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Abstract: As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and
quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important
to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response
mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN
stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome
analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots
and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-
regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%;
3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and
N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF)
and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in
a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous
genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for
weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the
potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide
insight into the functional mechanisms in response to LN stress and five candidate regulatory genes
in wheat. These results will provide a basis for further research on promoting NUE in wheat.

Keywords: wheat; low nitrogen; RNA-seq; nitrogen signaling network

1. Introduction

Wheat (Triticum aestivum; 2n = 6x = 42; AABBDD) is the third most important crop
globally, feeding ~30% of the world’s population [1]. Wheat yields will need to be constantly
increased to cope with the increasing pressure of population growth until 2050 [2]. Nitrogen
(N) is an essential nutrient for plant growth and development and is also a component of
cellular molecules, such as amino acids, nucleic acids, and chlorophyll [3,4]. The application
of N fertilizer has substantially increased wheat yields in the past few decades. Given the
low N use efficiency (NUE) of wheat (less than 40%), over-fertilization has also caused
serious environmental pollution [5–8]. Therefore, understanding the mechanism of NUE
and improving NUE in wheat are of paramount importance.

Nowadays, many N-related genes have been identified in plants, including structural
genes, transcription factors (TFs), and protein kinases (PKs) [9,10]. Among these genes, TFs
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and PKs constitute the N signaling pathway in response to low N (LN) stress [9–13]. In
general, the signaling pathway had three types of genes, including N signaling perception
genes, regulatory hub genes, and other regulatory genes (ORGs). In the model plant
Arabidopsis, AtNPF6.3 (AtNRT1.1) is a dual-affinity nitrate transporter, also known as an
external N level sensor [14–17]. N signaling is converted to calcium signaling via AtNPF6.3
at the N signaling perception stage [14,15]. Intracellular calcium and N signaling are further
efficiently tuned by AtCNGC15 [18]. As calcium concentrations increase, AtCPK10/30/32
phosphorylates AtNLP6/7 and promotes the nuclear retention of AtNLP7 to activate
the LN response [16,19]. Then, AtNLP6/7 interacts with several TFs, such as AtNRG2,
AtTCP20, and AtHBI1, to regulate the downstream ORGs [20–24]. In addition, these ORGs
are further divided into two functional groups in response to LN stress. The first subgroup
of genes is positively regulated by LN stress under the AtNLP6/7 downstream, including
AtTGA1/4, AtbZIP1, AtNAC56, and AtANR1 [25–30]. For example, AtTGA1/4 regulates
the expression of AtNRT2.1 and AtNRT2.2 in response to N stress [25]. Overexpression
of AtANR1 activates the downstream of AtNRT1.1 and also promotes root growth under
LN stress [30]. The second subgroup of genes is negatively regulated in response to LN
stress under the AtNLP6/7 downstream, including AtHRS1/HHO1, AtLBD37/38/39, AtBT1/2,
and AtSPL9 [31–37]. For example, AtHRS1/HHO1 negatively regulates the expression of
AtNRT1.1 and AtNRT2.4 [31–33]. In the AtBT1/2 double mutant, the expression of AtNRT2.1
and AtNRT2.4 is increased [36]. In summary, the identification of these genes has given us
a good understanding of the response mechanisms of plants under LN conditions.

With the development of biotechnology, transcriptomic data have become an impor-
tant tool for understanding the potential mechanisms of gene expression [38,39]. Over the
past decades, a large amount of N-related transcriptomic data has been analyzed in crops
to understand the N response mechanisms [40–58]. In rice, the expression of genes related
to energy metabolism, amino acid metabolism, and carbohydrate metabolism was reduced
under LN stress [40]. In barley, LN tolerance-related genes are mainly associated with
amino acid metabolism, starch and sucrose metabolism, and secondary metabolism [41].
A study under LN stress found that the alanine, aspartate, and glutamate metabolism,
terpenoid backbone biosynthesis, and vitamin B6 metabolism pathways play a key role
in wheat NUE [54]. Genes related to nitrogen compound metabolism, carbon metabolism,
and photosynthesis are altered during chronic nitrogen stress in durum wheat [55].

Although several transcriptomic datasets of wheat LN tolerance are available, this
research has rarely focused on the signaling transduction mechanism in wheat [51–58].
Therefore, we aimed to understand the LN response and N signaling transduction mecha-
nisms in wheat. In this study, we first obtained the wheat LN stress transcriptome data.
Then, we identified genes of the N signaling pathway in wheat and analyzed their ex-
pression patterns. Finally, we performed weighted gene co-expression network analysis
(WGCNA) using the published data and identified five potential LN response TFs. Our
results will help develop understanding of the LN response mechanism in wheat and
provide gene resources for further study of N signaling transduction mechanisms.

2. Results
2.1. Wheat Seedling Morphology under Low Nitrogen Stress

Compared to normal nitrogen (NN) conditions, the phenotypes of the wheat seedlings
changed significantly after 12 days of LN conditions (Figure 1A,B). Seedlings under LN
stress had shorter shoot lengths and lower fresh and dry weights compared to seedlings
under normal conditions (Figure 1C–E). However, seedling root length, fresh weight,
and dry weight increased significantly by 17.86% (28 to 33 cm), 41.18% (0.17 to 0.24 g),
and 46.15% (0.013 to 0.019 g) under LN conditions, respectively (Figure 1C–E). LN stress
resulted in increased wheat root growth, while shoot growth was inhibited, indicating that
the growth balance of wheat was significantly affected under LN conditions.
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Figure 1. Effects of different nitrogen rates on the wheat crop. (A) Four randomly selected seedlings at
different nitrogen levels, with NN on the left and LN on the right. Scale bars, 10 cm. (B) All seedlings
at different N levels, with normal nitrogen (NN) on the left and low nitrogen (LN) on the right. Scale
bars, 10 cm. (C–E) Growth length (C), fresh weight (D), and dry weight (E) of roots and shoots
under NN and LN conditions. Bar graphs from left to right represent shoots under LN conditions,
shoots under NN conditions, roots under LN conditions, and roots under NN conditions, respectively.
Significance levels were estimated using the t-test, ** p < 0.01, * p < 0.05. NS, not significant.

2.2. Transcriptomics Quality and Mapping Statistics

To investigate the transcriptome shift induced by LN stress in wheat shoots and roots,
a total of 12 cDNA libraries were constructed, including LN root 1 (LR1), LN root 2 (LR2),
LN root 3 (LR3), LN shoot 1 (LS1), LN shoot 2 (LS2), LN 3 (LS3), NN root 1 (NR1), NN root
2 (NR2), NN root 3 (NR3), NN shoot 1 (NS1), NN shoot 2 (NS2), and NN shoot 3 (NS3). Due
to the poor data quality of NR1, the remaining 11 samples were used for subsequent analysis.
In total, 507.60 million clean reads were obtained from these 11 samples. The sequencing
error rate was less than 0.03%, the average GC content was 55%, and the percentages of Q20
and Q30 were over 97.32% and 92.35%, respectively. The total percentage of mapped reads
ranged from 97.18% to 98.63%, including unique mapped reads, from 87.72% to 91.27%
(Table 1). In general, these results indicated the high quality of the data in this study.
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Table 1. Summary of Illumina sequencing data and mapping results.

Libraries Row
Reads

Clean
Reads GC (%) Error

Rate (%) Q20 (%) Q30 (%)
Mapping
Alignment
Rate (%)

Uniq
Mapped

Reads (%)

Multi
Mapped

Reads (%)

LS_1 52,362,666 49,208,442 56.07 0.02 98.06 94.49 98.63 90.87 7.76
LS_2 57,022,090 54,302,414 56.97 0.03 97.83 93.99 98.56 91.27 7.29
LS_3 45,084,032 41,501,168 53.32 0.02 98 94.36 98.34 87.72 10.62
LR_1 46,019,256 44,010,914 54.31 0.03 97.8 93.93 97.85 91.23 6.61
LR_2 43,574,686 41,582,874 54.66 0.03 97.89 94.17 97.75 91.13 6.62
LR_3 43,976,886 41,912,238 53.93 0.03 97.77 93.8 97.74 90.83 6.91
NS_1 56,016,618 53,647,952 58.09 0.03 97.74 93.81 98.61 90.39 8.23
NS_2 46,546,442 44,198,178 55.93 0.03 97.88 94.14 98.61 89.45 9.17
NS_3 49,068,108 46,009,472 55.32 0.02 97.96 94.3 98.43 81.45 16.99
NR_2 49,085,898 46,338,388 53.65 0.02 97.97 94.3 97.24 90.09 7.15
NR_3 47,677,344 44,892,372 53.08 0.03 97.32 92.35 97.18 89.83 7.35

Note: Low nitrogen shoot (LS); Low nitrogen root (LR); Normal nitrogen shoot (NS); Normal nitrogen root (NR).

Moreover, Pearson’s correlation coefficient and principal component analysis (PCA)
were used to estimate the repeatability of the samples. Pearson correlation values ranged
from 0.82 to 0.99, indicating qualified biological replicates (Figure 2A). PCA analysis also
showed a good correlation between biological replicates (Figure 2B). Based on the PCA
clusters, there were different LN response patterns between shoots and roots (Figure 2B).
Notably, the root data were further divided into two groups (LN root and NN root) accord-
ing to the amount of nitrogen applied, suggesting transcriptome divergence. In summary,
these high-quality data supported the subsequent in-depth analysis in this study.
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Figure 2. Correlation of wheat samples under different degrees of nitrogen stress. Pearson’s correla-
tion coefficient matrix (A) and principal component analysis (B) distribution of clustering results. LR,
low nitrogen root; NR, normal nitrogen root; LS, low nitrogen shoot; NS, normal nitrogen shoot.

2.3. Identification and Analysis of Differentially Expressed Genes

Differentially expressed genes (DEGs) reflect internal changes and suggest potential
mechanisms for plant responses to environmental and growth changes. In this study, a
total of 8468 DEGs (p-value < 0.5 and |log2Foldchange| ≥ 1) were identified from the
62,128 detective transcripts. Compared to the NN conditions, the number of DEGs under
LN stress was 4467 in the roots and 4565 in the shoots. It is noteworthy that although
the number of DEGs in the roots and shoots was similar, their response patterns to LN
were distinctly different. Compared to NN conditions, 2955 DEGs were up-regulated and
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1512 DEGs were down-regulated in the roots (Figure 3B–E). In the shoots, 1291 DEGs
were up-regulated and 3274 DEGs were down-regulated compared to NN conditions
(Figure 3A,C,D). In addition, 564 (6.7%) DEGs were differentially expressed in both the
roots and shoots, of which 81 DEGs were up-regulated and 89 DEGs were down-regulated
(Figure 3F). The remaining 394 DEGs showed opposite expression patterns in the roots and
shoots (Figure 3F). Collectively, our results indicated that the response mechanisms of the
roots and shoots to LN are different.
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Figure 3. Classification analysis of differentially expressed genes (DEGs). Volcano map of wheat
shoots (A) and roots (B) under LN stress. Each point represents a gene, red points are up-regulated
DEGs, blue points are down-regulated DEGs, and green points are complementary differential genes.
(C) Number of DEGs in wheat roots and shoots. Cluster plots of DEGs in wheat shoots (D) and roots
(E) under LN stress. Colors represent gene expression. High expression is red, and low expression is
blue. Venn diagram of up-regulated and down-regulated differentially expressed genes (F) in wheat
roots and shoots. Genes as a percentage of all genes in brackets. LR, low nitrogen root; NR, normal
nitrogen root; LS, low nitrogen shoot; NS, normal nitrogen shoot.

2.4. GO and KEGG Enrichment of Differentially Expressed Genes

Understanding the potential function of DEGs is helpful to elucidate the molecular
mechanisms by which plants respond to environmental stimulation. In this study, given
the different response patterns between wheat shoots and roots, Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied to uncover the
potential LN response mechanisms.
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DEGs were mainly enriched in three major GO functional groups, including biological
processes (BP), molecular functions (MF), and cellular components (CC). In the shoots,
447 out of 1291 specifically up-regulated DEGs were significantly enriched in 67 sub-classes
(Table S1), and the most enriched terms were protein kinase activity, DNA binding, and pro-
tein phosphorylation (Figure S1A). A total of 1679 out of 3274 specifically down-regulated
DEGs were significantly enriched in 190 sub-classes, such as hydrolase activity, hydrolyzing
O-glycosyl compounds, apoplast, and carbohydrate metabolic process (Figure S1B). In
the roots, 1320 out of 2955 specifically up-regulated DEGs were significantly enriched
in 110 sub-classes, such as membrane, o-methyltransferase activity, and heme binding
(Figure S2A). A total of 622 out of 1512 specifically down-regulated DEGs were enriched in
115 significant sub-classes, such as nicotianamine synthase activity, nicotianamine biosyn-
thetic process, and manganese ion binding (Figure S2B and Table S1). It is worth noting
that protein phosphorylation and metal ion transport were significantly enriched in both
the shoots and roots via specifically up-regulated DEGs, indicating that post-translational
modification played an important role in the response to LN stress in wheat. Moreover,
43 out of 81 co-up-regulated DEGs in the roots and shoots were enriched in 35 sub-classes
(Figure 4A and Table S1), including nitrate reductase (NADPH) activity and nitrate assimila-
tion. Further, 26 out of 89 co-down-regulated DEGs in the roots and shoots were enriched in
17 sub-classes (Figure 4B and Table S1), such as allantoin catabolic process, integral compo-
nent of membrane, and allantoinase activity. In addition, 138 of the 357 DEGs up-regulated
in roots and down-regulated in shoots were enriched in 41 subclasses (Table S1), including
xylan biosynthetic process, cellulose synthase (UDP-forming) activity, and membrane.

KEGG pathways were classified into five categories, including metabolism, genetic
information processing, environmental information processing, cellular process, and or-
ganismal systems, with the most abundant DEGs identified in pathways belonging to
metabolism (Table S2). In the shoots, 490 out of 1291 specifically up-regulated DEGs
were significantly enriched in 15 pathways (Table S2), with the most significantly en-
riched being the MAPK signaling pathway (Figure S1C). A total of 1485 out of 3274 down-
regulated DEGs in the shoots were enriched in 78 significant pathways (Table S2), with
phenylpropanoid biosynthesis, and cutin, suberin, and wax biosynthesis being the most
significant (Figure S1D). In the roots, among the 57 pathways significantly enriched for
the 1030 out of 2955 up-regulated DEGs (Table S2), phenylpropanoid biosynthesis and
flavonoid biosynthesis were the most significant pathways (Figure S2C). A total of 322 out
of 1512 specifically down-regulated DEGs were significantly enriched in 31 pathways
(Table S2), and the most significantly enriched pathways were cysteine and methionine
metabolism, biosynthesis of various plant secondary metabolites, and nitrogen metabolism
(Figure S2D). There were also 52 pathways enriched in the roots via up-regulated DEGs
and in the shoots via down-regulated DEGs. In addition, 17 out of 81 co-up-regulated
DEGs in the roots and shoots were enriched in four pathways (Figure 4C and Table S1),
including amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism,
and linoleic acid metabolism. Four co-down-regulated DEGs in the roots and shoots
were only enriched in nitrogen metabolism (TraesCS4A01G042000, TraesCS7A01G428500,
TraesCS7B01G328700, and TraesCS7D01G420900) (Figure 4D and Table S2). In addition,
111 of the 357 DEGs up-regulated in roots and down-regulated in shoots were enriched in
24 pathways (Table S1), including phenylpropanoid biosynthesis, cutin, suberin, and wax
biosynthesis, and flavonoid biosynthesis.

In conclusion, although some genes were involved in functions in both the roots and
shoots, there was tissue specificity in the response to LN between the shoots and roots
in wheat.
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Figure 4. GO and KEGG enrichment analysis of DEGs. GO enrichment analysis of co-up-regulated
(A) and co-down-regulated (B) DEGs in shoots and roots, top 20 pathways by p-value. KEGG
enrichment analysis of co-up-regulated (C) and co-down-regulated (D) DEGs in shoots and roots. BP,
biological processes; MF, molecular functions; CC, cellular components.

2.5. Identification of Differentially Expressed Transcription Factors and Protein Kinases

TFs and PKs play an essential role in the regulation of gene expression, especially in
response to biotic and abiotic stresses. In this study, 6291 TFs belonging to 67 families were
identified in wheat. A total of 541 TFs were differentially expressed in shoots and/or roots
after LN stress (Figure 5A and Table S3). In the shoots, 241 differentially expressed TFs,
including 123 up-regulated and 118 down-regulated DEGs, belonged to 34 transcription
factor (TF) gene families. Notably, members of several TF gene families (9/34 families) were
all down-regulated in the shoots, such as the Tify (10/10 genes) and B3-ARF (7/7 genes)
families, but 13 TF gene families, such as the MYB-related (38/38 genes) and C2C2-CO-
like (2/2 genes) families, were all up-regulated in the shoots (Table S3). In the roots,
333 differentially expressed TFs belonged to 32 TF gene families. Of these 333 TFs, 79 were
down-regulated and 254 were up-regulated. In particular, in many TF gene families (13/32),
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all TFs were up-regulated in the roots, e.g., HB-BELL (9/9 genes) and NF-YA (11/11 genes)
(Table S3). Simultaneously, all TFs in six families were down-regulated in the roots, such
as the LOB (12/12 genes) and RWP-RK (3/3 genes) families (Table S3). In addition, there
were 33 differentially expressed TFs that overlapped in the shoots and roots, and these
genes belonged to 11 TF gene families (Figure 5B). We also found that 18 of 33 genes were
up-regulated in the roots but down-regulated in the shoots, belonging to seven families,
such as AP2/ERF-ERF (four genes) and MYB (three genes). Overall, TFs play an important
role in the response to LN stress in wheat, and these genes may function in a tissue-specific
manner to respond to LN stress.
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Figure 5. Differentially expressed transcription factors (TFs) and protein kinases (PKs) of wheat under
different nitrogen conditions. Classification of differentially expressed TFs (A) and PKs (C) in roots
and shoots, top 20 families by number of genes. Heatmap of co-differentially expressed TFs (B) and
PKs (D) in shoots and roots. LR, low nitrogen root; NR, normal nitrogen root; LS, low nitrogen shoot;
NS, normal nitrogen shoot.

We also identified 5326 PKs in wheat. A total of 378 PKs were differentially expressed
in the shoots and/or roots after LN stress. There were 203 differentially expressed PKs
in the shoots, of which 87 were down-regulated and 116 were up-regulated, belonging
to 38 families (Figure 5C and Table S3). Members of many protein kinase (PK) gene
families (20/38) were down-regulated, for example, RLK−Pelle_RLCK−V (6/6 genes)
and RLK−Pelle_LRR−III (5/5 genes). The family members of RLK-Pelle_LRK10L-2
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(17/17 genes) and RLK-Pelle_SD-2b (6/6 genes) were all up-regulated in the shoots. In the
roots, 191 differentially expressed PKs were identified, of which 42 were down-regulated
and 149 were up-regulated, from 34 PK gene families (Table S3). Notably, members of some
of the PK gene families (25/34 families) were predominantly up-regulated, such as the
RLK−Pelle_DLSV (35/39 genes) and RLK−Pelle_WAK (24/28 genes) families. Moreover,
16 differentially expressed PKs overlapped between the roots and shoots (Figure 5D), and
these genes belonged to 11 PK gene families (Figure 5B). Nine PKs were expressed with
different trends in the roots and shoots. Thus, PKs also play an important role in the
development and adaptation to LN stress, and may have tissue-specific roles.

2.6. Expression Pattern of Nitrate Signaling Pathway Genes

The genes of the N signaling pathway play an important role in signal transduction
in plants under LN stress. In general, homologous genes have similar functions across
different species. As a complex hexaploid species, identifying and analyzing the expression
patterns of N signaling pathway genes in wheat is important for us to understand the
regulation mechanism of wheat N utilization.

A total of 107 N pathway homologous genes were identified in wheat (Table S4). Over-
all, 89 of the 107 N signaling pathway homologous genes had detectable transcript levels in
wheat roots and/or shoots, while the remaining 18 genes were not expressed (FPKM < 1)
(Figure 6). Thirty-two of the forty homologous genes involved in N-signal perception had
detectable expression. These genes were homologous to NRT1.1 (10/13), CNGC15 (3/6),
CIPK8 (3/3), CIPK23 (3/3), CBL1/9 (4/6), and SnRK2s (9/9) (Figure 6). Among these ho-
mologous genes, two SnRK2s homologous genes were up-regulated (TraesCS4A01G235600
and TraesCS4B01G079300) and six NRT1.1 (OsNRT1.1B) homologous genes were down-
regulated in the roots under LN stress (Table S4). Additionally, the expression trends
of CIPK8 and CBL1/9 homologous genes were completely opposite between the roots
and shoots, suggesting different LN response patterns. For the regulatory hub, NLP
and its interacting proteins acted as key regulators of N signaling by activating many
N-responsive genes. In our study, a total of 20 homologous genes were identified as be-
ing expressed, including homologous genes of NLP6/7 (3/3), TCP20 (3/3), NRG2 (3/3),
CPK10/30/32 (9/9), and HBI1 (2/2) (Figure 6). Among these homologous genes, only
one CPK10/30/32 (TraesCS4A01G283400) homologous gene was up-regulated in the roots
(Table S4). In both the roots and shoots, the expression trends of the NRG2 and HBI1
homologous genes were completely reversed, and the NLP6/7 homologous genes showed
a consistent trend towards down-regulation. These ORGs were further divided into two
functional groups. Among the genes that responded positively to LN stress, we iden-
tified 21 of 26 homologous genes with detectable expression, including OsNhd1 (3/3),
TGA1/4 (3/3), ANR1 (6/6), bZIP (9/9), and NAC56 (0/5) (Figure 6). An up-regulation
of a bZIP1 homologous gene was observed in the roots (Table S4). The expression trends
of OsNhd1 were consistently up-regulated in both tissues. On the other hand, among the
genes that responded negatively to LN stress, we identified 16 of 21 homologous genes
that had detectable expression, including BT1/2 (6/6), HRS1/HHOS1 (3/3), SPL9 (1/6),
and LBD37/38/39 (6/6) (Figure 6). In the roots, HRS1/HHOS1, LBD37/38/39, and BT1/2
each had three down-regulated homologous genes (Table S4). In the shoots, there were
two down-regulated homologous genes belonging to HRS1/HHOS1 (TraesCS2B01G135600)
and LBD37/38/39 (TraesCS2D01G193400). In particular, the expression trends of BT1/2
homologous genes were completely opposite in the roots and shoots, whereas the expres-
sion trends of HRS1/HHOS1 and LBD37/38/39 were consistently down-regulated in both
tissues. In conclusion, these genes played a crucial role in response to nitrate signaling, and
had different response patterns in wheat roots and shoots.
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Figure 6. Expression patterns of nitrate signaling pathway genes in wheat. Nitrate is sensed by
NRT1.1. The nitrogen signal is transmitted to NLP6/7 via calcium accumulation and phosphory-
lation. NLP6/7 interacts with several TFs to regulate other regulatory genes downstream, thereby
influencing nitrate uptake, translocation, and assimilation. The number following the gene name
indicates the number of homologous genes and the number of genes with expression in wheat.
ANR, ARABIDOPSIS NITRATE REGULATED; BT, BTB and TAZ DOMAIN PROTEIN; bZIP, BA-
SIC LEUCINE ZIPPER; CBL, CALCINEURIN B-LIKE PROTEIN; CIPK, CBL-INTERACTION PRO-
TEIN KINASE; CNGC, CYCLIC NUCLEOTIDE-GATED CHANNEL PROTEIN; CPK, CALCIUM-
SENSOR PROTEIN KINASE; HBI, HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRES-
SION2 INTERACTING WITH IBH1; HHO, HRS1 HOMOLOG; HRS, HYPERSENSITIVITY TO
LOW PI-ELICITED PRIMARY ROOT SHORTENING; LBD, LATERAL BOUNDARY DOMAIN-
CONTAINING PROTEIN; N, nitrate; NAC, NAM-ATAF-CCUC DOMAIN-CONTAINING PROTEIN;
Nhd1, N-MEDIATED HEADING DATA-1; NLP, NIN-LIKE PROTEIN; NRG, NITRATE REGULA-
TORY GENE; NRT, NITRATE TRANSPORTER; SnRK2, SUCROSE NON-FERMENTING1 (SNF1)-
RELATED PROTEIN KINASE 2S; SPL, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE; TCP,
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR; TGA, TGACG MOTIF-
BINDING FACTOR. LR, low nitrogen root; NR, normal nitrogen root; LS, low nitrogen shoot; NS,
normal nitrogen shoot.

2.7. Identification of Co-Expression Genes in Response to LN Stress

Genes with highly correlated expression patterns are often involved in the same bi-
ological process. We collected 36 available transcriptome datasets of wheat under LN
stress and performed WGCNA. A total of 17,840 genes with expression in one or more
samples were analyzed and classified into 12 color modules (Figure 7A). Among these
modules, only the MEturquoise module (11,195 genes) showed a distinctly different ex-
pression pattern in the shoots and roots, with almost all genes (98%) being more highly
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expressed in the roots than in the shoots (Figure 7B). Among the 1889 roots’ DEGs iden-
tified in the MEturquoise module, five TFs (TraesCS4B01G299400, TraesCS4B01G299500,
TraesCS2A01G281200, TraesCS4D01G298400, and TraesCS2B01G298600) had the highest con-
nectivity values (kWithin > 2000), indicating that these genes could be potential hub genes
in this module (Figure 7C). In addition, 109 roots’ DEGs of the MEturquoise module were
directly connected to all potential hub TFs, and they all had a connectivity of >0.4 (Figure 7D).
A total of 109 genes were significantly enriched with 23 GO terms, such as methyltransferase
activity, response to oxidative stress, and response to stress (Figure 7E). Five KEGG pathways
were significantly enriched, such as phenylpropanoid biosynthesis, glutathione metabolism,
and tryptophan metabolism (Figure 7F). In summary, we identified five potential key TFs that
regulate the LN response, suggesting their important role in response to LN stress in the roots.
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gene expression. High expression is red, and low expression is blue. (C) Venn plots of MEturquoise
module genes and root DEGs. (D) Primary co-expression network of TraesCS4B01G299400,
TraesCS4B01G299500, and TraesCS2A01G281200, TraesCS4D01G298400, TraesCS2B01G298600. GO
(E) and KEGG (F) enrichment analysis of genes in Figure 7D. BP, biological processes; MF, molecular
functions; CC, cellular components.

3. Discussion
3.1. LN Stress Response in Wheat

Abiotic stresses, such as LN stress, usually trigger drastic molecular responses during
plant growth [59]. In this study, we constructed transcriptomic datasets of the roots and
shoots of wheat seedlings after 12 days of LN stress. Overall, 8468 non-redundant DEGs
were identified. DEGs were mainly up-regulated in the roots (66.15%, 2955 up/4467 DEGs),
but down-regulated in the shoots (71.62%, 3274 down/4565 DEGs) (Figure 3), suggesting
different response patterns between wheat roots and shoots. A previous study on wheat
revealed a similar mechanism [51]. After 10 days of LN stress on wheat seedlings (Wanmai
No. 52) at the two-leaf stage, 74% of root DEGs were up-regulated, while 76% of leaf
DEGs were down-regulated [51]. However, after a short period of LN stress, many DEGs
were still predominantly up-regulated in wheat roots, but more DEGs were up-regulated
than down-regulated in the shoots [52–54]. For example, following 24 h of LN stress on
seedlings 21 days after germination of wheat, 83% (PBW677 high NUE) and 96% (PBW703
low NUE) of DEGs were up-regulated in the roots, and 74% (PBW677 high NUE) and 78%
(PBW703 low NUE) of DEGs were up-regulated in the shoots [52]. During the one-leaf
one-heart period, wheat seedlings were subjected to 12 h of LN stress, resulting in 63%
(XM26 high NUE) and 60% (LM23 low NUE) of DEGs being up-regulated in the roots,
while 67% (XM26 high NUE) and 59% (LM23 low NUE) of DEGs were up-regulated in
the shoots [54]. Interestingly, a similar pattern of response has been found in other species.
For example, in Brassica napus roots, the up-regulated DEGs were maintained more than
the down-regulated DEGs with increasing LN stress time [45]. In rice roots stressed with
LN for 15 days, 52% (IR 64) and 93% (Nagina 22) of DEGs were up-regulated [47]. A
comparable response pattern was observed in shoots under prolonged LN stress. For
example, more down-regulated DEGs were maintained in maize leaves after 20 and 30 days
of LN stress [49]. In the leaves of watermelon seedlings, 53% of the DEGs were down-
regulated after 14 days [44]. Thus, we hypothesize that the timing of LN stress induces
different response mechanisms in plant roots and shoots.

3.2. Nitrate Signaling Network in Wheat

Many genes in the hexaploid wheat genome were lost during evolution, while many
others were greatly expanded [60]. In identifying signaling pathway genes, we found
that some genes in wheat had exactly three homologous genes belonging to the A, B,
and D subgenomes, including CIPK8, CIPK23, CBL1/9, SnRK2s, OsNhd1, BT1/2, NRG2,
TCP20, and CPK10/30/32. In addition, there were a number of genes with significantly
increased numbers of homologous genes, including NRT1.1, CNGC15, ANR1, bZIP1, SPL9,
and NAC56. A reduced number of homologous genes were also found for some genes,
including TGA1/4, HRS/HHO1, LBD37/38/39, NLP6/7, and HBI1. This may indicate
that pathway genes with significantly more homologous genes play a more important role
in wheat.

The plant nitrate signaling pathway is a complex network involving numerous genes,
and its molecular mechanisms have been extensively studied [9–13]. It is broadly divided
into three parts: N signaling perception genes, regulatory hub genes, and ORGs [45].
NRT1.1 was the first nitrate transporter protein cloned in Arabidopsis in relation to ni-
trate uptake [14,15]. In rice, its homologous gene, OsNRT1.1B, is thought to be the main
gene responsible for the difference in NUE between indica and japonica rice varieties [61].



Plants 2024, 13, 371 13 of 18

In addition, OsNRT1.1B is abundantly expressed in rice roots and down-regulated un-
der LN stress [62,63]. In our study, the expression of all OsNRT1.1B homologous genes
(6/6) was significantly down-regulated in wheat. The expression of TraesCS1A01G210900,
TraesCS1B01G224900, and TraesCS1D01G214200 was abundant, then decreased extremely
significantly (log2Foldchange < −6). We speculated that these genes might play an im-
portant role in wheat and have gene-editing potential. Notably, NLP7 was found to be
an important regulator of nitrate signaling [20,21]. Overexpression of NLP7 in Arabidopsis
significantly improved plant growth under LN conditions, while also regulating other
TFs [20,21]. We found no significant differential changes in the three homologous genes
of NLP6/7 in wheat under LN stress. In addition, a previous study found that NLP7
expression was significantly up-regulated in the roots and shoots of high NUE wheat [64].
We speculated that in wheat varieties with different NUE potential, there would be different
trends in NLP7 expression after LN stress. In addition, there were several TFs in the nitrate
signaling pathway that had a negative regulatory effect. Several studies have reported
that HRS1/HHO1 in Arabidopsis represses the expression of other NUE-related genes, and
also plays a role in root development [31–33]. Its expression decreased rapidly under
LN stress [31,32]. The HRS1 homologous gene in rice, NIGT1, also performs the same
function [65]. LBD37/38/39 and BT1/2 acted as negative regulators of nitrate response
genes in response to N starvation [34–36]. In our study, the expression of all homologous
genes of HRS1/HHO1 (3/3) and some homologs of LBD37/38/39 (3/6) and BT1/2 (3/6)
were significantly down-regulated in wheat roots under LN stress. We predicted that
reduced expression of negative regulators would play an important role in wheat root
growth. In conclusion, the nitrate signaling pathway in wheat is an extremely complex
process. A better understanding of the wheat nitrate pathway and its associated genes has
been achieved, providing genetic resources and new insights for further research into N
signaling mechanisms.

4. Materials and Methods
4.1. Plant Materials and Treatment

The wheat cultivar Chinese Spring was selected as the plant material. Seeds were
surface sterilized with 30% sodium hypochlorite for 20 min and then rinsed with sterile
water. The seeds were vernalized at 4 ◦C for 5 days, and then transferred to 25 ◦C for 7 days
of cultivation. The seedlings were then transferred to a hydroponic system at 25 ◦C and
the entire root system was kept submerged in nutrient solution. Two different nutrient
solutions were used, NN (16 mM/L) and LN (3.2 mM/L). The nutrient solution was also
changed every three days. On day 12 after nutrient treatment, root and shoot tissues from
each plant were sampled and stored at −80 ◦C for subsequent RNA extraction and analysis.

4.2. RNA Isolation, Library Construction and Sequencing

Total RNA was isolated from the roots and shoots using the Plant RNA Kit (TIAN-
GEN). The degradation and contamination of the RNA was monitored on 1% agarose
gels. RNA purity, concentration, and integrity were checked using a NanoPhotometer®

spectrophotometer (IMPLEN, Westlake Village, CA, USA), a Qubit® RNA Assay Kit in
Qubit®2.0 Flurometer (Life Technologies, Carlsbad, CA, USA), and an RNA Nano 6000 As-
say Kit of the Bioanalyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA).
Sequencing libraries were generated with the NEBNext® UltraTM RNA Library Prep Kit
for Illumina® (NEB, Ipswich, MA, USA), and 150 bp paired-end reads were generated by
sequencing the library preparations on an Illumina Hiseq platform.

4.3. Read Preprocessing and Identification of DEGs

The quality of reads was assessed using FastQC (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc, accessed on 1 March 2022), and low-quality reads were removed us-
ing Trimmomatic [66]. The wheat reference genome and annotation files were downloaded
from the International Wheat Genome Sequencing Consortium (IWGSC) [67]. Hisat2 was

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
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used to align the reads to the reference genome [68]. We used SAMtools to convert sam files
to bam files, as well as sorting and indexing them [69]. Transcript assembly and differential
analysis were performed using StringTie and DESeq2 [70,71]. Genes with FPKM ≥ 1.0
in at least one sample were considered to be expressed. Genes satisfying p-value < 0.05
and |log2Foldchange| ≥ 1 were defined as DEGs. Data were manipulated and visualized
using the R packages tydiverse and ggplot2. PCA was performed using the R packages
factoextra and FactoMineR. Hierarchical clustering was performed and visualized as a
heatmap using the R package pheatmap. Pearson coefficients were calculated using the R
package corrplot.

4.4. Function Annotation

GO enrichment analysis was used from the functional annotation files downloaded from
IWGSC (https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0
/iwgsc_refseqv1.0_FunctionalAnnotation_v1.zip, accessed on 15 March 2022) as background
files. KEGG pathway enrichment analysis was used with KofamKOALA [72–75]. The
significance of each pathway was calculated using the hypergeometric distribution test
and the results were recorded as p-value. Pathways with p-value of <0.05 were defined
as significantly enriched in GO and KEGG. Identification and classification of TFs and
PKs were performed using iTAK (http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi,
accessed on 10 June 2022) [76].

4.5. Identification of Orthologous Genes

To identify the N signaling pathway genes in the wheat genome, the protein sequences
of 34 known Arabidopsis and/or rice N signaling genes collected from past studies as queries
(Table S5). The other gene family members of the queried genes in Arabidopsis (https:
//www.arabidopsis.org/, accessed on 15 October 2022) and rice (https://rapdb.dna.affrc.
go.jp/, accessed on 15 October 2022) were downloaded as flank genes. The Pfam domains of
the target gene were searched using InterPro (https://www.ebi.ac.uk/interpro/, accessed
on 20 October 2022). Corresponding hidden Markov model (HMM) files were downloaded
from the Pfam database [77]. HMMsearch was used to identify wheat proteins containing
the corresponding domains, with an E-value threshold of 1E-5. The obtained non-redundant
protein sequences were submitted to SMART (https://smart.embl.de/smart, accessed on
30 October 2022) and InterPro (https://www.ebi.ac.uk/interpro/, accessed on 30 October
2022) to determine protein domains [78]. Multiple sequence alignment of the selected
genes in wheat and all family genes of the target gene was performed using MAFFT (https:
//www.ebi.ac.uk/Tools/msa/mafft/, accessed on 30 October 2022) [79]. Subsequently, a
phylogenetic tree was constructed in MEGA using the neighbor-joining algorithm. The
candidate genes were considered as positive hits based on the following three criteria:
(1) the genes were most closely related to known Arabidopsis N signaling genes in the
phylogenetic tree (NJ tree); (2) the genes shared a higher sequence similarity to that of
the known Arabidopsis N signaling genes; (3) the queries sequence and wheat sequence
were together located in the smallest branch. The DNA, CDS, and protein sequences of
candidates were obtained via IWGSC.

4.6. Weighted Gene Co-Expression Network Analysis

To detect key co-expression modules and key genes under LN stress, we generated a co-
expression network using the WGCNA package in R [80]. Data from other relevant wheat N
studies were obtained from NCBI [54,81]. Genes with low coefficients of variation (CV < 1)
were removed and the remaining 17,840 genes were used for analysis. The determination of
the soft thresholding power was based on the scale-free topology model fit (R²) ≥ 0.8 using
the pickSoftThreshold function. Subsequently, the automatic network construction function
(blockwiseModules) was used to complete the network construction and module detection
to obtain highly correlated modules. TOMType was signed, the minModuleSize was 50,

https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/iwgsc_refseqv1.0_FunctionalAnnotation_v1.zip
https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.0/iwgsc_refseqv1.0_FunctionalAnnotation_v1.zip
http://bioinfo.bti.cornell.edu/cgi-bin/itak/index.cgi
https://www.arabidopsis.org/
https://www.arabidopsis.org/
https://rapdb.dna.affrc.go.jp/
https://rapdb.dna.affrc.go.jp/
https://www.ebi.ac.uk/interpro/
https://smart.embl.de/smart
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/Tools/msa/mafft/
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the soft threshold (power) was 24, and the mergeCutHeight was 0.25. Co-expression and
transcriptional regulatory networks were plotted using Cytoscape [82].

5. Conclusions

In this study, we characterized the molecular mechanisms of wheat responses to LN
stress by transcriptome analysis. Our data suggested that the roots and shoots of wheat
had different LN response patterns, such as differences in seedling growth phenotypes and
the number of DEGs. Moreover, our results suggested that tissue-specific expression of TFs,
such as the MYB-related (38 genes), might also be one of the factors contributing to the
differential response of wheat roots and shoots to LN stress. Furthermore, the identification
of N signaling genes had defined 20 differentially expressed N signaling regulated genes
in wheat. In addition, the WGCNA analysis of 47 transcriptome datasets screened five
potential hub regulatory LN response genes (TraesCS4B01G299400, TraesCS4B01G299500,
TraesCS2A01G281200, TraesCS4D01G298400, and TraesCS2B01G29860) in wheat. Overall,
our results revealed the LN response mechanism in wheat and screened out five potential
candidate hub regulatory genes. Our work will provide new insights into the LN stress
response mechanism and contribute potential gene expression resources for subsequent
genetic breeding in wheat.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13030371/s1. Table S1. GO annotation of all differentially
expressed genes (DEGS) in roots and shoots; Table S2. KEGG annotation of all DEGs in roots and
shoots; Table S3. Distribution of differentially expressed transcription factors (TFs) and protein
kinases (PKs) family genes in roots and shoots; Table S4. Genes involved in the nitrate signalling
pathway in wheat; Table S5. Protein sequences of nitrogen signalling genes in Arabidopsis and rice
used in the study; Figure S1. GO and KEGG enrichment analysis of DEGs in the shoots; Figure S2.
GO and KEGG enrichment analysis of DEGs in the roots.
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