay
using ascorbic acid. The equations obtained were y = −0.0016x + 0.4024 and coefficient
of determination (R2) = 0.994 for the DPPH assay; y = 0.0032x + 0.0452 and R2 = 0.993
for the FRAP assay; and y = 0.004x + 0.0009 and R2 = 0.999 for the TAC assay using the
phosphomolybdenum method, where y is the absorbance, and x is the mg AAE/g AoBTHP
AAE per µg of AoBTHP.
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The spectrophotometric quantification of the in vitro antioxidant activity on red and
white AoBTHPs is presented in Table 4.

Table 4. Spectrophotometric quantification of the antioxidant activity on A. occidentale bark extracts.

Antioxidant Activity Assay
AoBTHP

Red Type White Type

DPPH (mg AAE/g AoBTHP) 508.95 ± 16.81 487.18 ± 14.33
FRAP (mg AAE/g AoBTHP) 398.95 ± 3.96 405.29 ± 5.60
TAC (mg AAE/g AoBTHP) 335.29 ± 23.48 346.17 ± 12.52

AAE: ascorbic acid equivalents; DPPH: 1,1-diphenyl-2-picrylhydrazyl; FRAP: Ferric Reducing Antioxidant Power;
TAC: Total Antioxidant Capacity. There were no statistically significant differences between all groups (p < 0.05).

The DPPH assay, FRAP assay, and TAC using the phosphomolybdenum method
showed that red and white Portuguese AoBTHPs have similar antioxidant activities, with
slight differences in each, without statistical significance (p < 0.05).

The data show that both AoBTHPs exhibited concentration-dependent DPPH radical
scavenging activity (Figure 2).
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Figure 2. DPPH free radical scavenging activity.

The half-maximal effective concentration (EC50) values calculated by the DPPH assay
for the red and white AoBTHPs (280.7 ± 6.7 µg/mL and 296.8 ± 3.1 µg/mL, respectively)
were significantly higher (p < 0.0001) compared to ascorbic acid (125.6 ± 3.9 µg/mL) and
gallic acid (37.1 ± 0.6 µg/mL).

2.5. Anti-Inflammatory Activity

The effect of red and white AoBTHPs on carrageenan-induced rat paw edema was
examined 6 h after carrageenan administration to analyze the percentage increase in paw
volume relative to basal values and compared to control groups. These results are presented
in Figure 3.

All groups except the negative control (the only group that did not receive carrageenan
saline solution) showed that the volume of the paw volume at the end of the 6 h was higher
than the basal paw volume.

The group that received the saline solution (vehicle control) showed a significative
increment in carrageenan-induced paw edema (p < 0.0001) compared to the negative control
(group showing no induced paw edema), validating the assay.
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A significant antiedema effect of red Portuguese AoB THP 71.5 and 127.0 mg/kg
(p < 0.001 and p < 0.0001, respectively) and white AoB THP 40.2, 71.5 and 127.0 mg/kg
(p < 0.001, p < 0.01 and p < 0.001, respectively) was observed at the end of 6 h compared to
vehicle control since the percentage increase in paw volume from baseline was significantly less.

The animals pre-treated with indomethacin 10 mg/kg, Trolox 30 mg/kg, and Tempol
30 mg/kg (positive control groups) also showed a significant reduction in carrageenan-
induced paw edema compared to the vehicle control.

The red AoBTHP 127 mg/kg pre-treated group showed a minimal increase in paw
volume compared to the basal value (2.46 ± 1.98%). This rat paw volume increment is
smaller than that obtained with indomethacin 10 mg/kg (18.4 ± 5.2%), Trolox 30 mg/kg
(18.6 ± 5.1%), and Tempol 30 mg/kg (21.7 ± 5.3%). It corresponds to an important inhibition
of carrageenan-induced paw edema.

3. Discussion

The development of new drugs can be done by chemical synthesis or from natural
resources (e.g., plants, fungi, or bacteria), isolating compounds with pharmacological
activity, or using standardized extracts from these resources [39]. The use of medicinal
plants to achieve health benefits is widely accepted and has led to the use of multiple
effective drugs in therapy [40].

The current regulatory framework of herbal substances/preparations requires the
assurance of an adequate safety profile [41]. Non-clinical safety is a basic requirement for
applications for marketing authorization and simplified registration of herbal medicinal
products [42]. This should include a comprehensive assessment of the genotoxic poten-
tial using in vitro and in vivo models of pro- and eukaryotic systems with and without
metabolic activation [43].

In this work, we performed the Ames test, one of the most applied tests in toxicology,
to determine the mutagenic potential of different substances [44]. This is a bacterial reverse
gene mutation short-term test for the identification of carcinogens using mutagenicity in
a set of different Salmonella typhimurium strains as an endpoint [45,46]. At tested concen-
trations (250–5000 µg of extracts/plate) of red and white AoBTHPs, no mutagenicity or
evidence of cytotoxicity was observed, as neither an increment in the number of sponta-
neous revertants per plaque (the number of revertants was not significantly increased to at
least 2-fold the negative control for TA98, TA100, and TA102, and 3-fold the negative control
for TA1535 and TA1537) nor a decrease in the background lawn of the plates at any tested
bacterial strain compared to the negative control [47]. Additionally, no dose–response
relationship was observed between the tested concentrations of AoBTHPs. Therefore,
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according to the guidelines of ICH, OECD, and European Medicines Agency, under the con-
ditions of this study and using plate incorporation without metabolic activation, the results
obtained with red and white Portuguese AoBTHPs were unequivocally negative [43,48–50].

A review of the published research showed that these findings are consonant with
the available data from the in vitro genotoxicity assessment of methanolic and ethanolic
AoB extracts, which revealed no genotoxic effect on Chinese hamster lung fibroblasts
(V79 cells) [51,52] and no cytotoxic activity in murine fibroblasts (L929) [53], respectively.

In this work, we did not perform the Ames test with metabolic activation. However,
red and white Portuguese AoBTHPs were previously examined for their genotoxicity
potential in vivo, so the pharmacokinetics of the substances were taken into account, and
the absence of significant genotoxicity risk was demonstrated [23,49]. In addition, the
main components of the formulations (gallic and protocatechuic acids) do not exhibit any
direct or indirect genotoxicity [54,55]. Therefore, no further genotoxicity testing on red
and white AoBTHPs is required to ensure their pre-clinical safety, and these data fulfill the
genotoxicity testing requirements for inclusion of an herbal substance or preparation in the
European Community list of herbal substances, preparations, and combinations thereof for
use in traditional herbal medicinal products [43].

In the first LC-UV/DAD fingerprint, we detected the presence of gallic, protocatechuic,
and ellagic acids in red and white Portuguese AoBTHPs [33,34]. Now, we have updated
these data using a LC-UV/DAD-ESI-MS/MS analysis which has enabled a more exhaustive
study of the formulations. The presence of gallic, protocatechuic, and ellagic acids was
confirmed, and catechin, epicatechin, and epigallocatechin gallate were identified in red
and white Portuguese AoBTHPs.

Previously, de Araújo Vilar et al. (2016) identified by LC-UV/DAD gallic acid, cat-
echin, and epicatechin in the ethyl acetate phase of an acetone extract of AoB and their
corresponding concentrations were found to be 397.61 µg/mL, 13.78 µg/mL, and 23.24
µg/mL [26]. Other authors, also using LC-UV/DAD, showed the presence of gallic acid,
catechin, ellagic acid, and epicatechin in a methanolic extract of AoB and its ethanolic and
ethyl acetate fractions [56]. Gallic acid was also identified in ethanolic AoB extracts using
ultrahigh-performance liquid chromatography coupled with diode array detection and
quadrupole time-of-flight mass spectrometry [38]. Nevertheless, we must note that none
of these extracts are aqueous like the Portuguese AoBTHPs and that the solubility of the
compounds varies depending on the solvent and the extraction technique. In addition,
water-based procedures benefit from the use of a cheap, abundant, and health-harmless
solvent [57].

In this research, we evaluated the antioxidant activities of red and white AoBTHPs, as
these THPs have a high content of phenolic compounds, which are recognized as strong
antioxidants [23,58].

Antioxidants play an important role in neutralizing free radicals in biological cells, re-
ducing and preventing the development of oxidative stress [59]. The individual antioxidant
activity of distinct compounds and their additive, synergistic, or antagonistic interactions
can be integrated and ideally evaluated by different analytical methods, considering that
the antioxidants are unequally reactive in all these tests [60]. The in vitro methods are
cheap and high-throughput tools that are widely applied to discover new antioxidant sub-
stances [61]. So, in our research, we selected three different in vitro methods to characterize
the potential antioxidant activities of red and white AoBTHPs and mitigate the inherent
chemical limitations of each method. First, the DPPH test was performed, which relies on
the antioxidants’ electron donation to neutralize the DPPH radical, causing a color change
from deep purple to pale yellow [62]. The second was the FRAP assay, which is based on
the reduction of ferric ions (Fe3+)-ligand to a ferrous complex (Fe2+) in the presence of an
acidic medium and subsequent formation of an intense blue [60]. The last was TAC by
the phosphomolybdenum method, which involves the reduction of Mo6+ to Mo5+ by the
antioxidants and the subsequent formation of a phosphate Mo5+ complex under acidic
conditions, resulting in the generation of a green or greenish-blue color [63].
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Red and white AoBTHPs showed similar antioxidant activity in all three assays, but
the antioxidant activity of ascorbic acid, an important physiological antioxidant [64], was
comparatively more effective than that of AoBTHPs. As previously reported, red and white
Portuguese AoBTHPs exhibited a concentration-dependent free radical scavenging activity
using the DPPH assay [23]. This data was confirmed and complemented by the results
obtained in the two complementary assays performed. Note that in the DPPH assay, gallic
acid, a phenolic acid with high free radical scavenging activity [65] and the main compound
of AoBTHPs, exhibited a lower EC50 value than ascorbic acid and consequently revealed
the strongest free radical scavenging activity.

These data are consistent with previous studies conducted by other authors who had
shown that different types of AoB extracts have antioxidant properties. Chaves et al. (2009)
reported an AoB ethanolic extract concentration-dependent radical scavenging activity by
DPPH assay (from 25 up to 100 µg/mL) [66]. Other studies performed with AoB ethanolic
extracts, also using the DPPH assay, showed EC50 of 235.30 µg/mL [67], 1.12 µg/mL
(a lower value than quercetin used as standard) [68], and 32.86 ± 3.05 µg/mL (ascorbic
acid EC50 of 8.36 ± 6.63 µg/mL) [56]. Additionally, an AoB methanolic extract showed
an EC50 of 42.44 ± 0.16 µg/mL (a lower value than the standard ascorbic acid, EC50 of
121.7 ± 0.04 µg/mL) [69] and AoB ethyl acetate, aqueous and methanolic extracts exhibited
antioxidant activity by TAC and DPPH methods [70]. In this last study, the aqueous extract
showed the lowest antioxidant activity in both assays, contrasting with the ethyl acetate
extract, which revealed the highest activity.

To the best of our knowledge, this is the first report on the anti-inflammatory prop-
erties of red and white Portuguese AoBTHPs. To evaluate the anti-inflammatory activity
of AoBTHPs, we selected the carrageenan-induced paw edema model in the rat, which
is commonly used to study acute local inflammation and to search for and develop new
anti-inflammatory drugs since edema is precisely one of the cardinal signs of inflamma-
tion [71–73] and three positive controls were used, namely indomethacin (a nonsteroidal
anti-inflammatory drug) [74], Trolox (a water-soluble analog of vitamin E with potent
antioxidant and anti-inflammatory effects) [75,76] and Tempol (a redox cycling nitroxide
that has shown antioxidant, anti-inflammatory, anti-apoptotic and immunomodulatory
activities) [77]. Analysis of the results obtained revealed that the two highest doses (71.5
and 127.0 mg/kg) of red AoB THP and all tested doses of white AoBTHP (40.2, 71.5,
and 127.0 mg/kg) were effective in reducing the hind paw volume. The red AoBTHP
127 mg/kg produced a higher reduction in carrageenan-induced paw edema than in-
domethacin, Trolox, and Tempol, underscoring the potential anti-inflammatory activity of
this herbal preparation.

Our results agree with those obtained by others using various samples and extracts of
A. occidentale bark and different models of anti-inflammatory activity [26–30]. Worthy of
highlighting, the AoB aqueous extract tested by Thomas et al. (2015), using the carrageenan-
induced rat paw edema model at specific doses of 100, 200, and 400 mg/kg p.o., led to a
reduction in rat paw edema of 45.03%, 48.17%, and 52.88%, respectively [29].

Anti-inflammatory and antioxidant activities are very closely related and often dif-
ficult to dissociate, since antioxidant mechanisms will lead to decreased inflammation
processes [78].

The antioxidant properties of gallic and protocatechuic acids, the two main red and
white Portuguese AoBTHP constituents we identified, have already been reported by other
authors, and some details are known regarding the anti-inflammatory properties of these
compounds. Gallic acid has been described as a pro-oxidant and antioxidant agent, and
its therapeutic effects are mainly attributed to these properties, which include modulation
of various signaling pathways by a variety of inflammatory cytokines and enzymatic and
non-enzymatic antioxidants [65]. This compound also decreases the inflammatory response
by reducing the release of inflammatory cytokines, chemokines, adhesion molecules, and
cell infiltration through the MAPK and NF-κB signaling pathways [79]. Ben Saad et al.
(2017) reported that gallic acid inhibited the production of nitric oxide (NO), PGE2, and
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interleukin 6 (IL-6) in LPS–induced RAW267.4 macrophages [80]. Other authors have found
that the anti-inflammatory effect of gallic acid may be due to suppression of p65-NF-κB
and activation of IL-6/p-signal transducer and activator of transcription (STAT)3Y705 [81].
Relative to the anti-inflammatory properties of protocatechuic acid, Son et al. (2018)
concluded that this compound may have potential benefits against LPS-induced excessive
ROS formation and cell senescence [82]. In a streptozotocin-induced diabetic rat model,
the protocatechuic acid incremented the antioxidant status, inhibiting lipid peroxidation,
and suppressed pro-inflammatory biomarkers (myeloperoxidase activity, NO, and tumor
necrosis factor-alpha (TNF-α) levels [83].

Since phenolic compounds are the major chemical class identified in red and white
AoBTHPs and gallic and protocatechuic acids are recognized anti-inflammatory and an-
tioxidant natural products, they may be involved in the anti-inflammatory and free radical
scavenging and reducing activities of red and white AoBTHPs. However, the antioxidant
and anti-inflammatory effects of red and white AoBTHPs may be due not only to the main
components’ individual activity but also to synergisms between them. Therefore, it is
essential to evaluate the formulations as a whole and not only their individual components.

Inflammatory diseases are considered the main cause of global morbidity [2], with
oxidative stress playing a central role in the genesis of these conditions, which, as mentioned
above, include diabetes mellitus, rheumatoid arthritis, and cancer [3,7]. There is an urgent
need to find new therapeutic alternatives to treat and slow the progression of these diseases,
which could involve exploring standardized herbal formulations [33] with recognized
antioxidant activity, such as red and white Portuguese AoBTHPs that have proven to be
safe at preclinical levels [23] and possess in vitro antioxidant, in vivo anti-inflammatory,
in vitro and in vivo antidiabetic activities [34].

4. Materials and Methods
4.1. Chemicals and Reagents

Acetic acid glacial 99–100% and sulfuric acid were obtained from Chem-Lab® (Zedel-
gem, Belgium). Acetonitrile was purchased from Honeywell Riedel-de HaënTM (Seelze,
Germany). Ammonium molybdate, hydrochloric acid fuming 37%, iron (III) chloride
hexahydrate, L-histidine monohydrochloride monohydrate, sodium acetate trihydrate,
and sodium dihydrogen phosphate dihydrate were obtained from Merck (Darmstadt,
Germany). Ammonium sodium phosphate dibasic tetrahydrate, di-Potassium hydrogen
phosphate anhydrous, and sodium chloride were obtained from Fluka (Seelze, Germany).
Ascorbic acid, carrageenan, (±)-catechin hydrate, D-biotin, dimethyl sulfoxide (DMSO),
ellagic acid, (−)-epicatechin, (−)-epigallocatechin gallate, indomethacin, protocatechuic
acid, tert-butyl hydroperoxide, Tempol, Trolox, DPPH, 2-nitrofluorene, and 2,4,6-tris(2-
pyridyl)-s-triazine (TPTZ) were purchased from Sigma-Aldrich® (St. Louis, MO, USA).
Bacto™ agar was obtained from Becton, Dickinson and Company (Sparks, MD, USA). Citric
acid monohydrate, disodium hydrogen phosphate dihydrate, and sodium dihydrogen
phosphate monohydrate were obtained from Panreac (Barcelona, Spain). Magnesium sul-
fate heptahydrate was obtained from (LabChem Inc., Zelienople, PA, USA). Methanol was
obtained from Fisher Chemicals® (Leicestershire, UK). Nutrient broth n◦ 2 was obtained
from Oxoid (Basingstoke, UK). Sodium azide was obtained from J.T. Baker Chemical Com-
pany (Phillipsburg, NJ, USA). Sodium chloride 0.9% was acquired from B. Braun Medical,
Lda. (Queluz, Portugal). All chemicals used were of analytical grade.

4.2. Plant Material

Fragments of red and white AoB types were gathered during fructification and identi-
fied in Guinea-Bissau by Professor Luís Catarino from the Department of Plant Biology,
Faculty of Sciences of the Universidade de Lisboa. Corresponding voucher specimens were
deposited in the LISC-Herbarium collection, Instituto de Investigação Científica Tropical
(voucher numbers: red AoB gathered at Paiai, 11.836◦ N; 14.421◦ W: LC 1922 LC and white
AoB gathered at Dulombi, 11.858◦ N; 14.503◦ W: LC1924 CJ). All samples were dried at
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room temperature away from direct light and stored in the Laboratory of Pharmacognosy,
Faculty of Pharmacy of the Universidade de Lisboa.

Additionally, the plant name was checked in the online flora “The World Flora On-
line” [22].

4.3. Extract Preparation

Plant material was manually shredded into 1–2 cm fragments and homogenized as
specified in European Pharmacopoeia 11.0 [84]. Subsequently, the extraction procedure
was carried out according to the traditional method: Portuguese AoBTHPs were prepared
extemporaneously by water maceration of the dried AoB (1:7 w/v) for 48 h at a controlled
temperature (2–8 ◦C).

Then the extracts were filtered with cotton tissue (according to the traditional method
of producing THP) and used in the in vivo anti-inflammatory activity test. Additionally,
for the other assays, 20 mL aliquots of these filtered extracts were frozen at −20 ◦C and
then lyophilized at −56 ◦C and kept in the freezer at −20 ◦C until their use.

4.4. LC-UV/DAD-ESI-MS/MS Phytochemical Profile

To perform the analysis, the red and white AoB samples were previously solubilized
in acetonitrile (5 mg/mL) and filtered through a polytetrafluoroethylene syringe filter
(0.2 µm).

Samples were injected in a volume of 10 µL into a LiChrospher® 100 RP-18 end-
capped particle size 5 µm, 100 Å, LiChroCART® 250 × 4 mm (Merck, Darmstadt, Germany)
and separated by LC Waters Alliance 2695 coupled to a Waters 2996 Photodiode Array
Detector (PDA) (Waters Corporation, Milford, MA, USA). A MicroMass Quattromicro®

API triple quadrupole Mass Spectrometer (Waters®, Wexford, Ireland) was used to perform
mass spectroscopy.

The LC-UV/DAD-ESI-MS/MS phytochemical profile was established according to
the method described by Encarnação et al. (2022) with some modifications [34].

The mobile phase consisted of water/0.5% formic acid (solvent A) and acetonitrile
(solvent B). Chromatographic separation was performed using a gradient elution of 5–17%
B in 0 to 26 min, 17–33% B in 26 to 90 min, 33–40% B in 90 to 92 min, and 40–75% B in 92 to
101 min at a flow rate of 0.3 mL/min. The column was then washed and reconditioned.
The temperature of the column thermostat was 25 ◦C. Data was registered and analyzed
using Waters Millennium®32 Chromatography Manager (Waters Corporation, Milford,
MA, USA). Chromatograms were monitored and registered on Maxplot (210–600 nm).

The compounds were ionized by an electrospray source in negative mode (ESI−), at
20 V con voltages. Data processing was performed with Waters MassLynx™ Software
Version 4.1.

4.5. Ames Test

The in vitro genotoxic potential was evaluated using the Ames test protocol described
by Maron and Ames (1983) [85] and according to current international requirements [48,50].

The test was performed using the direct plate incorporation method without metabolic
activation with five tester strains of Salmonella enterica serovar Typhimurium (TA1537,
TA1535, TA102, TA100, and TA98) [86], which were kindly provided by the Genetics
Department of the Nova Medical School of the New University of Lisbon (Lisbon, Portugal).
The Salmonella enterica strains were inoculated into an end-capped nutrient broth and
incubated at 37 ◦C for 12–16 h and 210 rpm in the dark in an orbital incubator. They were
then kept at 4 ◦C until use.

An aliquot of red or white Portuguese AoBTHP was diluted with 10% DMSO until
the final volume was 200 µL, corresponding to doses of 250, 625, 1250, 2500, 3750, and
5000 µg/plate (the maximum dose level recommended by the Organization for Economic
Co-operation and Development (OECD) guideline for testing chemicals) [50]. Then, 500 µL
of sodium phosphate buffer (0.1 M, pH 7.4) and 100 µL of the bacterial culture were added
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to the extract. Finally, this mixture was mixed with 2 mL of molten Top-agar (melted
at 100 ◦C and cooled to 45 ◦C), containing biotin and a trace of histidine, and plated in
glucose minimal agar. After incubation at 37 ◦C for 48 h, the manual counting of His+

revertant colonies was performed for each extract/control plate, and the background lawn
was examined for signs of toxicity or compound precipitation.

DMSO was used as a negative control and the solutions of 2-nitrofluorene (5 µg/plate),
sodium azide (1.5 µg/plate), tert-butyl-hydroperoxide (50 µg/plate), and 9-aminoacridine
(100 µg/plate) were used as positive controls for TA98, TA100 and TA1535, TA102, and
TA1537 strains, respectively.

All tests were performed in triplicate, and results are presented as the mean number
of revertant colonies per plate ± standard deviation (SD).

4.6. Antioxidant Activity Evaluation

The antioxidant properties of red and white Portuguese AoBTHPs were evaluated
using three different spectrophotometric methods: DPPH method, FRAP assay, and TAC
using the phosphomolybdenum method.

All values were determined in 3 sets of experiments and evaluated in triplicate using
a Hitachi U-2000 UV-Vis spectrophotometer (Tokyo, Japan). The results are presented as
mean ± SD.

4.6.1. DPPH Assay

The activity as a free radical scavenger was assessed using the DPPH assay described
by Silva et al. (2006) [87]. The assay was performed by adding 3.9 mL of DPPH solu-
tion (6 × 10−5 M in methanol) to 0.1 mL of extract/water/standard. After incubation
at room temperature for 30 min, the absorbance of the solutions was measured spec-
trophotometrically at 517 nm against the blank. Increasing ascorbic acid concentrations
(25.0–200.0 µg/mL) were used to obtain a standard curve. Results are expressed in mil-
ligrams of ascorbic acid equivalents (AAE) per gram of AoBTHP (mg AAE/g AoBTHP).
Additionally, the percentage of DPPH free radical scavenging activity was calculated using
the following formula: % scavenging = [control absorbance − absorbance of the test sam-
ple/control absorbance] × 100. Results are reported as the sample efficient concentration
to reduce the initial DPPH concentration by 50% − EC50.

4.6.2. Ferric Reducing Antioxidant Power Assay

The antioxidant activity was also evaluated according to the FRAP assay protocol
described by Benzie and Strain (1996) with some modifications [88]. The FRAP reagent
contained 10 mM TPTZ solution in 40 mM hydrochloric acid, 20 mM iron (III) chloride
hexahydrate, and acetate buffer (300 Mm, pH = 3.6) (1:1:10, v/v/v). One hundred microliters
of extract (50.0–400.0 µg/mL)/water/standard were added to 3 mL of FRAP reagent, and
absorbance was measured at 593 nm with Hitachi U-2000 spectrophotometer (Tokyo, Japan)
after incubation at room temperature for 4 min, using the FRAP reagent as blank. The
reference standard was ascorbic acid (25.0–200.0 µg/mL). Results are expressed as mg
AAE/g AoBTHP.

4.6.3. Total Antioxidant Capacity Assay

The TAC assay was carried out using the phosphomolybdenum method described by
Prieto et al. (1999) [89]. Two hundred microliters of extract (50.0–400.0 µg/mL)/water/standard
were mixed with 2 mL of the reagent solution containing 0.6 M sulfuric acid, 28 mM sodium
phosphate, and 4 mM ammonium molybdate. The vials were capped and incubated in
a water bath at 95 ◦C for 90 min. After the samples had cooled to room temperature, the
absorbance was measured spectrophotometrically at 695 nm against the blank. Increasing
ascorbic acid concentrations (25.0–200.0 µg/mL) were used to obtain a standard curve.
Results are expressed as milligrams of AAE per gram of AoBTHP (mg AAE/g AoBTHP).
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4.7. Anti-Inflammatory Activity
4.7.1. Animals

Sixty-seven male Wistar rats weighing 150.8 ± 3.2 g were purchased from Harlan
Laboratories Inc. (Barcelona, Spain). The rats were housed in groups of five or six animals
per cage in the Animal House of the Faculty of Pharmacy of the University of Lisbon under
controlled environmental conditions with a 12–12-h light-dark cycle, a temperature of
22 ± 2 ◦C and a relative humidity of 55 ± 10%. All animals received water and standard
laboratory rat chow ad libitum. The animals were acclimatized to laboratory conditions
three weeks before the start of the study.

4.7.2. Experimental Protocol

The anti-inflammatory activity was evaluated according to the protocol of the carrageenan-
induced paw edema in rats described by Rocha et al. (2015) [90]. This experimental
protocol was approved in February 2016 by the Ethics Committee for Animal Experiments
(CEEA) of the Faculty of Pharmacy of the Universidade de Lisboa (protocol CEEE-002/16).
The experiments were performed in agreement with European and Portuguese ethical
requirements [91,92].

Sixty-seven male Wistar rats were randomized by weight and divided into 11 groups.
The water, drugs or extracts were administered by oral gavage 10 mL/kg body weight
(BW) [93] as described: (i) Group 1 (negative control): animals received vehicle (water)
(n = 5); (ii) Group 2 (vehicle control group—carrageenan): animals received vehicle (water)
(n = 11); (iii) Group 3 (indomethacin group): animals pre-treated with indomethacin
(10 mg/kg) (n = 5); (iv) Group 4 (Trolox group): animals pre-treated with Trolox (30 mg/kg)
(n = 5); (v) Group 5 (Tempol group): animals pre-treated with Tempol (30 mg/kg) (n = 5);
(vi) Groups 6–8 (red AoBTHP groups): animals pre-treated with red AoBTHP 40.2, 71.5 or
127.0 mg/kg (n = 6); (vii) Groups 9–11 (white AoBTHP groups): animals pre-treated with
white AoBTHP 40.2, 71.5 or 127.0 mg/kg (n = 6).

After 1 h, paw edema was induced in all rats by a single subplantar injection of 0.1 mL
of 1% carrageenan saline solution in the left hind paw (except in the negative control group
that received a subplantar injection of 0.1 mL of sterile saline).

Paw volume was measured immediately after the injection of carrageenan (basal volume),
and 6 h later using a Digital Plethysmometer LE7500 (Letica Scientific Instruments—Reagente
5, Porto, Portugal). Paw edema is presented as mean ± standard error of the mean (SEM)
and expressed as a percentage of the increase in paw volume 6 h after carrageenan injection
relative to basal values according to the equation: % = [(V6 − V0)/V0] × 100, where V0
= paw volume measured immediately after carrageenan injection, and V = paw volume
measured 6 h after carrageenan injection.

4.7.3. Rationale for Dose Selection and Route of Administration

The selected THP doses (40.2, 71.5, and 127.0 mg/kg BW/day) were previously tested
in a study developed by our team in db/db mice (type 2 diabetes mouse model) that
evaluated the hypoglycemic activity of Portuguese AoBTHP in diabetes [34]. In our study,
AoBTHP caused a dose-dependent decrease in fasting blood glucose. All samples were
administered orally by gavage, the most common route of drug administration in humans.

4.8. Statistical Analysis

Data were analyzed using Microsoft Excel version 16.49 (Microsoft Corporation, Red-
mond, WA, USA) and GraphPad Prism version 5.0 for Windows (GraphPad Software Inc.,
San Diego, CA, USA).

EC50 values were calculated by linear regression analysis. The values are presented
as mean ± SD or mean ± SEM and were assessed using t-test or one-way analysis of
variance, followed by Bonferroni’s multiple comparison test. Differences were considered
statistically significant if the p-value was less than 0.05.
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5. Conclusions

This work assessed the in vivo anti-inflammatory and in vitro antioxidant activities
of the red and white Portuguese AoBTHPs as well as their in vitro genotoxic potential.
LC-UV/DAD-ESI-MS/MS phytochemical profiles were also established, and major com-
pounds identified.

The carrageenan-induced paw edema rat model showed an effective anti-inflammatory
activity of both AoBTHPs and the highest concentration of the red AoBTHP (127.0 mg/kg)
was much more effective than clinically relevant substances used as controls (indomethacin
10 mg/kg, Trolox 30 mg/kg and Tempol 30 mg/kg). The exhibited anti-inflammatory
activity and the antioxidant potential, aligned with lack of genotoxicity in accordance
with the requirements of the ICH guideline, support the concrete validation of red and
white AoB and their THPs as anti-inflammatory agents and contribute for the possible
development of promising new therapeutic options to treat inflammatory conditions.

In future research, enzymatic models should be employed to clarify the mechanisms
of action underlying the anti-inflammatory activity, and data from in vitro biological assays
and/or in vivo assessment should be added to the analysis of the antioxidant activity of
whole extracts and isolated marker active compounds to allow for a more detailed structure-
activity correlation and based on these, the establishment of more assertive parameters for
the standardization of AoBTHPs.
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